JPS6216601A - Rectangular microstrip antenna - Google Patents

Rectangular microstrip antenna

Info

Publication number
JPS6216601A
JPS6216601A JP15573985A JP15573985A JPS6216601A JP S6216601 A JPS6216601 A JP S6216601A JP 15573985 A JP15573985 A JP 15573985A JP 15573985 A JP15573985 A JP 15573985A JP S6216601 A JPS6216601 A JP S6216601A
Authority
JP
Japan
Prior art keywords
axis direction
feeding point
axis
surface current
polarized wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15573985A
Other languages
Japanese (ja)
Other versions
JPH0310242B2 (en
Inventor
Yukihiro Yoshikawa
幸広 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP15573985A priority Critical patent/JPS6216601A/en
Publication of JPS6216601A publication Critical patent/JPS6216601A/en
Publication of JPH0310242B2 publication Critical patent/JPH0310242B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To erase a cross polarized wave component by providing symmetrically two pieces of feeding points against the center axis being parallel to a main polarized wave direction of a rectangular radiation conductor element, and executing a feed by an equal phase and an equal amplitude. CONSTITUTION:When a rectangular radiation conductor element 2 constituted of a microstrip is excited by one feeding points 5, since the feeding point 5 is shifted from the center axis being parallel to a (y) axis of the rectangular radiation conductor element 2, a surface current of the (y) axis direction being uniform in the (x) axis direction, and a surface current of the (x) axis direction being uniform in the (y) axis direction flow and become elliptical polarized waves, but when said element is excited so as to become an equal phase and an equal amplitude to one feeding point 5 by a feeding point 11 of a symmetrical position to the feeding point 5 against the center axis being parallel to the (y) axis, each surface current of the (x) direction being uniform in the (y) axis direction is offset each other, and only the surface current of the (y) axis direction being uniform in the (x) axis direction is added. As a result, only a linearly polarized wave of the (y) axis direction is radiated, and a cross polarized wave component is erased completely. In this regard, when the same feeding point is provided in the (x) axis direction, as well, a circularly polarized wave antenna can be constituted.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は誘電体基板音用いて構成する矩形マイクロス
トリックアンテナに関するもノテある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention also relates to a rectangular microstric antenna constructed using a dielectric substrate.

〔従来の技術〕[Conventional technology]

第4図は従来の矩形マイクロスtlツブアンテナの一例
を示す図であり1図中、(1)は誘電体基板。
FIG. 4 is a diagram showing an example of a conventional rectangular micro TL tube antenna. In FIG. 4, (1) is a dielectric substrate.

(21は矩形放射導体素子、(3)は接地導体板、(4
)はストリップ給電線路、(5)は矩形放射導体水1−
(、“、)・・ス) IJツブ給電線路(4)の給電点
である1、第4しj(・・従来の矩形マイクロストリッ
プアンテナの動作原理を次に説明する。
(21 is a rectangular radiation conductor element, (3) is a ground conductor plate, (4
) is a strip feed line, (5) is a rectangular radiating conductor water 1-
(, ",)...S) The operating principle of the conventional rectangular microstrip antenna will be explained next.

第5図(al及び(b)は第4図の従来の矩形マイクロ
ストリップアンテナの一例の動作原理を説明するための
矩形放射導体素子(2)の図である。第5図(alは給
電点(5)がy軸上にある場合、第5図(blは給電点
(5)が中心軸よりずれた場合である。基本モードのみ
を考慮すると、第5図(a)の給電点(5)がy軸上に
ある場合には、X軸に一様な表面電流(6)が矩形放射
導体素子(2)上をy方向に流れ、誘電体基板(1)内
の電界(以下、これを内部電界という。)E8はX方向
に一様でy方向に正弦波状の分布(7)を持つ。したが
って、放射電界はy方向にのみ成分を持つ直線偏波とな
る。
5 (al and b) are diagrams of a rectangular radiation conductor element (2) for explaining the operating principle of an example of the conventional rectangular microstrip antenna of FIG. 4. (5) is on the y-axis, Figure 5 (bl) is the case where the feeding point (5) is shifted from the central axis. Considering only the fundamental mode, the feeding point (5) in Figure 5 (a) is ) is on the y-axis, a surface current (6) uniform on the X-axis flows in the y-direction on the rectangular radiation conductor element (2), is called an internal electric field.) E8 has a uniform distribution in the X direction and a sinusoidal distribution (7) in the y direction.Therefore, the radiated electric field becomes a linearly polarized wave having a component only in the y direction.

一方、第5図fblの給電点(5)が中心軸よりずれた
場合には、X軸に一様な表面電流(6)が矩形放射導体
素子(2)上をy方向に流れるだけでなく、y軸に一様
な表面電流(8)も矩形放射導体素子(2;上kx方向
に流れ、内部電界E、はy方向及びX方向にそれぞれ、
正弦波状の分布(7)及び(9)を持つ。したがって、
放射電界はy方向だけでなくX方向にも成分を持つ楕円
偏波となる。
On the other hand, if the feeding point (5) in Fig. 5 fbl is shifted from the central axis, the surface current (6) that is uniform on the X axis not only flows in the y direction on the rectangular radiation conductor element (2). , the surface current (8) uniform in the y-axis also flows in the rectangular radiating conductor element (2; in the upper kx direction, and the internal electric field E, in the y- and x-directions, respectively,
It has sinusoidal distributions (7) and (9). therefore,
The radiated electric field becomes an elliptically polarized wave having components not only in the y direction but also in the x direction.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第4図の従来の矩形マイクロストリップアンテナの一例
を直線偏波アンテナとして用いる場合。
When the example of the conventional rectangular microstrip antenna shown in FIG. 4 is used as a linearly polarized antenna.

上記説明の通り、給電点(5;の位置を中心軸上に持っ
てきた方が偏波特性が優れているが、インピーダンス整
合あるいはアンテナ全体の構成より、給電点(5)全中
心軸よりずらした位置に持ってこなければいけないこと
がある。その場合には交差偏波成分が生じ、アンテナと
しての性能が劣化するという問題点がおった。
As explained above, the polarization characteristics are better when the feed point (5) is placed on the center axis, but due to impedance matching or the overall antenna configuration, the feed point (5) is placed on the center axis. In some cases, it may be necessary to bring the antenna to a shifted position.In that case, cross-polarized components are generated, resulting in a problem in which the performance as an antenna deteriorates.

この発明は、このような問題点を解決するためになされ
たもので、給電点が中心軸よりずれた場合でも交差偏波
成分のない矩形マイクロストリップアンテナを得ること
を目的とする。
The present invention was made to solve these problems, and an object of the present invention is to obtain a rectangular microstrip antenna without cross-polarized components even when the feeding point is shifted from the central axis.

〔問題点を解決するための手段」 この発明に係る矩形マイクロストクツ1アンチすは、主
偏波方向と平行な矩形放射導体素子の中心軸に対して、
第一の給電点と対称な位置に第二の給電点を設け、互い
に等振幅等位相にて給電したものである。
[Means for Solving the Problems] The rectangular microscopy unit according to the present invention has the following characteristics:
A second power supply point is provided at a position symmetrical to the first power supply point, and power is supplied with equal amplitude and phase to each other.

〔作用」 この発明においては、第二の給電点を設けることにより、交差偏波方向へ流する電流を抑圧するっ〔実施例〕[action] In this invention, by providing a second feeding point, the current flowing in the cross polarization direction is suppressed.

第1図はこの発明の一実施例を示す図であり。 FIG. 1 is a diagram showing an embodiment of the present invention.

図中、(1)〜(5)は笛4図の従来の矩形マイクロス
トリップアンテナの一例と全く同一のものであり。
In the figure, (1) to (5) are exactly the same as an example of the conventional rectangular microstrip antenna shown in Figure 4.

a(l及び0υはそれぞj、新たに設けたス) IJツ
1給電線路、及び矩形放射導体素子(2)へのス) I
Jツブ給電線路01の給電点である。この発明による矩
形マイクロストリップアンテナの一実施例の動作原理を
次に説明する。
I
This is the feeding point of the J-tube feeding line 01. The operating principle of one embodiment of the rectangular microstrip antenna according to the present invention will now be described.

第2図(at及び(blは、それぞれ、給電点(5ン及
びθDが単独にある場合の矩形放射導体索子121上の
表面電流分布を示す図である。第2図(a)は第5図(
blの従来の矩形マイクロストリップアンテナの一例の
動作原理を説明するための図と同一であり、第2図(b
)は第2図(−をy軸に沿って180度反転させたもの
に等しい。すなわち、主偏波方向でめるy方向にりして
は0表面電流(6)及びQ旧ま同じ向きに流れ、交差偏
波方向であるX方向については1表面電流(8)及びQ
lは逆向きに流れる。ゆえに、給電点(5)及び■にお
ける矩形放射導体素子(2)への給電振幅位相を互いに
等振幅等位相にすれば、第3図に示すよ5に、矩形放射
導体素子(2)上の表面電流分布はy方向の表面電流Q
4のみとなり、内部電界E、は表面電流Iに対する正弦
波分布QcJとなる。
FIG. 2 (at and (bl) are diagrams showing the surface current distribution on the rectangular radiating conductor cord 121 when the feeding point (5n and θD are independent, respectively. Figure 5 (
It is the same as the diagram for explaining the operating principle of an example of the conventional rectangular microstrip antenna of bl, and is
) is equivalent to Figure 2 (-) reversed by 180 degrees along the y-axis. In other words, the surface current (6) is 0 in the y-direction defined by the main polarization direction, and Q remains in the same direction as before. 1 surface current (8) and Q for the X direction which is the cross polarization direction.
l flows in the opposite direction. Therefore, if the feeding amplitude phases to the rectangular radiating conductor element (2) at the feeding point (5) and ■ are made equal in amplitude and in phase with each other, as shown in FIG. The surface current distribution is the surface current Q in the y direction.
4, and the internal electric field E has a sinusoidal distribution QcJ with respect to the surface current I.

したがって、放射電界はy方向にのみ成分を持つ直線偏
波となり、良好な偏波特性を示す。
Therefore, the radiated electric field becomes a linearly polarized wave having a component only in the y direction, and exhibits good polarization characteristics.

ところで上記説明では、この発明を単一直線偏波アンテ
ナに利用する場合について述べたが、直交2偏波共用ア
ンテナなどにも利用できる。
Incidentally, in the above description, the present invention is applied to a single linearly polarized antenna, but it can also be applied to an antenna that can share two orthogonal polarized waves.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおル、主偏波方向と平行な矩
形放射導体素子の中心軸に対して、第一の給電点と対称
な位置に第二の給電点を設け、互いに等振幅等位相にて
給電することにより、給電点が中心軸よりずれた場合で
も良好な偏波特性が得られるという効果がめる。
As explained above, this invention provides a second feeding point at a position symmetrical to the first feeding point with respect to the center axis of a rectangular radiation conductor element parallel to the main polarization direction, and has equal amplitude and phase with each other. By feeding power at the center, it is possible to obtain good polarization characteristics even when the feeding point is shifted from the central axis.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す図、第2図(a)及
び(b)はこの発明の一実施例の動作原理を説明するた
めの図、第3図はこの発明の一実施例の表面電流分布、
及び内部電界分布を示す図、第4図は従来の矩形マイク
ロストリップアンテナの一例を示す図、第5図(at及
び(b)は従来の矩形マイクロストリップアンテナの一
例の動作原理を説明するための図である。 図において、(1)は誘電体基板、イ21は矩形放射導
体素子、(3)は接地導体板、(5)は第一の給電点、
0υは主偏波方向と平行な矩形放射導体素子(2)の中
心軸に対して、第一の給電点(5)と対称な位置に設け
た第二の給電点である。 なお、各図中同一符号は同一または相当部分を示す。
FIG. 1 is a diagram showing an embodiment of this invention, FIGS. 2(a) and (b) are diagrams for explaining the operating principle of an embodiment of this invention, and FIG. 3 is an embodiment of this invention. Example surface current distribution,
4 is a diagram showing an example of a conventional rectangular microstrip antenna, and FIG. 5 (at and (b) is a diagram for explaining the operating principle of an example of a conventional rectangular microstrip antenna. In the figure, (1) is a dielectric substrate, A21 is a rectangular radiation conductor element, (3) is a ground conductor plate, (5) is a first feeding point,
0υ is a second feeding point provided at a position symmetrical to the first feeding point (5) with respect to the central axis of the rectangular radiation conductor element (2) parallel to the main polarization direction. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 誘電体基板と、この誘電体基板の下面に置かれた接地導
体板と、上記誘電体基板を介して上記接地導体板と対向
する矩形放射導体素子とを有する矩形マイクロストリッ
プアンテナにおいて、主偏波方向と平行な矩形放射導体
素子の中心軸に対して、第一の給電点と対称な位置に第
二の給電点を設け、互いに等振幅等位相にて給電したこ
とを特徴とする矩形マイクロストリップアンテナ。
In a rectangular microstrip antenna having a dielectric substrate, a ground conductor plate placed on the lower surface of the dielectric substrate, and a rectangular radiating conductor element facing the ground conductor plate via the dielectric substrate, the main polarization A rectangular microstrip characterized in that a second feeding point is provided at a position symmetrical to the first feeding point with respect to the central axis of a rectangular radiation conductor element parallel to the direction, and electricity is fed with equal amplitude and phase to each other. antenna.
JP15573985A 1985-07-15 1985-07-15 Rectangular microstrip antenna Granted JPS6216601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15573985A JPS6216601A (en) 1985-07-15 1985-07-15 Rectangular microstrip antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15573985A JPS6216601A (en) 1985-07-15 1985-07-15 Rectangular microstrip antenna

Publications (2)

Publication Number Publication Date
JPS6216601A true JPS6216601A (en) 1987-01-24
JPH0310242B2 JPH0310242B2 (en) 1991-02-13

Family

ID=15612381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15573985A Granted JPS6216601A (en) 1985-07-15 1985-07-15 Rectangular microstrip antenna

Country Status (1)

Country Link
JP (1) JPS6216601A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5031413A (en) * 1988-01-20 1991-07-16 Sanyo Electric Co., Ltd. Low-temperature foods preserving case and its temperature control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5031413A (en) * 1988-01-20 1991-07-16 Sanyo Electric Co., Ltd. Low-temperature foods preserving case and its temperature control method

Also Published As

Publication number Publication date
JPH0310242B2 (en) 1991-02-13

Similar Documents

Publication Publication Date Title
DE68924341D1 (en) RADIO ANTENNAS.
KR20070099422A (en) Dual polarization broadband antenna having with single pattern
JPS60244103A (en) Antenna
JPS6216601A (en) Rectangular microstrip antenna
KR20100095818A (en) Radiation member using a dielectric member and antenna including the same
Khraisat et al. Analysis of the radiation resistance and gain of full-wave dipole antenna for different feeding design
JPS617707A (en) Array antenna for circularly polarized wave
JP2005072716A (en) Circularly polarized wave antenna
JPS617706A (en) Circularly polarized wave antenna
Rumsey On the design and performance of feeds for correcting spherical aberration
JPH0964637A (en) Waveguide slop antenna
JPS61189704A (en) Rectangular microstrip antenna
JP3239654B2 (en) Circularly polarized microstrip antenna
Ando Radiation pattern analysis of reflector antennas
JPS58182305A (en) Antenna for circularly polarized wave
JPS59154803A (en) Spiral antenna
JPH023563B2 (en)
Penkin et al. Dual-Band Combined Vibrator-Slot Radiating Structures
Ragheb et al. Radiation characteristics of the corner array
JP2625861B2 (en) Antenna device
Shen The field pattern of a long antenna with multiple excitations
CN209730174U (en) Dual polarization antenna radiation device and communication equipment
JPH0575284B2 (en)
JPS6313404A (en) Microstrip circularly polarized antenna
SU785917A1 (en) Corner antena