JPS6216539Y2 - - Google Patents

Info

Publication number
JPS6216539Y2
JPS6216539Y2 JP1979103879U JP10387979U JPS6216539Y2 JP S6216539 Y2 JPS6216539 Y2 JP S6216539Y2 JP 1979103879 U JP1979103879 U JP 1979103879U JP 10387979 U JP10387979 U JP 10387979U JP S6216539 Y2 JPS6216539 Y2 JP S6216539Y2
Authority
JP
Japan
Prior art keywords
driven ring
ring
cavitation
mechanical seal
thread groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1979103879U
Other languages
Japanese (ja)
Other versions
JPS5621653U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1979103879U priority Critical patent/JPS6216539Y2/ja
Publication of JPS5621653U publication Critical patent/JPS5621653U/ja
Application granted granted Critical
Publication of JPS6216539Y2 publication Critical patent/JPS6216539Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は、回転軸部からの流体の漏洩を防止す
るメカニカルシール、特に封入圧力流体が液体ま
たは液体と気体の混合物であり、外部流体が気
体、一般的には空気である場合において密封流体
の漏洩を防止するメカニカルシールの改良に関す
る。
[Detailed description of the invention] The present invention is a mechanical seal that prevents fluid from leaking from a rotating shaft, especially when the sealed pressure fluid is a liquid or a mixture of liquid and gas, and the external fluid is a gas, generally air. This invention relates to an improvement in a mechanical seal that prevents leakage of a sealing fluid in cases where:

通常、上記種類のメカニカルシールは、回転軸
を挿通させた固定側のシートリングに対し、上記
回転軸とともに回転する従動リングを摺接させ
て、摺接面外周側から内周側への流体の漏れを阻
止する構成を有している。このため、摺接面の密
封効果を挙げるには、従来、シートリングに対す
る従動リングの押圧力を大にして摺接面の単位面
積当たりの圧力を増大させるようにすること、あ
るいは摺接する両リングの材料を選んで堅牢な封
塞面を形成させるようにするなどの対策が講じら
れて来た。しかしながら、摺接部に生ずる面の粗
さ、経時的変形等は所詮回避し得ず、特に例えば
自動車用クーラのコンプレツサ等に適用されるメ
カニカルシールの如く、振動や温度変化等が加わ
る過酷な条件下で使用された場合には、流体の漏
れが著しく密封手段の根本的改善が望まれてい
た。
Normally, the above type of mechanical seal has a fixed seat ring through which the rotating shaft is inserted, and a driven ring that rotates with the rotating shaft makes sliding contact with the fixed seat ring. It has a configuration that prevents leakage. Therefore, in order to improve the sealing effect of the sliding surface, conventional methods have been to increase the pressing force of the driven ring against the seat ring to increase the pressure per unit area of the sliding surface, or to increase the pressure per unit area of the sliding surface, or to increase the pressure per unit area of the sliding surface. Countermeasures have been taken, such as selecting materials to form a robust sealing surface. However, surface roughness, deformation over time, etc. that occur in sliding contact parts cannot be avoided after all, and especially in harsh conditions where vibrations, temperature changes, etc. are applied, such as with mechanical seals applied to automobile cooler compressors, etc. When used under the hood, fluid leakage is significant and a fundamental improvement in the sealing means has been desired.

しかして本考案者等は、この密封手段の根本的
改善策として、既にシートリングと従動リングの
摺接面の少なくとも一方に、外端部を閉止した行
き止まり糸条溝を形成したメカニカルシールを発
明し、これを特許出願(特願昭52−41838号、特
願昭53−24137号)している。
As a fundamental improvement to this sealing means, the inventors of the present invention have already invented a mechanical seal in which a dead-end thread groove with a closed outer end is formed on at least one of the sliding surfaces of the seat ring and the driven ring. They have filed patent applications for this (Japanese Patent Application No. 52-41838, Japanese Patent Application No. 53-24137).

上記特許出願に係る発明は、摺接面間の微小な
間隙に介在する流体に対し、摺接面の相対回動を
利用して、漏洩流に対抗しうる半径方向圧力を付
与できることに着目し、上記摺接面の少なくとも
一方に外端部の閉止された所要形状の糸条溝を設
けたことを特徴とするもので、従動リングの回転
に伴う糸条溝のポンプ作用、または従動リング側
に溝を形成した場合は糸条溝内に侵入する流体に
作用する遠心力により、漏れの防止作用が得られ
ると考えられている。
The invention according to the above patent application focuses on the fact that radial pressure that can counter leakage flow can be applied to the fluid interposed in the minute gap between the sliding surfaces by using the relative rotation of the sliding surfaces. , characterized in that a yarn groove of a desired shape with a closed outer end is provided on at least one of the sliding contact surfaces, and the pumping action of the yarn groove as the driven ring rotates, or the side of the driven ring. It is believed that when a groove is formed in the yarn groove, the centrifugal force acting on the fluid that enters the yarn groove can prevent leakage.

ところでこのメカニカルシールでは、糸条溝の
内端部はリングの内周壁に開口し、溝と内周壁と
の接続部分がシヤープエツヂとなる。そして糸条
溝内端がシヤープエツヂとなつた従動リングを回
転させると、エツヂ部分およびその近傍にキヤビ
テーシヨンが発生し、さらにエツヂ部分に割れ、
欠けが生じると、このキヤビテーシヨンはより強
くなるため、これらが原因で摺接面が粗れ、シー
ル性能が低下していた。
By the way, in this mechanical seal, the inner end of the thread groove opens into the inner circumferential wall of the ring, and the connecting portion between the groove and the inner circumferential wall becomes a sharp edge. When the driven ring whose inner end of the thread groove has a sharp edge is rotated, cavitation occurs at and near the edge, and the edge also cracks.
When chipping occurs, this cavitation becomes stronger, which causes the sliding surface to become rough and reduces sealing performance.

ところで、一般にメカニカルシールにおいては
キヤビテーシヨンの影響は小さく、本考案が属す
る摺接面に溝を有するメカニカルシールの分野に
おいても、キヤビテーシヨンの悪影響については
無視されているのが現状である。一般にキヤビテ
ーシヨンについての検討が行なわれないのは、メ
カニカルシールは長期間の使用による摩耗等で漏
洩量が増大するので、通常は漏洩量が増大しても
それは上記摩耗等によるものと判断されてしまう
ことが一因であると考えられる。
Incidentally, in general, the influence of cavitation is small in mechanical seals, and even in the field of mechanical seals having grooves on the sliding surface to which the present invention belongs, the negative influence of cavitation is currently ignored. The reason why cavitation is not generally considered is that mechanical seals leak more due to wear and tear caused by long-term use, so even if the amount of leakage increases, it is usually assumed that it is due to the above-mentioned wear. This is thought to be one of the reasons.

そして本考案においても、キヤビテーシヨンに
よる悪影響は、上記糸条溝の漏れに関する通常の
漏洩実験をかなり長期間継続した際に、特に従動
リングの回転方向後方側における開口端部分に欠
けがあるものについて漏洩量が相対的に増大した
ことから発見されたもので、上記糸条溝内端がシ
ヤープエツジとなつている糸条溝について数十時
間程度の漏洩実験を行なつただけの段階では、キ
ヤビテーシヨンによる悪影響は考慮されていなか
つた。
In the present invention as well, the negative effects caused by cavitation were found to occur when ordinary leakage experiments regarding leakage from the thread groove were continued for a considerable period of time, especially when there was a chip in the open end portion on the rear side of the driven ring in the direction of rotation. This was discovered due to a relative increase in the amount of cavitation, and at the stage when we had just conducted a leakage experiment for about tens of hours on the yarn groove where the inner end of the yarn groove is a sharp edge, we found that there was no negative effect due to cavitation. was not taken into account.

しかるに、上記開口端部分に欠けがあるものに
ついて漏洩量が相対的に増大したものについて、
その原因を詳細に検討した結果、意外な部分にキ
ヤビテーシヨンが発生し、それが原因で漏洩量が
増大したことが判明した。
However, for those with a chip in the opening end, the amount of leakage has increased relatively.
After examining the cause in detail, it was discovered that cavitation occurred in an unexpected area, which caused the leakage amount to increase.

すなわち、本考案のメカニカルシールにおいて
は、上記糸条溝は、液体または液体と気体との混
合物からなる密封流体が存在する外周側に開口し
ているのではなく、そのような密封流体が漏洩す
るのを防止する気体側つまり内周側に開口してお
り、従動リングの摺接面外周からランド部を越え
て洩れてきた密封流体は糸条溝の外周端部分から
その糸条溝内に流入して捕捉され、シートリング
と従動リングとの相対回転によりその糸条溝の外
周端部分から上記ランド部に押戻されるようにな
るものと考えられる。したがつて、糸条溝に対す
る密封流体の流通量は当然にその糸条溝の外周端
部分で大きく、糸条溝が開口するメカニカルシー
ルの内周側では最小ないしは殆ど零になるものと
考えられ、キヤビテーシヨンは内周端部分よりも
外周端部分の方が発生し易いものと予測され、さ
らに加えて、シートリングと従動リングとの相対
回転時には糸条溝の外周端部分の周速は内周開口
端部分の周速よりも速くなり、この観点からも外
周端部分の方が内周端部分よりもキヤビテーシヨ
ンが発生し易いものと予測された。
That is, in the mechanical seal of the present invention, the thread groove is not opened toward the outer periphery where the sealing fluid made of liquid or a mixture of liquid and gas exists, but rather, the thread groove is not opened toward the outer periphery where the sealing fluid is present. The sealing fluid that leaks from the outer periphery of the sliding surface of the driven ring beyond the land portion flows into the thread groove from the outer peripheral end of the thread groove. It is thought that the fibers are caught and pushed back into the land portion from the outer peripheral end of the thread groove by the relative rotation between the seat ring and the driven ring. Therefore, it is thought that the flow rate of the sealing fluid to the thread groove is naturally large at the outer peripheral end of the thread groove, and is minimal or almost zero at the inner peripheral side of the mechanical seal where the thread groove opens. It is predicted that cavitation is more likely to occur at the outer peripheral end than at the inner peripheral end, and in addition, when the seat ring and driven ring rotate relative to each other, the peripheral speed at the outer peripheral end of the thread groove is lower than the inner peripheral end. The circumferential speed was higher than that of the open end portion, and from this point of view, it was predicted that cavitation would occur more easily at the outer circumferential end portion than at the inner circumferential end portion.

しかるに、実際にはそのような予測に反して、
後述の第5図に示すように、密封流体の流通量が
少なく、しかも相対的に周速の遅い開口部分にキ
ヤビテーシヨンが発生しており、その開口部分の
キヤビテーシヨンの発生が上記漏洩量を増大させ
ていたことを確認した。なお、上記糸条溝の外周
端部分でもキヤビテーシヨンが発生していると思
われるが、結果的にはその影響が開口部で発生す
るキヤビテーシヨンに比較して小さいので無視で
きるものと考えられる。
However, in reality, contrary to such predictions,
As shown in Fig. 5, which will be described later, cavitation occurs in the opening where the flow rate of the sealing fluid is small and the peripheral speed is relatively slow, and the occurrence of cavitation in the opening increases the amount of leakage. I confirmed that it was. Although cavitation appears to occur at the outer peripheral end portion of the thread groove, the effect is ultimately smaller than the cavitation occurring at the opening, so it is considered to be negligible.

本考案はこのような知見に基づいてなされたも
ので、糸条溝の従動リング内周壁への開口端にお
いて、少なくともキヤビテーシヨンの発生原因と
なる従動リングの回転方向後方側の開口端と内周
壁との接続部分を滑らかな曲面で接続して上記キ
ヤビテーシヨンおよびこれに起因するシール性の
低下が起らないメカニカルシールを得たものであ
る。
The present invention was made based on such knowledge, and at the open end of the thread groove to the inner circumferential wall of the driven ring, at least the open end on the rear side in the rotational direction of the driven ring and the inner circumferential wall, which causes cavitation, are removed. A mechanical seal is obtained in which the connecting portions of the mechanical seals are connected with smooth curved surfaces to avoid the cavitation described above and the deterioration in sealing performance caused by the cavitation.

以下図示実施例について本考案を説明する。第
1図はメカニカルシールを有する回転軸の一例と
して、自動車用クーラのコンプレツサを示すもの
で、1はコンプレツサの回転軸、2は回転軸1に
キー3により回転を拘束して結合された電磁クラ
ツチの連結体、4はケーシング5に対し回転自在
な回転体であり、回転体4内の空間に挿入された
励磁コイル6に通電されたとき、回転体4と連結
体2が一体となり、回転体4と共に回転軸1が回
転する。しかして、7はコンプレツサ部8の流
体、すなわち液体または液体と気体の混合物が回
転軸1側へ洩れるのを防止するメカニカルシール
部であり、第2図に拡大して示すように回転軸1
を挿通させたシートリング9に対し、回転軸1と
共に回転する従動リング10を摺接させ、この摺
接によりシートリング9と回転軸1との間の空隙
からの油やガスの漏洩を防止している。11は回
転軸1に密着するパツキン、12はその受金、1
3はノツクリング、14は従動リング10にシー
トリング9側への押圧力を与えるばねである。
The invention will now be described with reference to the illustrated embodiments. Fig. 1 shows a compressor for an automobile cooler as an example of a rotary shaft with a mechanical seal, where 1 is the rotary shaft of the compressor, and 2 is an electromagnetic clutch coupled to the rotary shaft 1 with its rotation restrained by a key 3. The connecting body 4 is a rotating body that can freely rotate with respect to the casing 5. When the excitation coil 6 inserted into the space inside the rotating body 4 is energized, the rotating body 4 and the connecting body 2 are integrated, and the rotating body The rotating shaft 1 rotates together with the rotating shaft 4. 7 is a mechanical seal part that prevents the fluid in the compressor part 8, that is, liquid or a mixture of liquid and gas, from leaking toward the rotating shaft 1. As shown in an enlarged view in FIG.
A driven ring 10 rotating together with the rotating shaft 1 is brought into sliding contact with the seat ring 9 through which the seat ring 9 is inserted, and this sliding contact prevents oil and gas from leaking from the gap between the seat ring 9 and the rotating shaft 1. ing. 11 is a gasket that is in close contact with the rotating shaft 1; 12 is its holder; 1
3 is a knock ring, and 14 is a spring that applies a pressing force to the driven ring 10 toward the seat ring 9 side.

しかして従動リング10のシートリング9との
摺接面10Aには、第3図に示すように、その外
周部分に平坦なランド部20が形成され、内周部
分に複数の糸条溝21が穿設されている。この糸
条溝21は、その外端部はランド部20によつて
閉塞されているが、内端部は従動リング10の内
周壁10Bに開口しており、この開口端部には、
キヤビテーシヨンの発生を防止するために、従動
リング10の回転方向後方側においてこの溝21
と内周壁10Bとを滑らかに接続する曲面22が
形成されている。この曲面22の曲率半径は、糸
条溝21の傾斜角度、溝巾等によつても変化する
が、糸条溝21成形用の押し型の製造上通常必要
とされる曲率半径(0.1mmR程度)よりも大きく
設定するもので、具体的には0.2mmR以上、好ま
しくは0.3mmR以上の適当な値とする。またこの
曲面22は摺接面10Aを平面的に観察して形成
したものであるが、糸条溝21を内周壁10B側
から見て、その溝端部に第4図に示すような曲面
23を形成し、溝の深さ方向においても溝と内周
壁を滑らかに接続することができる。
As shown in FIG. 3, the sliding surface 10A of the driven ring 10 with the seat ring 9 has a flat land portion 20 formed on its outer periphery and a plurality of thread grooves 21 on its inner periphery. It is perforated. The outer end of this thread groove 21 is closed by the land portion 20, but the inner end thereof is open to the inner circumferential wall 10B of the driven ring 10, and this open end includes:
In order to prevent the occurrence of cavitation, this groove 21 is formed on the rear side of the driven ring 10 in the rotational direction.
A curved surface 22 is formed that smoothly connects the inner circumferential wall 10B. The radius of curvature of this curved surface 22 varies depending on the inclination angle of the thread groove 21, the groove width, etc., but the radius of curvature (approximately 0.1 mm ), specifically, an appropriate value of 0.2 mmR or more, preferably 0.3 mmR or more. This curved surface 22 was formed by observing the sliding surface 10A in a plan view, but when the thread groove 21 is viewed from the inner circumferential wall 10B side, a curved surface 23 as shown in FIG. 4 is formed at the end of the groove. The groove can be smoothly connected to the inner circumferential wall also in the depth direction of the groove.

このように糸条溝21端部に曲面22(および
曲面23)を形成した従動リング10は、この曲
面22部分をシヤープエツヂとした第5図の従来
品のような割れ24や欠けを生じることが少なく
なり、加工性、量産性が向上する。同時にシヤー
プエツヂやこれの割れ、欠けによる乱流に起因し
て第5図の斜線域25の摺接面にキヤビテーシヨ
ンの生じることがないため、シール性能の向上お
よび安定化を図ることができる。
The driven ring 10 in which the curved surface 22 (and curved surface 23) is formed at the end of the thread groove 21 in this way does not suffer from cracks 24 or chips like the conventional product shown in FIG. 5 in which the curved surface 22 portion is a sharp edge. This results in improved processability and mass production. At the same time, since cavitation does not occur on the sliding surface in the shaded area 25 in FIG. 5 due to turbulence caused by the shear edge or its cracks or chips, the sealing performance can be improved and stabilized.

なお糸条溝21は、この溝によるポンプ作用で
洩れ防止効果が得られると考えられるところか
ら、第3図のように矢印で示す摺接面の回転移動
方向後方側に傾斜させることが望ましい。しかし
この溝の傾斜角度については、研究の結果、第6
図aのように従動リング10の放射方向であつて
もほぼ同等の効果のあることが認められ、さらに
使用条件によつては、同図bのように逆に回転移
動方向前方側に一定角度α(例えば5゜程度)傾
斜させても実用上支障のないシール効果が認めら
れた。これは糸条溝21のある限界傾斜角度迄は
この溝内の流体に作用する遠心力が摺接面からの
漏洩流に対抗しうる半径方向圧力を生ぜしめるた
めと考えられる。
Note that the thread groove 21 is preferably inclined toward the rear in the rotational movement direction of the sliding surface as shown by the arrow in FIG. 3, since it is thought that a leakage prevention effect can be obtained by the pumping action of this groove. However, as a result of research, the angle of inclination of this groove was found to be
It is recognized that almost the same effect can be obtained even if the driven ring 10 is radially moved as shown in Figure a, and furthermore, depending on the usage conditions, it may be possible to move the driven ring 10 at a certain angle forward in the rotational movement direction as shown in Figure b. Even when tilted by α (for example, about 5°), a sealing effect without any practical problem was observed. This is considered to be because, up to a certain limit angle of inclination of the yarn groove 21, the centrifugal force acting on the fluid in this groove generates a radial pressure capable of counteracting the leakage flow from the sliding surface.

またこれらの糸条溝21の幅は0.2〜0.6mm程度
でほぼ満足すべきシール効果が得られ、深さは回
転時の摩耗粉で埋らない程度で浅い方がよく、実
験によればこれが0.05mm程度になるとシール減殺
傾向が見られた。もつともこれらの数値は、設定
する糸条溝21の本数や摺接面積の広狭によつて
変化する可能性がある。
In addition, the width of these thread grooves 21 is approximately 0.2 to 0.6 mm, and a nearly satisfactory sealing effect can be obtained, and the depth is preferably shallow enough to avoid being buried by abrasion powder during rotation, and experiments have shown that this There was a tendency for seals to decrease when it became about 0.05 mm. Of course, these values may change depending on the number of yarn grooves 21 to be set and the width of the sliding contact area.

なお第1図、第2図に示したメカニカルシール
の構造は一例を示すに過ぎないもので、本考案が
これらの構造を問うものではないことは明らかで
ある。
It should be noted that the structure of the mechanical seal shown in FIGS. 1 and 2 is merely an example, and it is clear that the present invention does not concern these structures.

以上のように本考案は、従動リングの摺接面内
周部分に、従動リングの内周壁に開口する糸条溝
を穿設したメカニカルシールにおいて、少なくと
も従動リングの回転方向後方側の開口端と内周壁
とを滑らかな曲面で接続することによりキヤビテ
ーシヨンを防止して安定したシール性能を得るこ
とができるものである。また上記曲面を形成する
ことによりシヤープエツヂ部の欠けや割れを防止
でき、この欠けや割れによつてキヤビテーシヨン
が一層発生し易くなることをも防止することがで
きるという効果が得られる。
As described above, the present invention provides a mechanical seal in which a thread groove that opens in the inner circumferential wall of the driven ring is formed in the inner circumferential portion of the sliding surface of the driven ring. By connecting the inner peripheral wall with a smooth curved surface, cavitation can be prevented and stable sealing performance can be obtained. Further, by forming the above-mentioned curved surface, it is possible to prevent chipping and cracking of the sharp edge portion, and it is also possible to prevent cavitation from occurring more easily due to the chipping and cracking.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はメカニカルシールを有する回転軸の一
例を示す縦断面図、第2図は第1図のメカニカル
シール部の拡大図、第3図は本考案に係るメカニ
カルシールの従動リング摺接面の形状例を示す平
面図、第4図は第3図の矢視図、第5図は従来
の従動リング摺接面の形状例を示す、第3図の拡
大部分と対応する平面図、第6図は糸条溝の傾斜
方向の他の例を示す従動リングの平面図である。 1:回転軸、9:シートリング、10:従動リ
ング、10A:摺接面、10B:内周壁、20:
ランド部、21:糸条溝、22,23:曲面。
Fig. 1 is a vertical cross-sectional view showing an example of a rotating shaft having a mechanical seal, Fig. 2 is an enlarged view of the mechanical seal portion of Fig. 1, and Fig. 3 is a sliding contact surface of the driven ring of the mechanical seal according to the present invention. 4 is a plan view showing an example of the shape; FIG. 4 is a view taken in the direction of the arrow in FIG. 3; FIG. 5 is a plan view corresponding to an enlarged portion of FIG. The figure is a plan view of the driven ring showing another example of the direction of inclination of the thread groove. 1: Rotating shaft, 9: Seat ring, 10: Driven ring, 10A: Sliding surface, 10B: Inner peripheral wall, 20:
Land portion, 21: Yarn groove, 22, 23: Curved surface.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 回転軸を挿通させ固定側部材を形成するシート
リングと、上記回転軸とともに回転してこのシー
トリングに摺接される従動リングとを備え、この
従動リングの外周側に液体または液体と気体との
混合物からなる密封圧力流体を封入し、内周側を
外部気体とするメカニカルシールにおいて、上記
従動リングの摺接面の外周部を平坦なランド部と
するとともに、その内周部に、内端部が該従動リ
ングの内周壁に通ずる複数の糸条溝を穿設し、か
つこの糸条溝の上記従動リング内周壁への開口端
において、少なくとも従動リングの回転方向後方
側の開口端と内周壁とを滑らかな曲面で接続して
キヤビテーシヨンを防止することを特徴とするメ
カニカルシール。
It includes a seat ring through which a rotating shaft is inserted to form a stationary side member, and a driven ring that rotates together with the rotating shaft and slides into contact with this seat ring, and a liquid or a mixture of liquid and gas is provided on the outer circumferential side of the driven ring. In a mechanical seal that encloses a sealing pressure fluid consisting of a mixture and uses an external gas on the inner circumference side, the outer circumference of the sliding surface of the driven ring is a flat land, and the inner circumference has an inner end. has a plurality of thread grooves that communicate with the inner circumferential wall of the driven ring, and at the open end of the thread groove toward the inner circumferential wall of the driven ring, at least the open end on the rear side in the rotational direction of the driven ring and the inner circumferential wall. A mechanical seal that prevents cavitation by connecting with a smooth curved surface.
JP1979103879U 1979-07-27 1979-07-27 Expired JPS6216539Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1979103879U JPS6216539Y2 (en) 1979-07-27 1979-07-27

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1979103879U JPS6216539Y2 (en) 1979-07-27 1979-07-27

Publications (2)

Publication Number Publication Date
JPS5621653U JPS5621653U (en) 1981-02-26
JPS6216539Y2 true JPS6216539Y2 (en) 1987-04-25

Family

ID=29336581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1979103879U Expired JPS6216539Y2 (en) 1979-07-27 1979-07-27

Country Status (1)

Country Link
JP (1) JPS6216539Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6176797A (en) * 1984-09-25 1986-04-19 Taiho Kogyo Co Ltd Mechanical seal for water pump
JPH0759710B2 (en) * 1989-01-06 1995-06-28 工業技術院長 Sliding material for mechanical seal and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53126462A (en) * 1977-04-12 1978-11-04 Taiho Kogyo Co Ltd Mechanical seal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53126462A (en) * 1977-04-12 1978-11-04 Taiho Kogyo Co Ltd Mechanical seal

Also Published As

Publication number Publication date
JPS5621653U (en) 1981-02-26

Similar Documents

Publication Publication Date Title
JP3437312B2 (en) Seal ring and sealing device
US4407513A (en) Mechanical seal
US5375855A (en) Mechanical face seals
US20050263963A1 (en) Mechanical seal ring assembly with hydrodynamic pumping mechanism
US5039113A (en) Spiral groove gas lubricated seal
US5496047A (en) Mechanical seal containing a sealing face with grooved regions which generate hydrodynamic lift between the sealing faces
US4423879A (en) Mechanical seal
US20190203840A1 (en) Mechanical seal
JPH0765708B2 (en) Sealed fluid swivel joint
GB2179408A (en) Oil seal with pumping action
US4733873A (en) Mechanical seal
JPS6216539Y2 (en)
US5312117A (en) Mechanical seal
JPH0769020B2 (en) mechanical seal
JPS6114388B2 (en)
US5429476A (en) Fuel pump
JPH09133222A (en) Sliding material for mechanical seal
CN208237078U (en) conical surface adaptive mechanical sealing device
JPS5836930Y2 (en) mechanical seal
US3988078A (en) Seals for rotary engines
JPS5828467B2 (en) mechanical seal
US4198064A (en) Shaft seal
JPS6199717A (en) Bearing device
JPS5912902B2 (en) mechanical seal
JP2999672B2 (en) Rotary shaft seal