JPS6216559B2 - - Google Patents

Info

Publication number
JPS6216559B2
JPS6216559B2 JP55171666A JP17166680A JPS6216559B2 JP S6216559 B2 JPS6216559 B2 JP S6216559B2 JP 55171666 A JP55171666 A JP 55171666A JP 17166680 A JP17166680 A JP 17166680A JP S6216559 B2 JPS6216559 B2 JP S6216559B2
Authority
JP
Japan
Prior art keywords
semiconductor
semiconductor element
type silicon
sealed
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55171666A
Other languages
Japanese (ja)
Other versions
JPS5795686A (en
Inventor
Koji Suzuki
Toshio Aoki
Shigeru Komatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP55171666A priority Critical patent/JPS5795686A/en
Publication of JPS5795686A publication Critical patent/JPS5795686A/en
Publication of JPS6216559B2 publication Critical patent/JPS6216559B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N52/00Hall-effect devices
    • H10N52/80Constructional details

Landscapes

  • Hall/Mr Elements (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、N型シリコンホール素子を含む半導
体素子を絶縁性樹脂材料で封止してなる樹脂封止
型半導体装置に関する。 近年、半導体材料の研究や製造技術の進歩に伴
い、感磁効果として知られるホール効果を利用し
ていくつかの種類のホール素子が実用化されてい
る。磁界に対する感度は、インジユウム・アンチ
モン(InSb)、ガリユウム・ヒ素(GaAs)等が
シリコンに比べて優れているが、シリコンを用い
た集積回路技術の発展によつて高利得増幅回路の
形成が容易になり、ホール素子と例えば差動増幅
回路等の増幅回路とを組合わせて十分な磁界感度
が得られるシリコンホール素子を内蔵した集積回
路素子、所謂シリコンホールICが実現されてい
る。このシリコンホールICは、増幅回路のみな
らず周辺回路の内蔵も可能である。また、通常の
シリコンICの回路技術及び製造技術がそのまま
利用できなど他の半導体材料には見られない利点
を有する。更に、一般の半導体装置と同様に半導
体素子の保護と劣化防止、また長期間に亘る電気
的特性維持などの目的で使用される絶縁性樹脂部
材を用いた樹脂封止型外囲器を用いることができ
るので、製造が容易で量産性に優れ廉価である等
の多くの利点を有する。 第1図A乃至同図Cは、樹脂封止型半導体感磁
装置の1例を示すものであり、同図Aは同樹脂封
止型半導体感磁装置の断面図、同図Bは、平面
図、同図Cは要部を拡大した平面図である。図中
1は、半導体素子であり例えば金属材料からなる
台床2上に載置固定され、電極端子となる金属リ
ード3に金属細線4によつてボンデイング接続さ
れている。この半導体素子1は絶縁性樹脂からな
る外囲器5で封止されて樹脂封止型半導体感磁装
を構成している。半導体素子1には、同図C
に示す如く、エピタキシヤル層あるいは拡散層、
イオン注入層等で形成されたN型シリコンホール
素子7が設けられている。N型シリコンホール素
子7には、電流電極8a,8bと電流方向に対し
て垂直方向に形成される出力電圧電極9a,9b
が形成されている。このようなホールICの場
合、半導体素子1にはN型シリコンホール素子7
の他に所定の集積回路を構成するトランジスタ、
ダイオード、抵抗等の素子が同時に形成されてい
る。 N型シリコンホール素子7は、例えばインジユ
ウム・アンチモン(InSb)等のホール素子に比
べて感度が劣るため、また、磁界に対するホール
出力が微少であるため実用的には少なくとも一桁
以上の増幅率をもつ増幅回路を必要とする。従つ
て、ホール素子に僅な不平衡出力電圧があつても
この平衡点は非常に大きくなつてしまい、ホール
ICの正常動作に重大な影響を及ぼす。不平衡出
力電圧をIC外部から調整することも可能である
が、ICの価値が下がる。このためホール素子に
発生する不平衡電圧を極力抑えることがホール
ICの性能向上には不可欠である。ホール素子の
不平衡電圧の原因のうちホール素子の動作層の厚
み、濃度分布等の不均一性や電極位置ずれといつ
た要因は、集積回路技術の進歩により実用的には
かなり改善されていること、及び予め回路設計、
パターン設計の段階で歩留を考慮した設計が可能
であること、更に組立工程前の検査で不良品の判
定が出来るため製造コストが高くつく組立工程で
の損失を防止できる等の理由から大きな問題とは
ならない。 しかしながら、樹脂封止工程後、封止用樹脂と
シリコンの熱膨張係数の差に起因した歪が半導体
素子1加わるため、シリコンホール素子7の平衡
電圧が不平衡となる問題がある。 従来、このような歪により発生するホール素子
の不平衡電圧を少なくするため、歪感度が最少と
なる結晶方位にシリコンホール素子7を配置する
技術手段が提案されている。この技術手段は、半
導体素子1の結晶面を{110}とし、シリコンホ
ール素子7の電流方向を(100)または(110)結
晶方位とすることにより、ピエゾ抵抗係数をほぼ
零となることを利用したものである。しかしなが
ら、全ての応力成分に対するピエゾ抵抗係数を零
にできないため応力により発生する不平衡電圧を
避けることができず、ホールICの高精度化、高
性能化の障害となる問題があつた。 本発明は、かかる点に鑑みてなされたものであ
り、N型シリコンホール素子を含む半導体素子の
樹脂封止工程後に発生する不平衡電圧の値を極力
小さくした構造を有して実用性の高い樹脂封止型
半導体装置を提供するものである。 本発明は要約すると次の通りである。 シリコン単結晶{100}面近傍または{100}面
を基板とする半導体素子の一辺をそれぞれ
〔100〕結晶方位から45゜の方位、または〔100〕
結晶方位に平行もしくは垂直とし、電流方向が半
導体素子の中心を通り素子の一辺に平行もしくは
垂直となる直線に平行もしくは垂直とし、かつ、
その中心が前記直線上もしくはその近傍になるよ
うに形成されたN型シリコンホール素子を含む集
積回路を前述の半導体素子内に形成し、この半導
体素子を絶縁性樹脂からなる外囲器で封止した構
造とすることにより、樹脂封止歪に起因するN型
シリコンホール素子等への悪影響を排除し、上述
の目的を達成した樹脂封止型半導体感磁装置であ
る。また、上述と同様の半導体素子内にその十字
状の中心軸を線対称軸にして2個のN型シリコン
ホール素子を形成し、かつ各々のN型シリコンホ
ール素子内に流れる電流を中心軸に平行に流れる
ようにして直列にホール出力を取り出すことによ
り上述の目的を達成した樹脂封止型半導体感磁装
置である。 以下、本発明について図面を参照して説明す
る。 本発明の樹脂封止型半導体感磁装置(以下、単
に感磁装置と記す。)は、例えば第2図に示す如
く、シリコン単結晶からなる半導体基板に半導体
素子10を形成し、半導体素子10の内部にはエ
ピタキシヤル層、拡散層、或いはイオン注入層な
どで形成された方形または矩形のN型シリコンホ
ール素子11及びホール出力を増幅する回路、周
辺回路等を構成するトランジスタ、ダイオード、
抵抗等を集積している。半導体素子10は、金属
などからなる台床12に載置固定され、電極端子
となる金属リード13に金属細線14によつてボ
ンデイング接続されている。半導体素子10は、
絶縁性樹脂からなる外囲器15で封止されてい
る。 ここで、半導体素子10は、シリコン単結晶を
基板にしているがその結晶方位及び半導体素子1
0の各辺の方位は、第3図A乃至同図Dに示すも
ののいずれかである。例れば、第3図Aに示すも
のは、半導体素子10の結晶面方位が{100}で
あり、半導体素子10の各辺は(100)結晶方位
に平行もしくは垂直とするものである。以下、同
様に同図Bは{811}結晶面方位の場合の各辺の
結晶方位を示し、同図Cは{511}結晶面方位の
場合の各辺の結晶方位を示し、同図Dは{110}
結晶面方位の場合の各辺の結晶方位を示してい
る。 N型シリコンホール素子11には、1対の電流
電極端子16a,16bがN型シリコンホール素
子11の相対向する辺の近傍に相対向して形成さ
れている。また、他の対向する2辺上には1対の
出力電圧電極端子17a,17bが形成されてい
る。また、図中18a,18bは、半導体素子1
0の中心を通り各辺に平行または垂直な中心線で
あり、これらを仮にx1軸、x2軸と定義する。x1
18aとx2軸18bは、半導体素子10の中心で
直交して十字状の中心軸19を形成している。第
2図から明らかな如く、N型シリコンホール素子
11は、その電流方向をx1軸18aまたはx2軸1
8bに平行もしくは垂直になるようにして、か
つ、N型シリコンホール素子11の中心をx1軸1
8aまたはx2軸18b(ここではx1軸上に)上も
しくはその近傍に配置して設けられている。 このように構成された感磁装置20によれば、
応力により発生するN型シリコンホール素子11
の不平衡電圧V0は、ピエゾ抵抗効果により求め
られる。今、第4図に示す如く、N型シリコーン
ホール素子11に対して出力電圧電極端子17
a,17b方向をx1座標軸、電流電極端子16
a,16b方向をx2座標軸、これらの座標軸と直
交する方向をx3座標軸とするx1−x2−x3座標軸を
定義する。 x1座標軸方向の不平衡電界E1(x1)は、ホール
素子を流れる電流の密度J2(x1)を用いてピエゾ
抵抗効果から と求まる。 ここで、ρはN型シリコンホール素子11の抵
抗率π6〓はピエゾ抵抗係数テンソル、τ〓
(x1x2)は応力テンソル成分で一般的には半導体素
子10内の位置により異なる。なお、τ=σx
、τ=σx2、τ=σx3、τ=τx2x3、τ
=τx3x1、τ=τx1x2である。 (1)式より不平衡電圧V0は、 となる。(2)式よりV0を零とするためにはπ6〓ま
たは∫ −wτ〓(x1、x2)dx1がβ=1からβ=6
まで全て零になれば良い。 第5図A乃至同図Dは、N型シリコンのピエゾ
抵抗係数π6〓の結晶方位依存性を求めたもの
で、同図Aは{100}面、同図Bは{811}面、同
図Cは{511}面、同図Dは{110}面に対応して
いる。第5図A乃至同図Dに示すピエゾ抵抗係数
の結晶方位依存性特性からピエゾ抵抗係数(π6
〓)(β=1〜6)が最小となる方位を求め第1
表に示した。
The present invention relates to a resin-sealed semiconductor device in which a semiconductor element including an N-type silicon Hall element is sealed with an insulating resin material. In recent years, with advances in research on semiconductor materials and manufacturing technology, several types of Hall elements have been put into practical use by utilizing the Hall effect known as the magnetosensitive effect. Indium antimony (InSb), gallium arsenide (GaAs), and other materials have better sensitivity to magnetic fields than silicon, but advances in integrated circuit technology using silicon have made it easier to form high-gain amplifier circuits. Thus, a so-called silicon Hall IC, which is an integrated circuit element incorporating a silicon Hall element that can obtain sufficient magnetic field sensitivity by combining the Hall element and an amplifier circuit such as a differential amplifier circuit, has been realized. This silicon Hall IC can contain not only an amplifier circuit but also peripheral circuits. In addition, it has advantages not found in other semiconductor materials, such as the ability to use ordinary silicon IC circuit technology and manufacturing technology as is. Furthermore, as with general semiconductor devices, a resin-sealed envelope made of insulating resin material is used for the purpose of protecting semiconductor elements, preventing deterioration, and maintaining electrical characteristics over a long period of time. Therefore, it has many advantages such as easy manufacture, excellent mass productivity, and low cost. Figures 1A to 1C show an example of a resin-sealed semiconductor magnetic sensing device, and Figure A is a cross-sectional view of the same resin-sealed semiconductor magnetic sensing device, and Figure B is a plan view. Figure 1 and Figure C are enlarged plan views of the main parts. In the figure, reference numeral 1 denotes a semiconductor element, which is placed and fixed on a base 2 made of, for example, a metal material, and is bonded to a metal lead 3 serving as an electrode terminal by a thin metal wire 4. This semiconductor element 1 is sealed with an envelope 5 made of insulating resin to constitute a resin-sealed semiconductor magnetically sensitive device 6 . Semiconductor element 1 has C in the same figure.
As shown in the figure, an epitaxial layer or a diffusion layer,
An N-type silicon Hall element 7 formed of an ion-implanted layer or the like is provided. The N-type silicon Hall element 7 includes current electrodes 8a, 8b and output voltage electrodes 9a, 9b formed perpendicularly to the current direction.
is formed. In the case of such a Hall IC, the semiconductor element 1 includes an N-type silicon Hall element 7.
In addition, transistors constituting a predetermined integrated circuit,
Elements such as diodes and resistors are formed at the same time. The N-type silicon Hall element 7 has inferior sensitivity compared to Hall elements such as indium antimony (InSb), and its Hall output relative to the magnetic field is minute, so it is practically impossible to achieve an amplification factor of at least one order of magnitude. requires an amplifier circuit with Therefore, even if the Hall element has a slight unbalanced output voltage, this equilibrium point will become very large, and the Hall
This has a serious impact on the normal operation of the IC. It is also possible to adjust the unbalanced output voltage from outside the IC, but this reduces the value of the IC. Therefore, it is necessary to suppress the unbalanced voltage generated in the Hall element as much as possible.
It is essential for improving IC performance. Among the causes of unbalanced voltage in Hall elements, factors such as the thickness of the active layer of the Hall element, non-uniformity in concentration distribution, etc., and electrode position shift have been significantly improved in practical terms due to advances in integrated circuit technology. and circuit design in advance,
This is a big problem because it is possible to design with yield in mind at the pattern design stage, and it is also possible to determine defective products through inspection before the assembly process, which prevents losses during the assembly process, which increases manufacturing costs. It is not. However, after the resin sealing process, strain due to the difference in thermal expansion coefficient between the sealing resin and silicon is applied to the semiconductor element 1, so there is a problem that the balanced voltage of the silicon Hall element 7 becomes unbalanced. Conventionally, in order to reduce the unbalanced voltage of the Hall element caused by such strain, a technical means has been proposed in which the silicon Hall element 7 is arranged in a crystal orientation where the strain sensitivity is minimized. This technical means utilizes the fact that the piezoresistance coefficient becomes almost zero by setting the crystal plane of the semiconductor element 1 to {110} and setting the current direction of the silicon Hall element 7 to the (100) or (110) crystal orientation. This is what I did. However, since the piezoresistance coefficient for all stress components cannot be made zero, unbalanced voltages generated by stress cannot be avoided, which poses a problem that hinders the improvement of precision and performance of Hall ICs. The present invention has been made in view of these points, and has a structure that minimizes the value of unbalanced voltage generated after the resin sealing process of a semiconductor element including an N-type silicon Hall element, and is highly practical. The present invention provides a resin-sealed semiconductor device. The present invention can be summarized as follows. One side of a silicon single crystal near the {100} plane or a semiconductor device whose substrate is the {100} plane is 45° from the [100] crystal orientation, or [100]
Parallel or perpendicular to the crystal orientation, parallel or perpendicular to a straight line in which the current direction passes through the center of the semiconductor element and is parallel or perpendicular to one side of the element, and
An integrated circuit including an N-type silicon Hall element formed such that its center is on or near the straight line is formed in the semiconductor element, and this semiconductor element is sealed with an envelope made of an insulating resin. This resin-sealed semiconductor magnetosensitive device achieves the above-mentioned objective by eliminating the adverse effects on N-type silicon Hall elements and the like caused by resin-sealing distortion by having such a structure. In addition, two N-type silicon Hall elements are formed in the same semiconductor element as described above with the center axis of the cross shape as the axis of line symmetry, and the current flowing in each N-type silicon Hall element is aligned with the center axis. This is a resin-sealed semiconductor magnetic sensing device that achieves the above objective by extracting Hall output in series with parallel flow. Hereinafter, the present invention will be explained with reference to the drawings. In the resin-sealed semiconductor magnetically sensitive device (hereinafter simply referred to as magnetically sensitive device) of the present invention, as shown in FIG. 2, for example, a semiconductor element 10 is formed on a semiconductor substrate made of silicon single crystal. Inside there are a square or rectangular N-type silicon Hall element 11 formed of an epitaxial layer, a diffusion layer, an ion implantation layer, etc., a circuit for amplifying the Hall output, a transistor, a diode, etc. constituting a peripheral circuit, etc.
It accumulates resistors, etc. The semiconductor element 10 is mounted and fixed on a base 12 made of metal or the like, and is bonded to metal leads 13 serving as electrode terminals by means of thin metal wires 14 . The semiconductor element 10 is
It is sealed with an envelope 15 made of insulating resin. Here, the semiconductor element 10 uses a silicon single crystal as a substrate, and the crystal orientation and the semiconductor element 1
The orientation of each side of 0 is one of those shown in FIGS. 3A to 3D. For example, in the case shown in FIG. 3A, the crystal plane orientation of the semiconductor element 10 is {100}, and each side of the semiconductor element 10 is parallel or perpendicular to the (100) crystal orientation. Similarly, Figure B shows the crystal orientation of each side in the case of the {811} crystal plane orientation, Figure C shows the crystal orientation of each side in the case of the {511} crystal plane orientation, and Figure D shows the crystal orientation of each side in the case of the {511} crystal plane orientation. {110}
In the case of crystal plane orientation, the crystal orientation of each side is shown. In the N-type silicon Hall element 11, a pair of current electrode terminals 16a and 16b are formed facing each other near opposing sides of the N-type silicon Hall element 11. Furthermore, a pair of output voltage electrode terminals 17a and 17b are formed on the other two opposing sides. In addition, 18a and 18b in the figure represent the semiconductor element 1.
These are the center lines that pass through the center of 0 and are parallel or perpendicular to each side, and these are temporarily defined as the x 1 axis and the x 2 axis. The x 1 axis 18 a and the x 2 axis 18 b are orthogonal to each other at the center of the semiconductor element 10 to form a cross-shaped central axis 19 . As is clear from FIG. 2, the N-type silicon Hall element 11 has its current direction aligned with the x 1 axis 18a or the x 2 axis 1
8b, and the center of the N-type silicon Hall element 11 is aligned with the x 1 axis 1.
8a or the x 2 axis 18b (here, on the x 1 axis) or in the vicinity thereof. According to the magnetic sensing device 20 configured in this way,
N-type silicon Hall element 11 caused by stress
The unbalanced voltage V 0 of is determined by the piezoresistive effect. Now, as shown in FIG. 4, the output voltage electrode terminal 17 is connected to the N-type silicone Hall element 11.
a, 17b direction is x 1 coordinate axis, current electrode terminal 16
An x 1 -x 2 -x 3 coordinate axis is defined in which the a and 16b directions are the x 2 coordinate axis, and the direction perpendicular to these coordinate axes is the x 3 coordinate axis . The unbalanced electric field E 1 (x 1 ) in the direction of the x 1 coordinate axis is calculated from the piezoresistive effect using the density J 2 (x 1 ) of the current flowing through the Hall element. That's what I find. Here, ρ is the resistivity of the N-type silicon Hall element 11 π 6 〓 is the piezoresistance coefficient tensor, τ 〓
(x 1 x 2 ) is a stress tensor component and generally varies depending on the position within the semiconductor element 10. Note that τ 1x
1 , τ 2 = σ x2 , τ 3 = σ x3 , τ 4 = τ x2x3 , τ
5 = τ x3x1 and τ 6 = τ x1x2 . From equation (1), the unbalanced voltage V 0 is becomes. From equation (2), in order to make V 0 zero, π 6 〓 or ∫ w −w τ〓 (x 1 , x 2 ) dx 1 is from β=1 to β=6
It would be good if everything became zero. Figures 5A to 5D show the crystal orientation dependence of the piezoresistance coefficient π 6 〓 of N-type silicon. Figure C corresponds to the {511} plane, and figure D corresponds to the {110} plane. From the crystal orientation dependence characteristics of the piezoresistance coefficient shown in FIGS. 5A to 5D, the piezoresistance coefficient (π 6
〓) (β = 1 to 6) is the minimum value.
Shown in the table.

【表】 同表から{100}面〔100〕方位及び{110}面
〔100〕方位または〔110〕方位ではπ61=π62=π
63=π64=π65=0、π66≠0となり、{811}面及
び{511}面の〔110〕から45゜の方位では|π66
|>|π61|、|π62|、|π63|、|π64|、|
π65|〓0となることがわかる。いずれの場合で
もπ66の効果が最大であることから(2)式は上記各
方位とも V0〓−ρJ2π66w/2 −w/2τ(x1、x2)dx1(3) で表わすことができる。 一方、ピエゾ抵抗効果を利用した応力センサー
を半導体素子表面内に多数形成し、樹脂封止によ
る半導体素子表面の応力分布を実験的に検討した
ところ、各応力成分ともその分布の状態は半導体
素子10内で極めて良い対称性を有することが明
らかとなつた。なお、この実験では矩形又は方形
の半導体素子10を矩形又は方形の外囲器15の
ほぼ中央部にそれぞれほぼ平行となるように配置
している。この結果から応力成分τの半導体素
子内分布を求めたものが第5図Eである。なお、
第5図Eの測定に用いた試料の仕様は以下の通り
である。半導体素子10は3×3mm厚さ300μ
m、外囲器15はDIP24pinパツケージで厚みは
3.5mm金属台床12は厚さ250μmのりん青銅で外
囲器15のほぼ中心かつ、外囲器15の厚み方向
のほぼ中心にある。封止用樹脂はフエノールノボ
ラツクエポキシ樹脂で175℃で形成した。 第5図Eから明らかなように、半導体素子10
内の応力成分τの分布は第2図に示すx1軸18
a及びx2軸18bに対して符号の反転を伴なう対
称分布となることから、第2図に示すようにN型
シリコンホール素子11の中心がx1軸18aまた
はx2軸18b上またはその近傍にし、かつ電流方
向をx1軸18aまたはx2軸18bに平行に配置す
ることにより、(3)式は V0=ρJ2π66〓∫ −wτ(x1、x2)dx1 +∫w/2 τ(x1、x2)dx1〓〓0 となる。すなわち、シリコン単結晶を基板とする
半導体素子10の一辺の方向x1軸18aまたはx2
軸18bを第3図に示すいずれかのx1結晶軸また
はx2結晶軸とし、N型シリコンホール素子11の
中心を座標軸18a,18bとほぼ一致するよう
に配置することにより、樹脂封止歪により発生す
るN型シリコンホール素子11の不平衡電圧をほ
ぼ完全に無くすことができる。 このように構成された本発明の感磁装置20
よれば、樹脂封止後半導体素子10に加わる応力
により発生するN型シリコンホール素子11の不
平衡電圧をほぼ完全に無くすことができ、半導体
素子10の樹脂封止工程前の性能をほぼそのまま
の状態で維持して樹脂封止工程後も活かすことが
できる。また、格別な樹脂封止技術を駆使する必
要がないので生産性に富み、実用性が大であると
いう効果を奏し、種々のホールICに適用できる
利点を有するものである。 次に、本発明の実施例について説明する。な
お、以下の実施例1〜4において、特に明示しな
い限り次に示す仕様で行なわれている。外囲器は
フエノールノボラツクエポキシ樹脂で厚さ3.5mm
のDIP(Dual Inline Package)16pinに温度175
℃で形成する。半導体素子は大きさ3mm×3mm厚
さ300μmとし、外囲器のほぼ中央に外囲器に対
してほぼ平行に固定する。金属台床はりん青銅を
用いた。N型シリコンホール素子は厚さ5μmの
0.5ΩcmのN型エピタキシヤル層とした。N型シ
リコンホール素子のN型領域の大きさは230μm
×230μmとし、2つの電流電極端子間は190μ
m、出力電圧電極端子はその間隔を200μmとし
この2つの電流電極端子の対称線上に配置してあ
る。測定は電流電極端子間に10Vの電圧を印加
し、樹脂封止工程前後の出力電圧電極間に生ずる
不平衡電圧の大きさを測定した。測定値は25〜50
個の試料の平均値で示している。 実施例 1 第6図Aに示すようにシリコン半導体素子61
の中心62を通り、半導体素子61の各辺に平行
な座標軸x軸63a及びy軸64bを定義し、x
=1000μm、y=1000μmを通りy軸64b、x
軸63aにそれぞれ平行な直線63b,64b上
のa〜k点及び1点が中心となるようにN型シリ
コンホール素子65を配置した。N型シリコンホ
ール素子65の電流電極端子方向はy軸64bに
平行の場合とx軸63aに平行な場合の2種類で
あり、それぞれについて半導体素子61はシリコ
ン{100}面でx軸方位が〔100〕の場合とシリコ
ン{110}面でx軸方位が〔100〕の場合について
実験を行なつた。評価結果は第2表に示す通りで
あつた。この結果から、N型シリコンホール素子
65の配置として、電流方向を第6図Bに示すx
軸63aまたはy軸64aと平行とし、N型シリ
コンホール素子65の中心をx軸63aまたはy
軸64a上に設置することが最も望ましいことが
わかる。更に、x軸63a、y軸64aを中心と
した素子の大きさの約13の領域程度までかなり効
果が認められることもわかる。(第6図の66の
領域)この実験から、N型シリコンホール素子6
5の配置として、第6図Bに示すいずれの場合で
あつてもよいことがわかる。なお第6図Bにおい
て、x軸63a、y軸64aは第6図Aと同じく
半導体素子61の中心を通り、半導体素子61の
各辺に平行または垂直な座標軸である。 また、半導体素子61はシリコン単結晶を基板
とし、その面方位は{100}又は{100}であり、
x軸方位はそれぞれ〔100〕結晶軸に平行もしく
は垂直とする
[Table] From the same table, for {100} plane [100] direction and {110} plane [100] direction or [110] direction, π 61 = π 62 = π
63 = π 64 = π 65 = 0, π 66 ≠ 0, and in the direction of 45° from [110] of the {811} and {511} planes, |π 66
|>|π 61 |, |π 62 |, |π 63 |, |π 64 |, |
It can be seen that π 65 |〓0. In any case, the effect of π 66 is the largest, so equation (2) is expressed as V 0 〓−ρJ 2 π 66w/2 −w/2 τ 6 (x 1 , x 2 ) dx 1 in each of the above directions. (3) On the other hand, when we formed a large number of stress sensors using the piezoresistance effect on the surface of a semiconductor element and experimentally examined the stress distribution on the surface of the semiconductor element by resin sealing, we found that the state of the distribution of each stress component was It became clear that there was an extremely good symmetry within the structure. In this experiment, the rectangular or rectangular semiconductor elements 10 are arranged approximately in parallel to each other approximately at the center of the rectangular or rectangular envelope 15. FIG. 5E shows the distribution of the stress component τ 6 within the semiconductor element obtained from this result. In addition,
The specifications of the sample used for the measurement in FIG. 5E are as follows. Semiconductor element 10 is 3×3mm thick and 300μ
m, the envelope 15 is a DIP24pin package and the thickness is
The 3.5 mm metal base 12 is made of phosphor bronze with a thickness of 250 μm and is located approximately at the center of the envelope 15 and approximately at the center of the envelope 15 in the thickness direction. The sealing resin was formed from phenol novolac epoxy resin at 175°C. As is clear from FIG. 5E, the semiconductor element 10
The distribution of the stress component τ 6 within the x 1 axis 18 is shown in Figure 2.
Since the distribution is symmetrical with sign inversion with respect to the a and x2 axes 18b, as shown in FIG. 2, the center of the N-type silicon Hall element 11 is on the x1 axis 18a or By arranging the current direction parallel to the x 1 axis 18a or the x 2 axis 18b, equation (3) can be expressed as V 0 = ρJ 2 π 66 〓∫ o −w τ 6 (x 1 , x 2 )dx 1 +∫ w/2 p τ 6 (x 1 , x 2 )dx 1 〓〓0. That is, the direction x 1 axis 18a or x 2 of one side of the semiconductor element 10 whose substrate is silicon single crystal
By setting the axis 18b as either the x 1 crystal axis or the x 2 crystal axis shown in FIG. 3, and arranging the center of the N-type silicon Hall element 11 so as to substantially coincide with the coordinate axes 18a and 18b, resin sealing strain can be reduced. The unbalanced voltage of the N-type silicon Hall element 11 caused by this can be almost completely eliminated. According to the magnetic sensing device 20 of the present invention configured as described above, it is possible to almost completely eliminate the unbalanced voltage of the N-type silicon Hall element 11 caused by the stress applied to the semiconductor element 10 after resin sealing. The performance of the element 10 before the resin sealing process can be maintained almost as it is and can be utilized even after the resin sealing process. Further, since it is not necessary to make full use of special resin sealing technology, the present invention has the advantage of being highly productive and highly practical, and can be applied to various Hall ICs. Next, examples of the present invention will be described. In addition, in the following Examples 1 to 4, unless otherwise specified, the following specifications are used. The envelope is made of phenol novolac epoxy resin with a thickness of 3.5 mm.
DIP (Dual Inline Package) 16pin temperature 175
Form at °C. The semiconductor element has a size of 3 mm x 3 mm and a thickness of 300 μm, and is fixed approximately parallel to the envelope at approximately the center of the envelope. The metal base and floor were made of phosphor bronze. The N-type silicon Hall element has a thickness of 5 μm.
An N-type epitaxial layer with a thickness of 0.5 Ωcm was used. The size of the N-type region of the N-type silicon Hall element is 230 μm.
×230μm, and the distance between the two current electrode terminals is 190μm.
m, the output voltage electrode terminals are arranged at a spacing of 200 μm on the line of symmetry between the two current electrode terminals. In the measurement, a voltage of 10V was applied between the current electrode terminals, and the magnitude of the unbalanced voltage generated between the output voltage electrodes before and after the resin sealing process was measured. Measurements range from 25 to 50
It is shown as the average value of several samples. Example 1 As shown in FIG. 6A, a silicon semiconductor device 61
Define coordinate axes x-axis 63a and y-axis 64b that pass through the center 62 of the semiconductor element 61 and are parallel to each side of the semiconductor element 61,
= 1000μm, passing through y = 1000μm, y-axis 64b, x
The N-type silicon Hall element 65 was arranged so that the centers were points ak and 1 on straight lines 63b and 64b parallel to the axis 63a, respectively. There are two types of current electrode terminal directions of the N-type silicon Hall element 65: parallel to the y-axis 64b and parallel to the x-axis 63a, and in each case, the semiconductor element 61 is on the silicon {100} plane and the x-axis direction is [ 100] and the case where the x-axis orientation was [100] on the silicon {110} plane. The evaluation results were as shown in Table 2. From this result, the arrangement of the N-type silicon Hall element 65 and the current direction are shown in FIG. 6B.
parallel to the axis 63a or the y-axis 64a, and the center of the N-type silicon Hall element 65 is parallel to the x-axis 63a or the y-axis
It can be seen that installation on axis 64a is most desirable. Furthermore, it can be seen that a considerable effect is observed up to about 13 regions of the size of the element centered on the x-axis 63a and the y-axis 64a. (Region 66 in Figure 6) From this experiment, it was found that the N-type silicon Hall element 6
It can be seen that the arrangement of No. 5 may be any of the cases shown in FIG. 6B. Note that in FIG. 6B, the x-axis 63a and the y-axis 64a are coordinate axes that pass through the center of the semiconductor element 61 and are parallel or perpendicular to each side of the semiconductor element 61, as in FIG. 6A. Further, the semiconductor element 61 uses a silicon single crystal as a substrate, and its plane orientation is {100} or {100},
The x-axis orientation is parallel or perpendicular to the [100] crystal axis, respectively.

【表】 実施例 2 第7図に示すようにN型シリコンホール素子7
4,75を半導体素子71の中心及びy軸73上
にx軸72と角度θ傾けて配置する。ここで半導
体素子71の面方位は{100}及び{110}とし、
N型シリコンホール素子74、75に固定したu
−v座標系の方位をそれぞれ〔100〕及び〔100〕
又は方位と平行もしくは垂直とする。θとして0
゜、15゜、30゜、45゜について実験した結果を第
3表に示す。これより、N型シリコンホール素子
74,75はその電流方向が半導体素子71の一
辺に平行もしくは垂直とすることが望ましいこと
がわかつた。
[Table] Example 2 N-type silicon Hall element 7 as shown in FIG.
4 and 75 are arranged at the center of the semiconductor element 71 and on the y-axis 73 at an angle θ with respect to the x-axis 72. Here, the plane orientations of the semiconductor element 71 are {100} and {110},
u fixed to N-type silicon Hall elements 74 and 75
−v coordinate system direction [100] and [100] respectively
Or parallel or perpendicular to the direction. 0 as θ
Table 3 shows the results of experiments conducted at angles of 15°, 30°, and 45°. From this, it has been found that it is desirable that the current direction of the N-type silicon Hall elements 74 and 75 be parallel or perpendicular to one side of the semiconductor element 71.

【表】 実施例 3 ホール素子の配置を第7図でθ=0とし、シリ
コン半導体素子71の結晶面方位を{811}及び
{511}面とし、x軸方位を〔110〕結晶軸から45
゜の方位と平行もしくは垂直とする。このときの
樹脂封止により発生する不平衡電圧V0の測定結
果を第4表に示す。同表より{811}面、{511}
面においても{100}面とほぼ同程度の効果があ
ることがわかつた。
[Table] Example 3 The arrangement of the Hall element is set to θ=0 in FIG. 7, the crystal plane orientation of the silicon semiconductor element 71 is set to the {811} and {511} planes, and the x-axis direction is set at 45 degrees from the [110] crystal axis.
Parallel or perpendicular to the direction of °. Table 4 shows the measurement results of the unbalanced voltage V 0 generated by the resin sealing at this time. From the same table, {811} plane, {511}
It was found that the effect on the {100} surface is almost the same as that on the {100} surface.

【表】 実施例 4 ホール素子の構造を第8図に示すように同形の
2つのN型シリコンホール素子81,82を平行
に配置し、電圧電極端子84,85を金属配線で
接続した構成とする。このときのホール出力は電
極端子83,86から得られる。ホール素子8
1,82を第6図のa〜f及びm〜qの如く配置
し、第5表に示す組み合わせで不平衡電圧を測定
した。電流はそれぞれの電流電極端子87,88
を並列に接続し、これらの端子88,87間に
10Vの電圧を印加することにより流す。電流方向
は第6図Aでy軸と平行な方向となるようにN型
シリコンホール素子81,82を配置した。半導
体素子61の結晶面方位は{100}及び{110}面
とし、x軸方向はそれぞれ〔100〕結晶軸に平行
もしくは垂直とした。測定結果を第5表に示す。
第2表の結果と比較してもわかるように、2つの
ホール素子81,82をy軸に対象に配置しても
不平衡電圧をなくすることが可能である。なお、
2つのホール素子81,82はx軸に対象に配置
してもよい。このときは、電流方向をx軸と平行
にすればよい。このような構造のN型シリコンホ
ール素子81,82は、応力により発生する不平
衡電圧が(3)式において、 となる。ここでπはx2軸すなわちx1=0におい
て符号の反転を伴なう対称分布となることから となる。なお、上式において、x0は第8図Bにお
いてy軸からそれぞれのホール素子の中心までの
距離であり、Wはそれぞれのホール素子の電圧電
極端子間距離である。
[Table] Example 4 The structure of the Hall element is as shown in FIG. 8, in which two N-type silicon Hall elements 81 and 82 of the same shape are arranged in parallel, and voltage electrode terminals 84 and 85 are connected with metal wiring. do. The Hall output at this time is obtained from the electrode terminals 83 and 86. Hall element 8
1 and 82 were arranged as shown in af and mq of FIG. 6, and the unbalanced voltages were measured using the combinations shown in Table 5. The current flows through the respective current electrode terminals 87, 88.
are connected in parallel and between these terminals 88 and 87.
Flow by applying a voltage of 10V. N-type silicon Hall elements 81 and 82 were arranged so that the current direction was parallel to the y-axis as shown in FIG. 6A. The crystal plane orientations of the semiconductor element 61 were {100} and {110} planes, and the x-axis direction was parallel or perpendicular to the [100] crystal axis, respectively. The measurement results are shown in Table 5.
As can be seen from the comparison with the results in Table 2, it is possible to eliminate unbalanced voltage even if the two Hall elements 81 and 82 are arranged symmetrically on the y-axis. In addition,
The two Hall elements 81 and 82 may be arranged symmetrically on the x-axis. At this time, the current direction may be made parallel to the x-axis. In the N-type silicon Hall elements 81 and 82 having such a structure, the unbalanced voltage generated due to stress is expressed as in equation (3): becomes. Here, π 6 is a symmetric distribution with sign reversal on the x 2 axis, that is, x 1 = 0, so becomes. In the above equation, x 0 is the distance from the y-axis to the center of each Hall element in FIG. 8B, and W is the distance between the voltage electrode terminals of each Hall element.

【表】 尚、本発明は上記実施例1〜4に限定されず、
例えば半導体素子は方形でなく矩形であつてもよ
く、樹脂封止外囲器も矩形でなく方形であつても
良い。また、N型シリコンホール素子はエピタキ
シヤル層のみならず不純物拡散層あるいはイオン
注入層により形成されても良く、形状、大きさも
その設計仕様に応じて決定されたものでも良い。
しかしながら、半導体素子の周縁部にあつては歪
の乱があり、不平衡電圧のばらつきが大きくなる
ので、少なくとも半導体素子の厚み以上内部に形
成した方が望ましい。更に、ホール出力の増幅回
路で初段に差動増幅器を使用する場合、2つのト
ランジスタは半導体素子の中心線に対象に設置
し、P型バイアス抵抗素子も上記中心線に対象に
設置することが望ましい。特に、P型抵抗に対す
るピエゾ抵抗係数はシリコン〔100〕結晶軸方位
で最小となるから、{100}面のときは半導体素子
に平行もしくは垂直に形成し、{110}面のときは
〔100〕結晶方位に平行に形成すれば良い。 以上説明した如く、本発明に係る樹脂封止型半
導体感磁装置によれば、シリコン半導体素子に形
成されたN型シリコンホール素子の樹脂封止歪に
より発生する不平衡電圧を低くして、N型シリコ
ンホール素子を含むホールICの電気特性を樹脂
封止後も十分に確保できる実用性の高い樹脂封止
型半導体感磁装置を提供できるものである。
[Table] Note that the present invention is not limited to Examples 1 to 4 above,
For example, the semiconductor element may be rectangular instead of square, and the resin-sealed envelope may also be square instead of rectangular. Furthermore, the N-type silicon Hall element may be formed not only from an epitaxial layer but also from an impurity diffusion layer or an ion implantation layer, and its shape and size may be determined according to its design specifications.
However, since distortion occurs at the peripheral edge of the semiconductor element and the unbalanced voltage varies widely, it is preferable to form it inside the semiconductor element by at least the thickness thereof. Furthermore, when using a differential amplifier in the first stage of a Hall output amplifier circuit, it is desirable that the two transistors be installed symmetrically to the center line of the semiconductor element, and the P-type bias resistor element also be installed symmetrically to the center line. . In particular, the piezoresistance coefficient for a P-type resistor is minimum in the silicon [100] crystal axis direction, so when it is on the {100} plane, it is formed parallel or perpendicular to the semiconductor element, and when it is on the {110} plane, it is formed in the [100] direction. It may be formed parallel to the crystal orientation. As explained above, according to the resin-sealed semiconductor magnetic sensing device according to the present invention, the unbalanced voltage generated due to the resin-sealed strain of the N-type silicon Hall element formed in the silicon semiconductor element is lowered, and the N-type silicon Hall element formed in the silicon semiconductor element is lowered. It is possible to provide a highly practical resin-sealed semiconductor magnetosensitive device that can sufficiently maintain the electrical characteristics of a Hall IC including a silicon Hall element even after resin-sealing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図Aは、従来の樹脂封止型半導体感磁装置
の断面図、同図Bは同装置の平面図、同図Cは同
装置の要部拡大図、第2図は、本発明に係る樹脂
封止型半導体感磁装置の平面図、第3図A乃至同
図Dは、結晶面方位と各辺の結晶方位の関係を示
す説明図、第4図は、N型シリコンホール素子に
流れる電流密度を説明する説明図、第5図A乃至
同図Dは、ピエゾ抵抗係数の結晶方位依存性を示
す特性図、同図Eは、半導体素子内の応力成分の
分布を示す分布図、第6図A及び同図Bは、本発
明の一実施例の説明図、第7図、第8図A及び同
図Bは、本発明の他の実施例の説明図である。 10……半導体素子、11……N型シリコンホ
ール素子、12……台床、13……金属リード、
14……金属細線、15……外囲器、16a,1
6b……電流電極端子、17a,17b……電圧
電極端子、20……樹脂封止型半導体感磁装置。
1A is a sectional view of a conventional resin-sealed semiconductor magnetic sensing device, FIG. 1B is a plan view of the device, FIG. 1C is an enlarged view of the main part of the device, and FIG. 3A to 3D are plan views of such a resin-sealed semiconductor magnetosensitive device, and FIG. 4 is an explanatory diagram showing the relationship between the crystal plane orientation and the crystal orientation of each side. 5A to 5D are characteristic diagrams showing the dependence of the piezoresistance coefficient on crystal orientation; FIG. 5E is a distribution diagram showing the distribution of stress components within the semiconductor element; 6A and 6B are explanatory diagrams of one embodiment of the present invention, and FIGS. 7, 8A and 8B are explanatory diagrams of another embodiment of the present invention. 10... Semiconductor element, 11... N-type silicon Hall element, 12... Base, 13... Metal lead,
14...Thin metal wire, 15...Envelope, 16a, 1
6b...Current electrode terminal, 17a, 17b...Voltage electrode terminal, 20 ...Resin-sealed semiconductor magnetosensitive device.

Claims (1)

【特許請求の範囲】 1 絶縁性樹脂部材で封止されたシリコン単結晶
からなる半導体基板と、該半導体基板に形成され
た結晶面方位が{100}面でかつその一辺が
〔100〕結晶方位に平行もしくは垂直となる方形ま
たは矩形の半導体素子と、該半導体素子内に形成
されたN型シリコンホール素子とを具備する樹脂
封止型半導体感磁装置において、N型シリコンホ
ール素子を半導体素子の中心を通つて該半導体素
子の一辺に平行な領域及び垂直な領域で形成され
る略十字形の中心部領域に形成し、N型シリコン
ホール素子の電流方向を前記平行な領域または垂
直な領域に沿つて流れるようにせしめたことを特
徴とする樹脂封止型半導体感磁装置。 2 中心部領域の領域幅が半導体素子の中心を通
る中心軸から該中心軸に対向する1辺までの距離
の1/6である特許請求の範囲第1項記載の樹脂封
止型半導体感磁装置。 3 半導体素子を絶縁性樹脂部材からなる方形ま
たは矩形の外囲器のほぼ中心部に該半導体素子の
各々の表面が該外囲器の各々の表面とほぼ平行に
なるように封止した特許請求の範囲第1項または
第2項記載の樹脂封止型半導体感磁装置。 4 絶縁性樹脂部材で封止されたシリコン単結晶
からなる半導体基板と、該半導体基板に形成され
た結晶面方位が{100}面でかつその一辺が
〔100〕結晶方位に平行もしくは垂直となる方形ま
たは矩形の半導体素子と、該半導体素子内に形成
されたN型シリコンホール素子とを具備する樹脂
封止型半導体感磁装置において、2つの同形のN
型シリコンホール素子を1対とし、各々のN型シ
リコンホール素子を半導体素子の中心を通つて該
半導体素子の一辺に平行な中心線及び垂直な中心
線からなる十字形の中心軸を線対称軸にして該半
導体素子内に形成し、各々のN型シリコンホール
素子の電流方向を平行とし、かつ該中心軸に平行
に流れるようにせしめたことを特徴とする樹脂封
止型半導体感磁装置。 5 半導体素子を絶縁性樹脂部材からなる方形ま
たは矩形の外囲器のほぼ中心部に該半導体素子の
各々の表面が該外囲器の各々の表面とほぼ平行に
なるように封止した特許請求の範囲第4項記載の
樹脂封止型半導体感磁装置。
[Scope of Claims] 1. A semiconductor substrate made of a silicon single crystal sealed with an insulating resin member, a crystal plane formed on the semiconductor substrate having a {100} crystal plane, and one side of which has a [100] crystal orientation. In a resin-sealed semiconductor magnetosensitive device comprising a square or rectangular semiconductor element parallel or perpendicular to the semiconductor element and an N-type silicon Hall element formed within the semiconductor element, the N-type silicon Hall element is The current direction of the N-type silicon Hall element is directed to the parallel or perpendicular region through the center of the semiconductor element. 1. A resin-sealed semiconductor magnetic sensing device characterized by flowing along the same direction. 2. The resin-sealed semiconductor magnetic sensor according to claim 1, wherein the width of the central region is 1/6 of the distance from the central axis passing through the center of the semiconductor element to one side facing the central axis. Device. 3. A patent claim in which a semiconductor element is sealed approximately at the center of a square or rectangular envelope made of an insulating resin member such that each surface of the semiconductor element is approximately parallel to each surface of the envelope. A resin-sealed semiconductor magnetically sensitive device according to item 1 or 2. 4. A semiconductor substrate made of a silicon single crystal sealed with an insulating resin member, and a crystal plane formed on the semiconductor substrate whose orientation is a {100} plane, and one side of which is parallel or perpendicular to the [100] crystal orientation. In a resin-sealed semiconductor magnetosensitive device comprising a square or rectangular semiconductor element and an N-type silicon Hall element formed within the semiconductor element, two identical N-type
A pair of N-type silicon Hall elements are formed, and each N-type silicon Hall element is passed through the center of the semiconductor element, and the central axis of a cross formed by a center line parallel to one side of the semiconductor element and a center line perpendicular to the semiconductor element is the axis of line symmetry. 1. A resin-sealed semiconductor magnetically sensitive device, characterized in that the current direction of each N-type silicon Hall element is parallel to the central axis of the semiconductor element, and the current direction of each N-type silicon Hall element is parallel to the current direction of the N-type silicon Hall element. 5. A patent claim in which a semiconductor element is sealed approximately at the center of a square or rectangular envelope made of an insulating resin member such that each surface of the semiconductor element is approximately parallel to each surface of the envelope. The resin-sealed semiconductor magnetically sensitive device according to item 4.
JP55171666A 1980-12-05 1980-12-05 Resin sealed type semiconductor magnetic sensitive device Granted JPS5795686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55171666A JPS5795686A (en) 1980-12-05 1980-12-05 Resin sealed type semiconductor magnetic sensitive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55171666A JPS5795686A (en) 1980-12-05 1980-12-05 Resin sealed type semiconductor magnetic sensitive device

Publications (2)

Publication Number Publication Date
JPS5795686A JPS5795686A (en) 1982-06-14
JPS6216559B2 true JPS6216559B2 (en) 1987-04-13

Family

ID=15927442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55171666A Granted JPS5795686A (en) 1980-12-05 1980-12-05 Resin sealed type semiconductor magnetic sensitive device

Country Status (1)

Country Link
JP (1) JPS5795686A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62208682A (en) * 1986-03-07 1987-09-12 Seiko Instr & Electronics Ltd Magnetic sensor

Also Published As

Publication number Publication date
JPS5795686A (en) 1982-06-14

Similar Documents

Publication Publication Date Title
US5877039A (en) Method of making a semiconductor pressure sensor
US4587509A (en) Hall effect device with overlapping flux concentrators
Popović Hall-effect devices
US5614754A (en) Hall device
DE10322523B4 (en) Semiconductor pressure sensor with a membrane
EP0735352A2 (en) Force transducer and method of fabrication thereof
EP0050136A1 (en) Silicon pressure sensor
US10429453B2 (en) Magnetic sensor and method of manufacturing the same
US3965453A (en) Piezoresistor effects in semiconductor resistors
US20150008544A1 (en) Physical quantity sensor
US4503709A (en) Pressure sensor
US10062836B2 (en) Magnetic sensor and method of manufacturing the same
US5412993A (en) Pressure detection gage for semiconductor pressure sensor
US5446307A (en) Microelectronic 3D bipolar magnetotransistor magnetometer
US6396114B1 (en) Magneto-electric device
JPS6216558B2 (en)
JPS6216559B2 (en)
EP0035331A2 (en) Resin-sealed semiconductor device
US4709214A (en) Integrated Hall element and amplifier with controlled offset voltage
US5119166A (en) Hall effect element aligned to reduce package-induced offsets
JPH0997895A (en) Hall element and watthour meter using thereof
US3943481A (en) Galvano-magnetic effect device
US4292618A (en) Semiconductor strain gauge with elastic load plate
JP2864700B2 (en) Semiconductor pressure sensor and method of manufacturing the same
JPH0945974A (en) Hall ic