JPS6216568B2 - - Google Patents

Info

Publication number
JPS6216568B2
JPS6216568B2 JP55023535A JP2353580A JPS6216568B2 JP S6216568 B2 JPS6216568 B2 JP S6216568B2 JP 55023535 A JP55023535 A JP 55023535A JP 2353580 A JP2353580 A JP 2353580A JP S6216568 B2 JPS6216568 B2 JP S6216568B2
Authority
JP
Japan
Prior art keywords
lines
line
branch
coupling
distributed coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55023535A
Other languages
Japanese (ja)
Other versions
JPS56120201A (en
Inventor
Akihiko Masuda
Shigeo Chikamori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP2353580A priority Critical patent/JPS56120201A/en
Publication of JPS56120201A publication Critical patent/JPS56120201A/en
Publication of JPS6216568B2 publication Critical patent/JPS6216568B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Waveguides (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は超高周波回路における信号の電力を同
相にて分配する集積回路あるいはプリント板回路
に適した3dB電力分配器に関する。 従来、電力分配器は、結合線路を利用するカプ
ラー回路、ループ線路を利用する梯形回路やラツ
トレース回路、スロツト線路を利用するマジツク
T回路、E.J.Wilkinsonにより提案されたT分岐
した線路の他端を集中定数抵抗素子で橋絡した回
路等により構成されていた。これらのうち集積回
路やプリント板回路のマイクロストリツプ伝送線
路構造を用いた同相の電力分配器は、Wilkinson
形回路が適している。この回路は分布定数素子の
数が他の回路に比べて少く、小形化に適してい
る。しかし、この回路は2つの分布定数素子間の
結合を避けるため、パターンを形成する際に線路
を十分に離して構成しなくてはならないので、小
形化を犠性にせざるを得なかつた。このパターン
の例としては、第1図a,b,cに示すように、
互の線路1,2を相当に離して構成していた。ま
た、第1図dに示すように、T分岐した線路1,
2間を積極的に結合させた回路形式も考えられて
いるが、これでは信号伝送方向に細長いパターン
となる。図中、3は抵抗素子、4〜6は入出力端
子である。これらのパターンは、バランス形の増
幅器、ミクサー、フイルタ等に利用しようとする
と回路全体の小形化が困難であつた。 本発明の目的は、集積回路やプリント板回路に
より構成する場合に極めて小形化が可能であり、
例えば、バランス形の増幅器、ミクサー、フイル
ターを構成するときに小形化に有効である電力分
配器を提供することにある。 以下、図面により本発明を詳細に説明する。 第2図a,bは本発明の実施例の一段および二
段線路の3dB電力分配器を示す構成図である。同
図において、一対の、電気長および結合度の等し
い、一端を相互接続された二線条分布結合線路
1,2および集中定数抵抗素子3を順次巡環的に
接続して、一組の閉回路を構成し、それぞれの接
続点に分岐線路4,5,6を設けたものである。
なお、第1図aは線路1,2を近接させて折り曲
げたもので、第1図bは線路1,2を近接した線
路11,21と少し離した線路と12,22によ
り構成している。 これら分布結合線路1,2の接続点に特性イン
ピーダンスZ01の分岐線路4を設け、他の2つの
接続点に特性インピーダンスZ02の分岐線路5,
6をそれぞれ設け、これら分布結合線路1,2は
電気長および結合度を相等しく定め、特性インピ
ーダンスを√201 02とし、かつ集中定数抵抗素
子3の抵抗値を2Z02に設定する。 これら回路の伝送特性は偶奇モードに分解して
説明できる。すなわち、分岐線路5,6に同相の
入力電圧が加えられるときは、第3図aの説明図
に示すように偶モードとなり、逆相の入力電圧が
加えられるときは、第3図bの説明図に示すよう
に奇モードとなる。これら偶モードおよび奇モー
ドに於いて、入力端5での反射係数をΓeおよび
Γpとすれば、 (1) 分岐点4における反射損:−20log|Γe| (2) 分岐点5または6における反射損:−20log |Γ+Γ|/2 (3) 分岐点5と6の間のアイソレーシヨン:−
20log |Γ+Γ|/2 (4) 分岐点4から分岐点5または6へのセパレー
シヨン:−10log 1−|Γ/2 となることが知られている。従つて、Γe=Γp
0となる周波数において、分岐線路4から分岐線
路5,6へ分配される電力はそれぞれ1/2とな
り、また、分岐線路5,6の相互の伝送電力が0
になり、互いに孤立化される。これら分岐線路
4,5,6の分岐点での反射電力はそれぞれ0で
あり、インピーダンス整合が成立している。 一段結合線路においては、分布結合線路の電気
長をlとし、結合度をkとし、ならびに伝送信号
波長をλとするとき、ΓeとΓpは次式で表わすこ
とができる。ただし、j=√−1である。 分布結合線路の電気長lを伝送信号波長λの
The present invention relates to a 3 dB power divider suitable for integrated circuits or printed board circuits that distributes the power of signals in ultra-high frequency circuits in the same phase. Conventionally, power dividers are coupler circuits that use coupled lines, trapezoidal circuits or rattrace circuits that use loop lines, magic T circuits that use slot lines, and a lumped constant circuit that connects the other end of a T-branched line proposed by EJ Wilkinson. It consisted of a circuit bridged by resistive elements. Among these, an in-phase power divider using a microstrip transmission line structure of an integrated circuit or a printed circuit board is a Wilkinson
A shaped circuit is suitable. This circuit has fewer distributed constant elements than other circuits and is suitable for miniaturization. However, in order to avoid coupling between the two distributed constant elements, this circuit must be constructed with the lines sufficiently separated when forming the pattern, so miniaturization had to be sacrificed. Examples of this pattern are as shown in Figure 1 a, b, and c.
The lines 1 and 2 were constructed with a considerable distance from each other. In addition, as shown in Fig. 1d, the T-branched line 1,
A circuit type in which the two are actively coupled has been considered, but this results in a long and narrow pattern in the signal transmission direction. In the figure, 3 is a resistance element, and 4 to 6 are input/output terminals. When these patterns are used in balanced amplifiers, mixers, filters, etc., it is difficult to miniaturize the entire circuit. An object of the present invention is to enable extremely miniaturization when configured with integrated circuits or printed circuit board circuits,
For example, it is an object of the present invention to provide a power divider that is effective in downsizing when configuring balanced amplifiers, mixers, and filters. Hereinafter, the present invention will be explained in detail with reference to the drawings. FIGS. 2a and 2b are block diagrams showing a 3 dB power divider for one-stage and two-stage lines according to an embodiment of the present invention. In the figure, a pair of two-wire distributed coupled lines 1, 2 and a lumped constant resistance element 3, which have the same electrical length and the same degree of coupling and are interconnected at one end, are sequentially connected in a cyclic manner to form a closed set. A circuit is constructed, and branch lines 4, 5, and 6 are provided at each connection point.
Note that Fig. 1a shows the tracks 1 and 2 bent close to each other, and Fig. 1b shows the tracks 1 and 2 made up of adjacent tracks 11 and 21 and slightly separated tracks 12 and 22. . A branch line 4 with a characteristic impedance Z 01 is provided at the connection point of these distributed coupling lines 1 and 2, and a branch line 5 with a characteristic impedance Z 02 is provided at the other two connection points.
The distributed coupling lines 1 and 2 have the same electrical length and coupling degree, have a characteristic impedance of √2 01 02 , and have a resistance value of the lumped resistance element 3 of 2Z 02 . The transmission characteristics of these circuits can be explained by breaking them down into even and odd modes. That is, when input voltages of the same phase are applied to the branch lines 5 and 6, the mode becomes an even mode as shown in the explanatory diagram of FIG. As shown in the figure, the mode becomes odd mode. In these even and odd modes, if the reflection coefficient at input end 5 is Γ e and Γ p , then (1) Reflection loss at branch point 4: -20log | Γ e | (2) Branch point 5 or Reflection loss at 6: -20log | Γ e + Γ p |/2 (3) Isolation between branch points 5 and 6: -
20log | Γ e + Γ p |/2 (4) Separation from branch point 4 to branch point 5 or 6: It is known that -10 log 1 - | Γ e | 2 /2. Therefore, Γ ep =
At the frequency where the frequency becomes 0, the power distributed from the branch line 4 to the branch lines 5 and 6 becomes 1/2, and the mutual transmission power between the branch lines 5 and 6 becomes 0.
and become isolated from each other. The reflected power at the branch points of these branch lines 4, 5, and 6 is 0, and impedance matching is established. In a single-stage coupled line, Γ e and Γ p can be expressed by the following equations, where l is the electrical length of the distributed coupled line, k is the coupling degree, and λ is the transmission signal wavelength. However, j=√−1. The electrical length l of the distributed coupling line is defined as the transmission signal wavelength λ.

【式】倍、または[Formula] times, or

【式】倍に選べばΓe=Γp= 0が満足され、従つて、本発明の回路は3dB電力
分配器として働くことが判る。 第4図a,b,c,dは第2図の集積回路化し
た回路パターンの一例である。なお、第4図a,
cは第2図a,bと対応しているが、第4図bは
線路1,2の中間に結合度を増すための別の線路
を挿入して線路1,2の長さを短くしたもの、第
4図dは第4図cの線路の間隔を逆にしたもので
ある。これら回路パターンは、第1図の回路パタ
ーンに比べると、厚さ0.635mmのアルミナセラミ
ツク基板を用いて構成した2GHz帯の3dB電力分
配器の場合に、本発明の回路の小形化の度合は分
岐線路を除くパターン占有面積で約0.4〜0.7倍と
小形化される。 これら結合分布線路1,2の結合度(結合損
失)と電気長(波長単位)との関係は、例えば、
1段3dBの結合度で線路の長さが0.188λ(例え
ば、1.5GHで14.3mm)、1段で6dBで0.167λ、1
段20dBで0.132λであり、2段の場合3dB、6dBの
結合度組合せで0.094λ、0.083λを結合した線路
長となる。 第5図a,bはZ01=Z02=50Ωのときの計算例
の特性図であり、aは分岐線路5と6の間のアイ
ソレーシヨン、bは分岐線路4から5または6へ
のセパレーシヨンを示す。図中、7は結合1段
6dBの特性線、8は結合1段10dBの特性線、9は
Wilkinson型1段の特性線、10,11は結合2
段10−6dB、6−10dBの特性線をそれぞれ示す。 分布結合線路が一段のときには結合を密にする
と比帯域が狭くなる傾向があるので、結合度kが
20dB(0.1)〜6dB(0.5)程度で構成することが
望ましいが、特別帯域を広く使う必要がなければ
0.5以上としても十分実用的であり、かつ小形に
できる。また、分布結合線路が二段のときには、
初段の結合を次段の結合より密にする方が、逆の
場合よりも比帯域が広がる。しかし、回路パター
ン構成上は初段の結合を次段の結合より粗にした
方が理想的配置になる。 以上説明したように、本発明は回路を平面上で
パターン化でき、従来の回路と比べ十分に小形化
され、かつ信号伝送方向に短い構成となるので、
バランス形増幅器、ミクサー、フイルタ等の電力
分配・合成に用いると全体の回路としても小形化
される。 なお、本実施例はマイクロストリツプ構造の伝
送線路で説明したが、これに限らず同軸線路等
TEM波伝送が可能なすべての分布定数素子によ
つても実現が可能である。また、分布結合線路の
段数はさらに多段にしてもよい。また、この電力
分配器は、分岐線路5と6から伝送信号を入力す
れば、電力合成器としても使用できる。
If [Equation] is selected twice, Γ ep = 0 is satisfied, and therefore, it can be seen that the circuit of the present invention works as a 3 dB power divider. 4a, b, c, and d are examples of the circuit patterns of FIG. 2 which are integrated circuits. In addition, Figure 4 a,
c corresponds to Figure 2 a and b, but in Figure 4 b, another line is inserted between lines 1 and 2 to increase the degree of coupling, shortening the length of lines 1 and 2. FIG. 4d is a diagram in which the line spacing of FIG. 4c is reversed. Compared to the circuit pattern shown in Fig. 1, these circuit patterns show that the degree of miniaturization of the circuit of the present invention is different in the case of a 2 GHz band 3 dB power divider constructed using an alumina ceramic substrate with a thickness of 0.635 mm. The area occupied by the pattern excluding the lines is approximately 0.4 to 0.7 times smaller. The relationship between the coupling degree (coupling loss) and the electrical length (wavelength unit) of these coupled distribution lines 1 and 2 is, for example,
The line length is 0.188λ (for example, 14.3mm at 1.5GH) with a coupling degree of 3dB in one stage, and 0.167λ with a coupling degree of 6dB in one stage, 1
For a stage of 20 dB, the line length is 0.132λ, and in the case of two stages, the combination of 3 dB and 6 dB coupling results in a line length of 0.094 λ and 0.083 λ. Figures 5a and 5b are characteristic diagrams of calculation examples when Z 01 = Z 02 = 50Ω, where a is the isolation between branch lines 5 and 6, and b is the isolation from branch line 4 to 5 or 6. Shows separation. In the figure, 7 is 1 stage of coupling
6dB characteristic line, 8 is 1 stage coupling 10dB characteristic line, 9 is
Wilkinson type one-stage characteristic line, 10 and 11 are coupling 2
Characteristic lines for stages 10-6dB and 6-10dB are shown, respectively. When the distributed coupling line has one stage, the ratio band tends to narrow as the coupling becomes denser, so the degree of coupling k becomes
It is desirable to have a configuration of around 20dB (0.1) to 6dB (0.5), but if there is no need to use a wide special band,
Even if it is 0.5 or more, it is sufficiently practical and can be made small. Also, when the distributed coupling line is two stages,
Making the coupling in the first stage denser than the coupling in the next stage will widen the fractional bandwidth than in the opposite case. However, in view of the circuit pattern configuration, it is more ideal to make the connections in the first stage coarser than those in the next stage. As explained above, the present invention allows the circuit to be patterned on a plane, is sufficiently smaller than conventional circuits, and is short in the signal transmission direction.
When used for power distribution and synthesis in balanced amplifiers, mixers, filters, etc., the overall circuit size can be reduced. Although this embodiment has been explained using a transmission line with a microstrip structure, it is not limited to this and can also be applied to a coaxial line, etc.
It can also be realized using any distributed constant element capable of transmitting TEM waves. Moreover, the number of stages of the distributed coupling line may be further increased. Furthermore, this power divider can also be used as a power combiner by inputting transmission signals from branch lines 5 and 6.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,b,c,dは従来のハイブリツト電
力分配器の平面図、第2図a,bは本発明の実施
例の構成図、第3図a,bは信号の伝送特性モー
ドの説明図、第4図a,b,c,dは本発明を適
用したハイブリツドパターンの各平面図、第5図
a,bは第3図においてZ01=Z02=50Ωのときの
アイソレーシヨンおよびセパレーシヨンの計算特
性図である。図において、 1,2……分岐線路、3……抵抗素子、4,
5,6……入出力端子、7〜11……特性線であ
る。
Figures 1a, b, c, and d are plan views of a conventional hybrid power divider, Figures 2a and b are configuration diagrams of an embodiment of the present invention, and Figures 3a and b are diagrams of signal transmission characteristic modes. Explanatory diagrams, Figures 4a, b, c, and d are plan views of hybrid patterns to which the present invention is applied, and Figures 5a and b are isolation diagrams when Z 01 = Z 02 = 50Ω in Figure 3. and a calculation characteristic diagram of separation. In the figure, 1, 2...branch line, 3...resistance element, 4,
5, 6...input/output terminals, 7-11...characteristic lines.

Claims (1)

【特許請求の範囲】 1 一方の端部が共通して第1の分岐線路に接続
された第1および第2の分布結合線路と、この第
1および第2の分布結合線路の他方の端部にそれ
ぞれ接続された第2および第3の分岐線路と、前
記第1および第2の分布結合線路の他方の端部間
を接続する集中定数抵抗素子を含み、前記第1お
よび第2の分布結合線路が折り曲げられた電力分
配器において、前記第2および第3の分岐線路の
特性インピーダンスを互いに等しくし、かつ前記
第1および第2の分布結合線路の特性インピーダ
ンスを、前記第1の分岐線路の特性インピーダン
スと前記第2または第3の分岐線路の特性インピ
ーダンスとの積の2倍の平方根にそれぞれ等しく
し、かつ前記集中定数抵抗素子の抵抗値を前記第
2および第3の分岐線路の特性インピーダンスの
2倍に等しくなるようにして、前記第1および第
2の分布結合線路のそれぞれの折り曲げ部分の間
隔を狭くする構成としたことを特徴とする電力分
配器。 2 前記第1および第2の分布結合線路の折り曲
げ部分の間隔を相異させた多段線路により構成し
たことを特徴とする特許請求の範囲第1項記載の
電力分配器。
[Claims] 1. First and second distributed coupling lines whose one ends are commonly connected to the first branch line, and the other ends of the first and second distributed coupling lines. a lumped constant resistance element connecting between second and third branch lines respectively connected to and the other ends of the first and second distributed coupling lines; In a power divider with bent lines, the characteristic impedances of the second and third branch lines are made equal to each other, and the characteristic impedance of the first and second distributed coupling lines is made equal to the characteristic impedance of the first branch line. The resistance value of the lumped constant resistance element is set to be equal to the square root of twice the product of the characteristic impedance and the characteristic impedance of the second or third branch line, and the resistance value of the lumped constant resistance element is equal to the characteristic impedance of the second or third branch line. A power divider characterized in that the interval between each bent portion of the first and second distributed coupling lines is narrowed so that the distance is equal to twice the distance between the bent portions of the first and second distributed coupling lines. 2. The power divider according to claim 1, characterized in that the power divider is constituted by a multi-stage line in which the intervals between the bent portions of the first and second distributed coupling lines are different.
JP2353580A 1980-02-27 1980-02-27 Power distributor Granted JPS56120201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2353580A JPS56120201A (en) 1980-02-27 1980-02-27 Power distributor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2353580A JPS56120201A (en) 1980-02-27 1980-02-27 Power distributor

Publications (2)

Publication Number Publication Date
JPS56120201A JPS56120201A (en) 1981-09-21
JPS6216568B2 true JPS6216568B2 (en) 1987-04-13

Family

ID=12113146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2353580A Granted JPS56120201A (en) 1980-02-27 1980-02-27 Power distributor

Country Status (1)

Country Link
JP (1) JPS56120201A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03119654U (en) * 1990-03-22 1991-12-10

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01232801A (en) * 1988-03-14 1989-09-18 Mitsubishi Electric Corp Power distributer
KR100863726B1 (en) * 2006-09-18 2008-10-16 주식회사 엘지화학 Equal Distribution-typed Bus Bar, and Middle or Large-sized Battery Pack Employed with the Same
CN110832696B (en) * 2017-06-28 2021-09-07 三菱电机株式会社 Power distribution synthesizer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54101641A (en) * 1978-01-27 1979-08-10 Nec Corp 3 decibel power distributor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54101641A (en) * 1978-01-27 1979-08-10 Nec Corp 3 decibel power distributor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03119654U (en) * 1990-03-22 1991-12-10

Also Published As

Publication number Publication date
JPS56120201A (en) 1981-09-21

Similar Documents

Publication Publication Date Title
US5455545A (en) Compact low-loss microwave balun
US3516024A (en) Interdigitated strip line coupler
JP3520411B2 (en) High frequency components using coupled lines
EP0379202B1 (en) Phase inverter and push-pull amplifier using the same
US6121853A (en) Broadband coupled-line power combiner/divider
US4636754A (en) High performance interdigitated coupler with additional jumper wire
US5028880A (en) Microwave power amplifier using phase inverters
JPS63281502A (en) High frequency power amplifier
JP2000357903A (en) Planar filter
JPS6216568B2 (en)
JP2897676B2 (en) Mixer circuit
JP3175876B2 (en) Impedance transformer
GB1577228A (en) 4-input/4-output port rf coupler
US6242992B1 (en) Interdigital slow-wave coplanar transmission line resonator and coupler
JPS6362121B2 (en)
JPS6345901A (en) Directiional coupler
JPH04115602A (en) Filter circuit
JP3823390B2 (en) Signal synthesis circuit
JP2621652B2 (en) Directional coupler and detection circuit
JP3339192B2 (en) Transversal filter
JP2621653B2 (en) Directional coupler and detection circuit
JPS6224963Y2 (en)
JPS63227202A (en) Hybrid circuit
JPH09326602A (en) High frequency filter circuit
JPH01213005A (en) Microwave coupled circuit