JPS62165912A - Plasma vapor growth device - Google Patents

Plasma vapor growth device

Info

Publication number
JPS62165912A
JPS62165912A JP820386A JP820386A JPS62165912A JP S62165912 A JPS62165912 A JP S62165912A JP 820386 A JP820386 A JP 820386A JP 820386 A JP820386 A JP 820386A JP S62165912 A JPS62165912 A JP S62165912A
Authority
JP
Japan
Prior art keywords
reaction vessel
reaction
pressure
tank
hydrogen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP820386A
Other languages
Japanese (ja)
Inventor
Yoichi Onishi
陽一 大西
Hirozo Shima
島 博三
Shinichi Mizuguchi
水口 信一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP820386A priority Critical patent/JPS62165912A/en
Publication of JPS62165912A publication Critical patent/JPS62165912A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To improve the quality of a deposit film by supplying the connecting sections of each reaction vessel with hydrogen gas, making the pressure of the connecting sections lower than pressure in respective reaction vessel and preventing the mutual mixing of mixed gases in each reaction vessel. CONSTITUTION:Reaction chambers 21, 22, 23 and a winding tank 30 are evacuated, and SiH4, a hydrogen gas base, B2H6 and H2 are each introduced into the chamber 21 at the predetermined flow rates, SiH4 and H2 into the chamber 22 at the prescribed flow rates and SiH4, the hydrogen gas base, PH3, and H2 into the chamber 23 at the fixed flow rates. Intermediate tanks 25, 26 are supplied with H2 gas by feeders 32. The flow rates of the feeders 32 are controlled by a pressure controller. High-frequency energy at predetermined frequency is fed into the chambers 21-23, and plasma at a low temperature is generated. Consequently, P-type, I-type and N-type semiconductor films are each formed into the chambers 21, 22, 23. The pressure of the intermediate tanks 25, 26 is made lower than that of the chambers 21, 22, 23 at that time, thus improving the quality of the deposit films without scaling up a device.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、プラズマ気相成長(CVD:Chemica
l Vapor Deposition)法によって、
薄膜を形成するためのプラズマ気相成長装置に関し、積
層して接合を構成する半導体すなわち太陽電池を連続し
て生産するのに利用されるプラズマ気相成長装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is directed to plasma vapor deposition (CVD).
l Vapor Deposition) method,
The present invention relates to a plasma vapor phase epitaxy apparatus for forming thin films, and relates to a plasma vapor phase epitaxy apparatus used to continuously produce semiconductors that are stacked to form a junction, that is, solar cells.

従来の技術 プラズマ気相成長法は、真空容器内に基材を保持し、形
成すべき薄膜の組成元素を含む化合物ガスを供給しなが
ら、高周波エネルギによって、前記化合物ガスを励起し
基材表面をそのプラズマ雰囲気に配置することによって
、基材表面に薄膜を形成する方法である。この方法は、
プラズマの活性さを利用しているため、室温から400
℃程度までの低温で膜形成を行うことができるという特
徴がある。
In the conventional plasma vapor phase epitaxy method, a substrate is held in a vacuum container, and while a compound gas containing the constituent elements of the thin film to be formed is supplied, the compound gas is excited by high frequency energy to coat the surface of the substrate. This is a method of forming a thin film on the surface of a substrate by placing it in that plasma atmosphere. This method is
Because it utilizes the activity of plasma, it can be heated up to 400°C from room temperature.
It has the characteristic that film formation can be performed at low temperatures down to about ℃.

上述したプラズマ気相成長法を実施する従来のプラズマ
気相成長装置の一例を第3図に示してあり、これについ
て説明する。
An example of a conventional plasma vapor phase growth apparatus for carrying out the above-mentioned plasma vapor phase growth method is shown in FIG. 3, and will be described below.

P型半導体層を形成するための第1反応容器1、第1中
間槽5、工型半導体層を形成するための第2反応容器2
、第2中間槽6およびN型半導体層連接されている。第
1.第2.第3各反応容器1゜2及び3にはその内部を
減圧雰囲気にするための真空ポンプ4が接続されている
0第1.第2中間槽5,6にはその内部を減圧雰囲気に
するための真空排気装置8が接続されている。
A first reaction vessel 1 for forming a P-type semiconductor layer, a first intermediate tank 5, and a second reaction vessel 2 for forming a p-type semiconductor layer.
, the second intermediate tank 6 and the N-type semiconductor layer are connected. 1st. Second. A vacuum pump 4 is connected to each of the third reaction vessels 1, 2 and 3 to create a reduced pressure atmosphere inside the vessel. A vacuum evacuation device 8 is connected to the second intermediate tanks 5 and 6 to create a reduced pressure atmosphere inside them.

第1反応容器1の横には被メッキ材となるフープ状で長
尺の基材9を巻出す巻出し槽1oが、また第3反応容器
3の横には基材の巻取り層11が気密的に連接されてい
る。巻出し槽1o及び巻取り槽11にはその内部を減圧
雰囲気にするための排気装置12が接続されている0巻
出し槽10から巻出される基材9はスリット7を通じて
各容器各種へ順次送られ、巻取り槽11で巻取られる0
以上のように構成されたプラズマ気相成長装置について 以下第3図及び第4図を用いてその動作について説明す
る。
Next to the first reaction vessel 1 is an unwinding tank 1o for unwinding a hoop-shaped and long base material 9 to be plated, and next to the third reaction vessel 3 is a winding layer 11 of the base material. are airtightly connected. The unwinding tank 1o and the winding tank 11 are connected to an exhaust device 12 for creating a reduced pressure atmosphere inside the unwinding tank 10.The base material 9 unwound from the unwinding tank 10 is sequentially sent to various containers through the slit 7. and is wound up in the winding tank 11.
The operation of the plasma vapor deposition apparatus constructed as described above will be described below with reference to FIGS. 3 and 4.

まず、第1反応容器1、第2反応容器2、第3反応容器
3、第1中間槽6、第2中間槽θ、巻出し槽10および
巻取り槽11を減圧雰囲気に真空排気した後、第1反応
室1内にはモノシラン(S I H4) rジポラン(
B2H6)、水素(H2)の混合ガスを、第2反応容器
2内にはモノシラン(S I H4)と水素(H2)の
混合ガスを、第3反応容器にはモノシラン(SiH2)
lホスフィン(PH3)。
First, after evacuating the first reaction vessel 1, second reaction vessel 2, third reaction vessel 3, first intermediate tank 6, second intermediate tank θ, unwinding tank 10, and winding tank 11 to a reduced pressure atmosphere, In the first reaction chamber 1, monosilane (S I H4) r diporane (
B2H6) and hydrogen (H2), a mixed gas of monosilane (S I H4) and hydrogen (H2) in the second reaction vessel 2, and monosilane (SiH2) in the third reaction vessel.
l Phosphine (PH3).

水素(H2)の混合ガスを導入する。次に第1反応容器
1、第2反応容器2、第2反応容器3内に高周波電力に
より低温プラズマを発生させることにより、基材9上に
P型、工型、N型の半導体層を積層して形成する。この
時、第1中間槽5および第2中間槽θ内の圧力は、第1
反応容器1、第2反応容器2、第3反応容器3内の圧力
を1Torr程度に、また、第1中間槽5および第2中
間槽6の圧力を0.1〜0.001 Toxr程度の高
真空に保持する。
A mixed gas of hydrogen (H2) is introduced. Next, by generating low-temperature plasma using high-frequency power in the first reaction vessel 1, second reaction vessel 2, and second reaction vessel 3, P-type, engineering-type, and N-type semiconductor layers are laminated on the base material 9. and form it. At this time, the pressure in the first intermediate tank 5 and the second intermediate tank θ is
The pressure in the reaction vessel 1, the second reaction vessel 2, and the third reaction vessel 3 is set to about 1 Torr, and the pressure in the first intermediate tank 5 and second intermediate tank 6 is set to a high level of about 0.1 to 0.001 Torr. Hold in vacuum.

第4図は工型半導体層中に混入するボロン(B)並びに
リン(P)の分布をSIMS分析によって得た実験結果
である。
FIG. 4 shows the experimental results obtained by SIMS analysis of the distribution of boron (B) and phosphorus (P) mixed into the molded semiconductor layer.

発明が解決しようとする問題点 しかしながら上記のような構成では、第1反応容器1の
混合ガスが第1中間槽6を通りぬけ第2反応容器2に拡
散し、I型半導体膜を形成する際、その膜質を悪化させ
る欠点を有していた。また、第2反応室2と第3反応室
3についても、同様の欠点を有していた。
Problems to be Solved by the Invention However, in the above configuration, when the mixed gas in the first reaction vessel 1 passes through the first intermediate tank 6 and diffuses into the second reaction vessel 2 to form an I-type semiconductor film, However, it had the disadvantage of deteriorating the film quality. Further, the second reaction chamber 2 and the third reaction chamber 3 also had similar drawbacks.

すなわち、第4図に示すように、工型半導体層にボロン
(B)及びリン(P)の混入が多いため、PIN構造の
太陽電池としてその変換効率が約3チ程度しか得ること
ができない。その対策として、ガスの平均自由行程の増
加に伴う拡散を考慮し第1中間槽5および第2中間槽6
の基材9の進行方向の長さを長くしたり第1中間槽5お
よび第2中間槽6中のガス濃度を下げるため真空排気装
置8の排気能力を大きくする試みが行なわれているが、
装置が大型化する。
That is, as shown in FIG. 4, since there is a large amount of boron (B) and phosphorus (P) mixed in the semiconductor layer, a conversion efficiency of only about 3 cm can be obtained as a solar cell with a PIN structure. As a countermeasure, the first intermediate tank 5 and the second intermediate tank 6 are
Attempts have been made to increase the exhaust capacity of the vacuum evacuation device 8 in order to increase the length of the base material 9 in the traveling direction and to lower the gas concentration in the first intermediate tank 5 and the second intermediate tank 6.
The equipment becomes larger.

本発明は、上記問題点に鑑み、第1反応室1と第2反応
室2および第2反応室2と第3反応室3との間でI4半
導体膜形成の際、装置の大型化を図ることなく、その膜
質の劣化を防止することがる。
In view of the above problems, the present invention aims to increase the size of the apparatus when forming an I4 semiconductor film between the first reaction chamber 1 and the second reaction chamber 2 and between the second reaction chamber 2 and the third reaction chamber 3. Deterioration of the film quality can be prevented without causing any damage.

問題点を解決するための手段 本発明は上記問題点を解決するために、基板上の被形成
面上に少なくとも材質の異なる2つの薄膜を連続して堆
積するプラズマ式気相成長装置において、プラズマ気相
成長膜を形成するための少なくとも2つの反応容器と、
反応生成物を真空排気するための排気手段と、各々の反
応容器を互いに気密に連接すると共に、連接部分の圧力
が反応容器内の圧力より低く保ち、各々の反応容器に導
入される反応性気体がプラズマ気相反応中に互いに混入
することを防ぐためのガス供給手段とを備えたことを特
徴とする。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a plasma-type vapor phase growth apparatus for successively depositing at least two thin films of different materials on a surface to be formed on a substrate. at least two reaction vessels for forming a vapor grown film;
An evacuation means for evacuating the reaction product; and a reactive gas introduced into each reaction vessel by connecting each reaction vessel to each other in an airtight manner and maintaining the pressure at the connected portion lower than the pressure inside the reaction vessel. and a gas supply means for preventing the gases from mixing with each other during the plasma gas phase reaction.

作  用 本発明は上記した構成であって、前記各々の反応容器の
連接部に水素ガスを供給することによって、前記連接部
の圧力が各反応容器内の圧力よりも低くなる様にし、各
反応容器内の混合ガスが互いに混入することを防止する
ことができ、装置のることかできる。
Function The present invention has the above-described configuration, and by supplying hydrogen gas to the connecting portions of each of the reaction vessels, the pressure in the connecting portions is made lower than the pressure inside each reaction vessel, and each reaction It is possible to prevent the mixed gases in the container from mixing with each other, and it is possible to prevent the mixed gases from mixing with each other.

実施例 第1図に示す本発明の第1の実施例について説明する。Example A first embodiment of the present invention shown in FIG. 1 will be described.

P型半導体層を形成するための第1反応容器21、第1
中間槽26、I型半導体層を形成するための第2反応容
器22、第2中間槽26およびN型半導体層を形成する
ための第3反応容器23が順次気密的に連続されている
。第1反応容器21、第2反応容器22、第3反応容器
23にはその内部を減圧状態にするための真空ポンプ2
4が接続されている。第1反応容器21の横には被メッ
キ材となるフープ状で長尺の基材28を巻出す巻出し槽
29が、また第3反応容器23の横には基材28の巻取
り槽30がそれぞれ気密的に連接されている。巻出し槽
29および巻取り槽30にはその内部の圧力を減圧雰゛
囲気にするための真空排気装置31が接続され、第1中
間槽25および第2中間槽26には水素ガスを供給する
ための水素ガス供給装置32が接続されている。
A first reaction vessel 21 for forming a P-type semiconductor layer, a first
The intermediate tank 26, the second reaction vessel 22 for forming an I-type semiconductor layer, the second intermediate tank 26, and the third reaction vessel 23 for forming an N-type semiconductor layer are successively connected in an airtight manner. A vacuum pump 2 is provided in the first reaction container 21, the second reaction container 22, and the third reaction container 23 to reduce the pressure inside them.
4 is connected. Next to the first reaction vessel 21 is an unwinding tank 29 for unwinding a hoop-shaped and long base material 28 to be plated, and next to the third reaction vessel 23 is a winding tank 30 for unwinding the base material 28. are airtightly connected to each other. A vacuum evacuation device 31 is connected to the unwinding tank 29 and the winding tank 30 to reduce the internal pressure to a reduced pressure atmosphere, and hydrogen gas is supplied to the first intermediate tank 25 and the second intermediate tank 26. A hydrogen gas supply device 32 for this purpose is connected.

なお、巻出し槽10から巻出される基材9はスリット2
7を通じて各容器、各種へ順次送られ、巻取槽11で巻
取られる。
Note that the base material 9 unwound from the unwinding tank 10 has a slit 2.
It is sequentially sent to each container through 7 and wound up in a winding tank 11.

以上のように構成されたプラズマ気相成長装置について
以下第1図および第2図を用いてその動作を説明する。
The operation of the plasma vapor deposition apparatus constructed as described above will be explained below with reference to FIGS. 1 and 2.

まず、第1反応容器21、第2反応容器22、第3反応
容器23、巻出し槽29、および巻取り4!30を真空
排気した後、第1反応室21内にはモノシラン(S I
 H4) 、水素ガスペース(濃度0.6%)ジポラン
(B2H6)、水素(H2)を各々80SCCM、16
0SCCM、200SCCMの流量で、第2反応室22
内にはモノシラン(SiH4)、水素(H2)を各に2
50SCCM、900SCCMの流量で、第3反応室2
3内にはモノシラン(S i H4)、水素ガスペース
(濃度o、5% )ホスフィン(P H3)、水素(H
2)を各haosccM、aosccM、280SCC
Mの流量で導入する。次に、第1中間槽26および第2
中間槽26に水素ガス供給装置32より水素ガスを導入
する。また圧力制御手段によって第1反応室21、第2
反応室22、第3反応室23の圧力を1Torrに保持
し、かつ第1中間槽25、第2中間槽26の圧力を10
から100Torrになるように水素ガス供給装置32
の流量を制御し、保持する。
First, after evacuating the first reaction vessel 21, second reaction vessel 22, third reaction vessel 23, unwinding tank 29, and winding 4!30, monosilane (S I
H4), hydrogen gas space (concentration 0.6%), diporan (B2H6), and hydrogen (H2) at 80 SCCM and 16
At a flow rate of 0 SCCM and 200 SCCM, the second reaction chamber 22
Inside are 2 each of monosilane (SiH4) and hydrogen (H2).
At flow rates of 50SCCM and 900SCCM, the third reaction chamber 2
3 contains monosilane (S i H4), hydrogen gas space (concentration o, 5%), phosphine (PH3), hydrogen (H
2) for each haosccM, aosccM, 280SCC
Introduce at a flow rate of M. Next, the first intermediate tank 26 and the second
Hydrogen gas is introduced into the intermediate tank 26 from the hydrogen gas supply device 32 . In addition, the pressure control means is used to control the first reaction chamber 21 and the second reaction chamber 21,
The pressures in the reaction chamber 22 and the third reaction chamber 23 are maintained at 1 Torr, and the pressures in the first intermediate tank 25 and second intermediate tank 26 are maintained at 1 Torr.
to 100 Torr.
control and maintain the flow rate.

次に、第1反応室21、第2反応室22、第3反応室2
3の内部に周波数が13.58MHzの高周波エネルギ
を供給することによって低温プラズマを発生させる。こ
れらの動作によって、基材28上に第1反応容器21で
は、P型半導体膜が、第2反応容器22では工型半導体
膜が、第3反応容器23ではN型半導体膜が形成される
Next, the first reaction chamber 21, the second reaction chamber 22, and the third reaction chamber 2
A low-temperature plasma is generated by supplying high-frequency energy with a frequency of 13.58 MHz to the inside of 3. Through these operations, a P-type semiconductor film is formed on the base material 28 in the first reaction vessel 21 , an engineered semiconductor film is formed in the second reaction vessel 22 , and an N-type semiconductor film is formed in the third reaction vessel 23 .

第2図は工型半導体層中に混入するポロン(B)並びに
リン(P)の分布をSIMS分析によって得た実験結果
を示す。第2図から理解できるように、I型半導体層中
へのボロン(B)原子、リン(P)原子の混入がほとん
どなく、また、太陽電池としてその変換効率は、8.6
%を得ることができた。
FIG. 2 shows the experimental results obtained by SIMS analysis of the distribution of poron (B) and phosphorus (P) mixed into the molded semiconductor layer. As can be understood from Figure 2, there is almost no mixing of boron (B) atoms and phosphorus (P) atoms into the I-type semiconductor layer, and the conversion efficiency as a solar cell is 8.6.
I was able to get %.

以上のように、本実施例によれば、第1反応容器21.
筺2反広客器22およγド埴3反応容器23の連接部で
ある第1中間槽25、第2中間槽26に水素ガスを供給
するための水素ガス供給装置32を設け、前記第1中間
槽26および第2中間槽26の圧力が第1反応容器21
、第2反応容器22および第3反応容器23の圧力より
も低くすることによって、装置の大型化をすることなく
、堆積膜の膜質を向上することができた。
As described above, according to this embodiment, the first reaction vessel 21.
A hydrogen gas supply device 32 is provided for supplying hydrogen gas to the first intermediate tank 25 and the second intermediate tank 26, which are the connecting portions of the casing 2 reaction vessel 22 and the γ-dohani 3 reaction vessel 23. The pressure of the first intermediate tank 26 and the second intermediate tank 26 is
By setting the pressure lower than that of the second reaction vessel 22 and the third reaction vessel 23, the quality of the deposited film could be improved without increasing the size of the apparatus.

なお、本実施例では、第1中間槽25および第2中間槽
26に導入するガスを水素ガスとしたが、モノシラン(
S * H4)ガスとしても良い。また本実施例では、
PIN型構造の太陽電池を作成する場合への適用につい
て述べたが、2種の薄膜を連続して堆積するプラズマ気
相成長装置に適用した場合においても同様の効果が得ら
れる。さらに、薄膜を形成させる基材としては、半導体
ウエノ・のほか用途によってガラスやセラミック等とさ
れることもあり、限定されない。
In this example, the gas introduced into the first intermediate tank 25 and the second intermediate tank 26 was hydrogen gas, but monosilane (
S*H4) It may be used as a gas. In addition, in this example,
Although the application to the case of creating a solar cell with a PIN type structure has been described, the same effect can be obtained when the present invention is applied to a plasma vapor phase epitaxy apparatus that sequentially deposits two types of thin films. Furthermore, the base material on which the thin film is formed is not limited, and may be made of glass, ceramic, etc., depending on the purpose, in addition to semiconductor wafers.

発明の効果 本発明によれば各反応容器の連続部である中間槽に水素
ガスまたはモノシランガスを供給するためのガス供給装
置を設けることによって、各反応室内の混合ガスが互い
に混入することを防止するから、装置の大型化を図るこ
となく、堆積膜の膜質の向上を図ることができる。
Effects of the Invention According to the present invention, by providing a gas supply device for supplying hydrogen gas or monosilane gas to the intermediate tank which is a continuous part of each reaction vessel, it is possible to prevent the mixed gases in each reaction chamber from mixing with each other. Therefore, the quality of the deposited film can be improved without increasing the size of the apparatus.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例におけるプラズマ気相成長装
置の概略図、第2図は本発明装置で得たのプラズマ気相
成長装置の概略図、第4図は従来のプラズマ気相成長装
置における工型半導体層中に混入するボロン申)及びリ
ン(P)の深さ方向の分布を調べた結果を示す図である
。 21・・・・・・第1反応容器、22・・・・・・第2
反応容器、23・・・・・・第3反応容器、24・・・
・・・真空ポンプ、25・・・・・・第1中間槽、26
・・・・・・第2中間槽、27・・・・・・スリット、
28・・・・・・基材、29・・・・・・巻出し槽、3
0・・・・・・巻取り槽、31・・・・・・真空排気装
置、32・・・・・・水素ガス供給装置。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第3
図 第4図 朶こ(71/In−1
Fig. 1 is a schematic diagram of a plasma vapor phase epitaxy apparatus according to an embodiment of the present invention, Fig. 2 is a schematic diagram of a plasma vapor phase epitaxy apparatus obtained using the apparatus of the present invention, and Fig. 4 is a schematic diagram of a plasma vapor phase epitaxy apparatus obtained using the apparatus of the present invention. FIG. 2 is a diagram showing the results of investigating the distribution in the depth direction of boron (monomer) and phosphorus (P) mixed into the molded semiconductor layer in the device. 21...First reaction container, 22...Second
Reaction container, 23...Third reaction container, 24...
...Vacuum pump, 25...First intermediate tank, 26
...Second intermediate tank, 27...Slit,
28... Base material, 29... Unwinding tank, 3
0... Winding tank, 31... Vacuum exhaust device, 32... Hydrogen gas supply device. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 3
Figure No. 4 (71/In-1

Claims (1)

【特許請求の範囲】[Claims] 基板上の被形成面上に少なくとも材質の異なる2つの薄
膜を連続して堆積するプラズマ式気相成長装置において
、プラズマ気相成長膜を形成するための少なくとも2つ
の反応容器と、反応生成物を真空排気するための排気手
段と、各々の反応容器を互いに気密に連接すると共に、
連接部分の圧力が反応容器内の圧力より底く保ち、各々
の反応容器に導入される反応性気体がプラズマ気相反応
に互いに混入することを防ぐためのガス供給手段を備え
たことを特徴とするプラズマ気相成長装置。
A plasma vapor phase growth apparatus that sequentially deposits at least two thin films of different materials on a surface to be formed on a substrate includes at least two reaction vessels for forming plasma vapor phase growth films and a reaction product. An evacuation means for evacuation and connecting each reaction container airtightly to each other,
It is characterized by comprising a gas supply means for keeping the pressure of the connecting part lower than the pressure inside the reaction vessels and for preventing the reactive gases introduced into each reaction vessel from mixing with each other in the plasma gas phase reaction. Plasma vapor phase growth equipment.
JP820386A 1986-01-17 1986-01-17 Plasma vapor growth device Pending JPS62165912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP820386A JPS62165912A (en) 1986-01-17 1986-01-17 Plasma vapor growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP820386A JPS62165912A (en) 1986-01-17 1986-01-17 Plasma vapor growth device

Publications (1)

Publication Number Publication Date
JPS62165912A true JPS62165912A (en) 1987-07-22

Family

ID=11686701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP820386A Pending JPS62165912A (en) 1986-01-17 1986-01-17 Plasma vapor growth device

Country Status (1)

Country Link
JP (1) JPS62165912A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7030313B2 (en) * 2000-01-13 2006-04-18 Sharp Kabushiki Kaisha Thin film solar cell and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7030313B2 (en) * 2000-01-13 2006-04-18 Sharp Kabushiki Kaisha Thin film solar cell and method of manufacturing the same

Similar Documents

Publication Publication Date Title
KR100272891B1 (en) Low temperature high pressure silicon deposition method
KR101089130B1 (en) Manufacturing method of solar cell and manufacturing apparatus of solar cell
US4146774A (en) Planar reactive evaporation apparatus for the deposition of compound semiconducting films
JP4441607B2 (en) Method for passivating a semiconductor substrate
Tsang Chemical beam epitaxy of InGaAs
Nelson et al. Organometallic‐sourced VPE AlGaAs/GaAs concentrator solar cells having conversion efficiencies of 19%
WO2000054893A1 (en) Method and apparatus for metal oxide chemical vapor deposition on a substrate surface
JPS5895550A (en) Device for forming non-single crystal semiconductor layer
JPS62165912A (en) Plasma vapor growth device
JPS593099A (en) Growth method of compound semiconductor crystal
JPH01313927A (en) Compound-semiconductor crystal growth method
JPH0578933B2 (en)
Ohtsuka et al. Low-temperature deposition of Si thin layer by gas-source molecular beam epitaxy
JP3006776B2 (en) Vapor growth method
JPH02217476A (en) Formation of coating film
JPH0532473B2 (en)
JPS5930799A (en) Apparatus for growing crystal of compound semiconductor
JP2521952B2 (en) Method for producing semiconducting carbon thin film
JPS62202894A (en) Vapor growth method for iii-v compound semiconductor
JPS6136371B2 (en)
JP2521953B2 (en) Method for producing semiconducting carbon thin film
JPH03116720A (en) Single atom layer growth
JPH01129974A (en) Chemical vapor phase growing device
JPS6265996A (en) Production of compound semiconductor crystal
JPS6318856B2 (en)