JPS6216498A - Production of alpha-l-aspartyl-l-phenylalanite methyl ester hydrochloride - Google Patents

Production of alpha-l-aspartyl-l-phenylalanite methyl ester hydrochloride

Info

Publication number
JPS6216498A
JPS6216498A JP15364585A JP15364585A JPS6216498A JP S6216498 A JPS6216498 A JP S6216498A JP 15364585 A JP15364585 A JP 15364585A JP 15364585 A JP15364585 A JP 15364585A JP S6216498 A JPS6216498 A JP S6216498A
Authority
JP
Japan
Prior art keywords
aspartyl
methyl ester
aqueous solvent
apm
hydrogen chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15364585A
Other languages
Japanese (ja)
Other versions
JPH07640B2 (en
Inventor
Katsumi Sugiyama
杉山 勝己
Nobuyo Adachi
安達 宜世
Toshihide Yugawa
湯川 利秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP15364585A priority Critical patent/JPH07640B2/en
Priority to CA 513597 priority patent/CA1331255C/en
Publication of JPS6216498A publication Critical patent/JPS6216498A/en
Priority to US07/864,133 priority patent/US5225587A/en
Publication of JPH07640B2 publication Critical patent/JPH07640B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Peptides Or Proteins (AREA)

Abstract

PURPOSE:To obtain the titled compound useful as a low-calorific sweetener, etc., economically on an industrial scale, by contacting alpha-L-aspartyl-R- phenylalanine methyl ester with an aqueous solvent containing specific amount of hydrogen chloride and inorganic chloride, and separating the crystallized product. CONSTITUTION:The objective compound is produced by contacting alpha-L-aspartyl- L-phenylalanine methyl ester with an aqueous medium containing <=2mol of hydrogen chloride (based on 1 liter of aqueous medium) (provided that the amount of the hydrogen chloride is >=1mol per 1mol of alpha-L-aspartyl-L- phenylalanine methyl ester) and >=50g of an inorganic chloride (e.g. sodium chloride) (based on 1l of the aqueous solvent), and separating the crystallized hydrochloride.

Description

【発明の詳細な説明】 本発明u、α−L−アスパルチル−し一フェニルアラニ
ンメチルエステル塩酸塩を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing u, α-L-aspartyl-monophenylalanine methyl ester hydrochloride.

α−L−アスパルチル−L−フェニルアラニンメチルエ
ステル(以下、α−APMと略す。)は良質な甘味を呈
し低カロリーの甘味剤としてその有用性が注目されてい
る物質である。
α-L-Aspartyl-L-phenylalanine methyl ester (hereinafter abbreviated as α-APM) is a substance that exhibits good sweetness and is attracting attention for its usefulness as a low-calorie sweetener.

このα−APMt−製造する方法として、N−L−保護
アスパラギン酸無水物とL−フェニルアラニンメチルエ
ステルを有機溶媒中で反応させた後、常法により保護基
を脱離させる方法(USP 3,786,039)、L
−アスパラギン酸無水物の強酸付加塩とL−フェニルア
ラニンメチルエステルを直接反応させる方法(特公昭4
9−14,21l)、L−フェニルアラニンt−N−ホ
ルミル−L−アスパラギン酸無水物と氷酢酸中において
反応させ、得られた生成物からホルミル基を除去してα
−L−アスパルチル−L−フェニルアラニン(α−AP
 )を生成させ、これをメタノールでエステル化する方
法(USP3g33,781)等が知られている。
As a method for producing this α-APMt-, after reacting N-L-protected aspartic acid anhydride and L-phenylalanine methyl ester in an organic solvent, the protecting group is removed by a conventional method (USP 3,786). ,039),L
- A method of directly reacting a strong acid addition salt of aspartic acid anhydride with L-phenylalanine methyl ester (Japanese Patent Publication No. 4)
9-14, 21l) and L-phenylalanine t-N-formyl-L-aspartic anhydride in glacial acetic acid, and the formyl group was removed from the resulting product to obtain α
-L-aspartyl-L-phenylalanine (α-AP
) and esterifying it with methanol (USP 3g33,781) is known.

これ等の方法は、目的とするα−APM又はα−APの
様なα体の他にその異性体であるβ体が多量に副生じ、
またその反応液中には原料として使用したL−アメ/4
ラギン酸及びL−フヱニルアラニンの誘導体類も混在し
ている。したがって、工業的にα−APMを製造する際
には、この様な不純なα−APMを能率的に分離精製す
ることは特に重要である。この方法として、β−L−ア
スパルチル−L−フェニルアラニンメチルエステル(β
−APM ) 等の不純物を含有するα−APMを水単
独若しくはメタノールなどと水からなる水性溶媒中で塩
酸等のノ・ロダン化水素酸と接触させ、α−APMのハ
ロゲン化水素酸塩の結晶を析出せしめ、これを分離して
該不純物から能率的にα−APMを精製する方法(as
p3.798,207)が知られている。
In these methods, in addition to the α-isomer such as α-APM or α-AP, a large amount of its isomer β-isomer is produced as a by-product.
In addition, the reaction solution contained L-ame/4 used as a raw material.
Derivatives of lagic acid and L-phenylalanine are also present. Therefore, when producing α-APM industrially, it is particularly important to efficiently separate and purify such impure α-APM. As this method, β-L-aspartyl-L-phenylalanine methyl ester (β-L-aspartyl-L-phenylalanine methyl ester
α-APM containing impurities such as -APM) is brought into contact with hydrochloric acid such as hydrochloric acid in water alone or in an aqueous solvent consisting of methanol and water to crystallize the hydrohalide salt of α-APM. A method (as
p3.798, 207) is known.

一方、USP 3,933,781の改良された方法と
して、α−APヲメタノールでエステル化する際に、α
−APをメタノール、ハロゲン化水素酸及び水から成る
反応媒体と接触させてメチルエステル化し、α−APを
α−APMに変換後、直ちにその710グン化水素酸塩
の結晶として析出せしめる事により能率的にα−APを
エステル化してα−APMにする方法(USPアに小棗 水からなり溶媒中で、或いはα−APt−メタノールと
水からなる溶媒中で、)・ロダン化水素酸と接触させ、
結晶としてα−APMのハロゲン化水素酸塩を析出せし
める方法は、α−APMを工業的に製造する際に、α−
APMO分1m精製やα−APのα−APMへの転換に
おいて特に能率性を高める方法として有用である。
On the other hand, as an improved method of USP 3,933,781, when α-AP is esterified with methanol, α
- AP is methyl esterified by contacting with a reaction medium consisting of methanol, hydrohalic acid, and water, converting α-AP to α-APM, and immediately precipitating the 710 hydroginate as crystals. Method of esterifying α-AP to α-APM (USP A in a solvent consisting of small jujube water, or in a solvent consisting of α-APt-methanol and water)・Contact with hydrorhodanic acid let me,
The method of precipitating the hydrohalide of α-APM as crystals is a method for precipitating the hydrohalide of α-APM when industrially producing
This method is particularly useful as a method for increasing efficiency in the purification of 1 m of APMO and the conversion of α-AP to α-APM.

ところがこの方法は、α−APMの710グン化水素5
1塩の析出を能率的に行わせしめるには、図1に示した
溶解度関係から明らかな様にノ・ロダン化水素酸の高濃
度の、例えば水性醍媒1l当り約2モル以上効果的には
約3モル以上の過剰のハロゲン化水素酸の存在領域で行
わざるを得ないのでα−APMのエステル結合又はペプ
チド結合の加水分解による収率の低下、過剰のハロゲン
化水素酸を中和するために多量のアルカリを必要とする
事、更〆には特に工業的規模での製造に於いては、ハロ
ゲン化水素酸は金属材料に強い腐食性を有するために装
置材料の高質化による装置費のアップなどの欠点を有し
ていた。
However, in this method, α-APM's 710 hydrogen chloride 5
As is clear from the solubility relationship shown in Figure 1, in order to efficiently precipitate the 1-salt, a high concentration of no-rhodanhydric acid, for example, about 2 moles or more per liter of aqueous medium, is required. Since it has to be carried out in a region where an excess of about 3 moles or more of hydrohalic acid exists, the yield decreases due to hydrolysis of the ester bond or peptide bond of α-APM, and in order to neutralize the excess hydrohalic acid. In addition, especially in industrial scale production, hydrohalic acids are highly corrosive to metal materials, so equipment costs are reduced due to higher quality equipment materials. It had disadvantages such as close-up of the image.

本発明者等は、この欠点を克服するための方策について
工業化の観点からハロダン化水素酸として塩化水素酸を
選択して鋭意検討を行った所、水性溶媒中よシα−AP
Mの塩酸塩を析出せしめる際に、無機塩化物をある程度
以上共存させることにより前述の欠点を有する塩化水素
の過剰分を大巾に減少させても能率的なα−APMの塩
酸塩の析出が可能である事を見い出し本発明を完成させ
るに至った。
The inventors of the present invention selected hydrochloric acid as the hydrohalodanic acid from the viewpoint of industrialization and conducted intensive studies on measures to overcome this drawback.
When precipitating the hydrochloride of M, it is possible to efficiently precipitate the hydrochloride of α-APM even if the excess amount of hydrogen chloride, which has the above-mentioned drawbacks, is greatly reduced by allowing inorganic chloride to coexist to a certain extent. We have discovered that this is possible and have completed the present invention.

本発明は、水性溶媒中からα−APMの塩酸塩結晶を析
出せしめる際に、水性溶媒中に無機塩化物を共存させα
−APMに対して過剰分を大巾に減少した量の塩化水素
と接触させて該結晶を能率的に析出せしめる事を特徴と
するα−APM塩酸塩の製造法である。
In the present invention, when precipitating hydrochloride crystals of α-APM from an aqueous solvent, an inorganic chloride is coexisted in the aqueous solvent.
- A method for producing α-APM hydrochloride, characterized in that the excess amount of APM is brought into contact with hydrogen chloride in a greatly reduced amount to efficiently precipitate the crystals.

本発明に依れば、無機塩化物が共存する水性浴媒中でα
−APMを低濃度の塩化水素と接触させα−APMの塩
酸塩を析出せしめるか、若しくは無機塩化物が共存する
水性溶媒中でα−APをメタノール及び低濃度の塩化水
素と接触させ、次に示す平衡反応によって生成するα−
APM i α−AP+MeOH: α−APM+H20直ちに塩酸
塩として析出せしめる事により、工業的規模での生産の
観点から前述の欠点を克服したα−APM塩酸塩の製造
法が提供される。
According to the present invention, α
- APM is contacted with a low concentration of hydrogen chloride to precipitate the hydrochloride of α-APM, or α-AP is contacted with methanol and a low concentration of hydrogen chloride in an aqueous solvent in the presence of an inorganic chloride, and then α− produced by the equilibrium reaction shown
APM i α-AP+MeOH: By immediately precipitating α-APM+H20 as a hydrochloride, a method for producing α-APM hydrochloride is provided which overcomes the above-mentioned drawbacks from the viewpoint of production on an industrial scale.

本発明に於ける塩化水素濃度は、工業的製造に於いて問
題となる装置材料特に金属材料への腐食性及びα−AP
Mのエステル結合及びペプチド結合の加水分解性への悪
影響を考えて実験的に使用濃度範囲が決定されるべきも
のである。
The concentration of hydrogen chloride in the present invention is due to the corrosivity of equipment materials, especially metal materials, which is a problem in industrial production, and α-AP.
The concentration range to be used should be determined experimentally, taking into account the adverse effects of M on the hydrolyzability of ester bonds and peptide bonds.

本発明者らは、塩化水素濃度のこれらに対する影響につ
いて、α−APMが熱に対する安定性、特に本発明方法
の様に極めて酸性度の高い領域に於いては、熱安定性が
乏しい事から実用性を考慮して、30℃以下の温度で詳
細に検討した。その結果表1及び表2に示した様に、塩
化水素濃度が水性溶媒1l当り2モル以下であれば実質
的な影響が極めて少なくなり、更に好ましくは1モル以
下であれば殆んど影響がない事を明らかにした。したが
って、本発明は30℃以下の温度に於いて、塩化水素濃
度が水性溶媒1l当92モル以下、好ましくは1モル以
下の領域において実施される。
Regarding the effects of hydrogen chloride concentration on these, the present inventors have determined that α-APM has poor thermal stability, especially in the extremely acidic region such as the method of the present invention, and therefore is not suitable for practical use. A detailed study was carried out at a temperature of 30° C. or lower in consideration of the properties. As a result, as shown in Tables 1 and 2, if the hydrogen chloride concentration is 2 mol or less per liter of aqueous solvent, the actual effect will be extremely small, and more preferably if it is 1 mol or less, there will be almost no effect. It became clear that there was no. Therefore, the present invention is carried out at a temperature of 30° C. or lower and in a region where the hydrogen chloride concentration is 92 mol or less, preferably 1 mol or less per liter of aqueous solvent.

表  1 表  2 (保存時間=7時間)    *初期 (E−APM濃
度101/1本発明に使用される無機塩化物は、水性溶
媒中での溶解度が溶媒の1l当)少なくとも50gあり
、α−APHの塩酸塩の析出を阻害しないもの、例えば
、NaCt# KCL e NHaC2e CaCL2
 * ZnC22などが使用される。また、能率的にα
−APMの塩酸塩を析出せしめる念めては、無機塩化物
の濃度は高い程望ましいが、共存する塩化水素の濃度に
よって、ある程度以上の濃度が必要とされる。
Table 1 Table 2 (Storage time = 7 hours) *Initial (E-APM concentration 101/1 The inorganic chloride used in the present invention has a solubility in an aqueous solvent of 1 liter of solvent) of at least 50 g, α- Those that do not inhibit the precipitation of APH hydrochloride, for example, NaCt# KCL e NHaC2e CaCL2
*ZnC22 etc. are used. Also, efficiently α
- In order to precipitate the hydrochloride of APM, it is desirable that the concentration of inorganic chloride be as high as possible, but a certain level of concentration is required depending on the concentration of coexisting hydrogen chloride.

この無機塩化物の必要とされる濃度については、無機塩
化物の種類によって多少異なるが、図2に示した様に、
塩化水素が水性溶媒の1l当り2モル穆度以下1モル程
度以上の濃度領域では、水性溶媒の1l当、!750g
程度以上が適当であシ、更に、塩化水素が水性溶媒の1
l!当91モル以下の低濃度領域では水性溶媒の1l当
り100g程度以上が適当である。いずれ゛の場合も無
機塩化物は、それが析出しない濃度で使用されることは
もちろんである。
The required concentration of this inorganic chloride varies somewhat depending on the type of inorganic chloride, but as shown in Figure 2,
In a concentration range where hydrogen chloride is less than 2 moles per liter of aqueous solvent and more than about 1 mole per liter of aqueous solvent, ! 750g
It is appropriate that hydrogen chloride is
l! In the low concentration range of 91 mol or less, it is appropriate to use about 100 g or more per 1 liter of the aqueous solvent. In either case, it goes without saying that the inorganic chloride is used at a concentration that does not precipitate it.

無機塩化物を含む水性溶媒の調製は、水性溶媒に結晶状
無機塩化物又は無機塩化物の水溶液を添加する方法、水
性溶媒中の塩化水素をNaOH、KOH。
An aqueous solvent containing an inorganic chloride can be prepared by adding a crystalline inorganic chloride or an aqueous solution of an inorganic chloride to an aqueous solvent, or by adding hydrogen chloride in an aqueous solvent to NaOH or KOH.

N Ca (OH)2 Zn (OH) 2などの金属水酸
化物溶液やjeH3水で中和し無機塩化物をその場で(
1niitu )生成する方法、又は工業的規模に於い
ては、工程内で副生ずる無機塩化物を利用する方法など
で行なうことができる。
Neutralize with a metal hydroxide solution such as N Ca (OH) 2 Zn (OH) 2 or jeH water to remove inorganic chlorides on the spot (
1) or, on an industrial scale, a method that utilizes inorganic chloride produced as a by-product during the process.

本発明に使用される溶媒は、目的に応じて水単独又はメ
タノールと水との混合溶媒が使用されるが、これらに、
α−APMと塩化水素の付加反応を上書しない他の溶媒
、例えばメタノール、エチレングリコール、アセトンな
どを無機塩化物の溶解度を著しく低下させない穆度の量
を混合しても何らさしつかえない。
The solvent used in the present invention may be water alone or a mixed solvent of methanol and water depending on the purpose;
There is no problem in mixing other solvents that do not override the addition reaction between α-APM and hydrogen chloride, such as methanol, ethylene glycol, acetone, etc., in an amount that does not significantly reduce the solubility of the inorganic chloride.

更に、本発明者らは無機塩化物が共存するこの様な系で
α−Mをメタノールと接触させ、その場で生成するα−
APMを直ちに塩化水素との付加基として析出させる際
に有用なメタノール量を調べた結果、水性溶媒中に存在
させるメタノール量はかなり低くても効率よくα−Rか
らα−APM塩酸塩に変換できると言う事を発見した。
Furthermore, the present inventors brought α-M into contact with methanol in such a system in which inorganic chlorides coexist, and the α-M produced in situ
As a result of investigating the amount of methanol that is useful when APM is immediately precipitated as an addition group with hydrogen chloride, it was found that α-R can be efficiently converted to α-APM hydrochloride even if the amount of methanol present in the aqueous solvent is quite low. I discovered that.

即ち、メタノール量を必要以上に使用すると生成したα
−APMが更にメチルエステル化されα−APMのアス
/IPライン酸残基のβ−カルゴキシル基のメチルエス
テル化物(α−A(M)PM )の生成が著しく増加し
、その為α−Mからα−APM塩酸塩への変換率が大巾
に減少する事が判った。又、一方では必要以上にメタノ
ール量を減少させる事は、α−APMからα−A (M
)PMへの副反応を抑制する上で有利であるが、α−A
Pからα−APMへの変換率を低下させるので好ましく
ない。
In other words, if more methanol is used than necessary, the α
-APM is further methyl esterified, and the production of a methyl ester of the β-carboxyl group of the as/IP lytic acid residue of α-APM (α-A(M)PM) increases significantly. It was found that the conversion rate to α-APM hydrochloride was significantly reduced. On the other hand, reducing the amount of methanol more than necessary will reduce the amount of methanol from α-APM to α-A (M
) is advantageous in suppressing side reactions to PM, but α-A
This is not preferable because it lowers the conversion rate of P to α-APM.

この様な事から、本法によシα−APからα−APM塩
酸塩を取得する際に有用なメタノール量を調べた結果、
実施例6に示した様に、有用なメタノール量は反応媒体
である水性溶媒1l当り約0.5〜約?壬あると言う事
を明らかにし念。
Based on this, we investigated the amount of methanol useful when obtaining α-APM hydrochloride from α-AP using this method.
As shown in Example 6, useful amounts of methanol range from about 0.5 to about 0.5 methanol per liter of aqueous reaction medium. I made it clear that there was one.

本知見によれば、α−APのメチルエステル化によシ反
応媒体中のメタノール量が消費され、有用なメタノール
量の濃度範囲をいつ脱する場合には反応途中で新たにメ
タノールを添加する事が有効であり、初めから所要量の
メタノールを加えておく事はα−A(M)PMの生成を
増加するので好ましくない。
According to this finding, the amount of methanol in the reaction medium is consumed by the methyl esterification of α-AP, and if the concentration range of the amount of methanol that is useful is to be exceeded, it is necessary to newly add methanol during the reaction. is effective, and adding the required amount of methanol from the beginning increases the production of α-A(M)PM, which is not preferable.

この際使用されるメタノールの全量は、α−リからα−
APMへのエステル化反応を考えれば、α−Apl−1
ニル当り少なくとも1モルのメタノールが必要であるこ
とは言うまでもない。
The total amount of methanol used at this time varies from α-li to α-
Considering the esterification reaction to APM, α-Apl-1
It goes without saying that at least 1 mole of methanol per methanol is required.

以下、実施例によυ本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例1 α−APM 25 gを2規定塩酸1000−に40℃
で溶解し、溶解液を三等分してそれぞれ撹拌機付500
dフラスコに採取した。1つはそのまま(4)他の2つ
にはそれぞれ食塩を3.3gω)及び16.7i篇え溶
解した後、5℃の恒温水槽内で一夜撹拌晶析を行った。
Example 1 25 g of α-APM was added to 2N hydrochloric acid at 1000° C. at 40°C.
Divide the solution into three equal parts, each using a 500 mm tube with a stirrer.
d flask. One was dissolved as it was (4) and the other two were dissolved with 3.3 g ω) and 16.7 g of common salt, respectively, and then stirred and crystallized in a constant temperature water bath at 5° C. overnight.

析出した結晶は戸別され、少量の冷2規定塩酸で洗浄後
、真空下50℃で乾燥され念。これ等の結晶の赤外吸収
スペクトルはα−APM塩酸塩に一致し、それぞれ98
%以上の純度を有していた(液体クロマトグラフィー法
)。結果を表3に示す。
The precipitated crystals were separated, washed with a small amount of cold 2N hydrochloric acid, and dried under vacuum at 50°C. The infrared absorption spectra of these crystals correspond to α-APM hydrochloride, each with 98
% or more (liquid chromatography method). The results are shown in Table 3.

表  3 注:A、Bは対照例。Table 3 Note: A and B are control examples.

実施例2 α−APM 15 g及び塩化カルシウム30gを含む
水溶液495dを撹拌機付1lフラスコに入れ液温を5
℃に保ちながら、35係塩酸105ゴを除徐に添加後、
−夜撹拌晶析を行った。
Example 2 495 d of an aqueous solution containing 15 g of α-APM and 30 g of calcium chloride was placed in a 1 liter flask with a stirrer and the temperature was raised to 5.
After gradually adding 35% hydrochloric acid 105% while keeping the temperature at ℃,
- Crystallization was performed with stirring overnight.

析出した結晶を、実施例1と同様に処理して、1l.2
gの結晶を得た。収率90.2係。純度9邑7メ。
The precipitated crystals were treated in the same manner as in Example 1 to give 1 l. 2
Crystals of g were obtained. Yield: 90.2. Purity 9 eup 7 me.

実施例3 α−APM 15gを1.1規定塩酸500dとメタノ
ール50alの混合溶媒にとかし、溶解液を2等分し、
一方(ト)はそのまま、他方(B)には塩化アンモニウ
ム60Iを加え溶解した後冷蔵庫内に−夜保存した。
Example 3 15g of α-APM was dissolved in a mixed solvent of 500d of 1.1N hydrochloric acid and 50al of methanol, and the solution was divided into two equal parts.
One (G) was left as is, and the other (B) was dissolved with 60I of ammonium chloride and stored in a refrigerator overnight.

析出した結晶を、実施例1と同様に処理して、それぞれ
6.1g(A)及び8.7 J (B)の結晶を得た。
The precipitated crystals were treated in the same manner as in Example 1 to obtain 6.1 g (A) and 8.7 J (B) of crystals, respectively.

結晶純度(及び収率)はそれぞれ98.2%(s4.1
l(4)及び97.6%(90,8チ)(B)であった
。純度は液体クロマトグラフィー法によるものである。
The crystal purity (and yield) is 98.2% (s4.1
1 (4) and 97.6% (90.8 chi) (B). Purity is determined by liquid chromatography.

なおAは対照例である。Note that A is a control example.

実施例4 α−APM 28gとβ−APM 12 、g’を水5
00 mlに懸だくし、室温で35%鉢≠塩酸を加え−
を2.2に調整して溶解した。溶解液を2等分し、一方
囚は35係塩酸150dを添加し15Cで15時間の撹
拌晶析を行った。他方(B)は35%塩酸150rLt
を添加後、粉末状無水炭酸す) IJウム61gを除徐
に添加し過剰塩酸の一部を中和してから、15℃で15
時間の撹拌晶析を行った。
Example 4 28 g of α-APM and 12 g of β-APM, 5 g' of water
00 ml and add 35% hydrochloric acid at room temperature.
was adjusted to 2.2 and dissolved. The solution was divided into two equal parts, and to the other half, 150 d of 35% hydrochloric acid was added and crystallization was carried out with stirring at 15C for 15 hours. The other (B) is 150 rLt of 35% hydrochloric acid.
After adding powdered anhydrous carbonic acid), 61 g of IJum was gradually added to neutralize a part of the excess hydrochloric acid, and then heated at 15°C for 15 minutes.
Crystallization was performed with stirring for hours.

析出した結晶は、実施例1と同様に処理された。The precipitated crystals were treated in the same manner as in Example 1.

結果を表4に示す。なお、Aは対照例。The results are shown in Table 4. In addition, A is a control example.

表  4 因みに、母液中の塩化水素濃度は次の通りであった0 A:4モル/l B:1.4モル/ 73 (Na(、tl 501/l
 )実施例5 純度98.2%のα−AP 143 #をメタノール3
8dと2N塩酸900Inlの混合溶媒に溶解し、溶解
液を2等分して、一方(ト)はそのまま、他方(B)に
は塩化アンモニウムの結晶51gを加え溶解した。
Table 4 Incidentally, the hydrogen chloride concentrations in the mother liquor were as follows: 0 A: 4 mol/l B: 1.4 mol/73 (Na(, tl 501/l
) Example 5 α-AP 143 # with a purity of 98.2% was dissolved in methanol 3
The solution was dissolved in a mixed solvent of 8d and 900 Inl of 2N hydrochloric acid, and the solution was divided into two equal parts, one (G) was left as is and 51 g of ammonium chloride crystals were added and dissolved in the other (B).

各々の溶解液を撹拌下で25℃で3日間次いで10℃で
1昼夜保持してα−APM塩酸塩の結晶を析出せしめた
Each solution was kept under stirring at 25°C for 3 days and then at 10°C for 1 day and night to precipitate crystals of α-APM hydrochloride.

各々の析出した結晶を実施例1と同様に処理して、32
.0g囚及び62gfI(B)の結晶を得之。これ等結
晶の赤外吸収スペクトルはα−APM塩酸塩に一致し、
液体クロマトグラフィーで組成を分析した結果、表5の
如くであった。Aは対照例。
Each precipitated crystal was treated in the same manner as in Example 1, and 32
.. Obtained crystals of 0g and 62gfI(B). The infrared absorption spectra of these crystals match α-APM hydrochloride,
The composition was analyzed by liquid chromatography, and the results were as shown in Table 5. A is a control example.

表  5 * α−APM−HC1・2H20としての純度** 
α−APのアス/ぐラギン酸残基のβ−カルボキシル基
のメチルエステル化物 因みに、初期メタノール濃1to、9zモル/1l又a
3) Offi液中ノNH4C2濃度101/A?であ
ッfc。
Table 5 *Purity as α-APM-HC1・2H20**
Methyl ester of β-carboxyl group of as/gragic acid residue of α-AP Incidentally, initial methanol concentration 1 to, 9z mol/1 l or a
3) NH4C2 concentration in Offi liquid 101/A? Deah fc.

実施例6 純度97.5%のα−AP 215.6gと食塩200
gをIN塩酸1509mに溶解し、溶解液を5等分して
それぞれ撹拌機付500rR1四ツロフラスコ(A〜E
)に採取し念。
Example 6 215.6 g of α-AP with a purity of 97.5% and 200 g of salt
Dissolve g in 1509ml of IN hydrochloric acid, divide the solution into 5 equal parts, and place each in a 500rR1 four-way flask (A to E) with a stirrer.
).

次りでそれぞれの溶解液にメタノールを5d(4)、7
 wtl (B)、14d(C’)、39m1の)及び
50t/(lljを加え、実施例5と同様の操作法に従
ってα−APM塩酸塩の晶析を行いそれぞれ結晶を1l
.5,9(A)、28.6g(B)、33.3 N (
C)、33.0g0))及び21.6Jil)を得た。
Next, add methanol to each solution for 5d (4), 7
wtl (B), 14d(C'), 39ml) and 50t/(llj) were added, and α-APM hydrochloride was crystallized according to the same procedure as in Example 5, and 1l of each crystal was added.
.. 5,9 (A), 28.6 g (B), 33.3 N (
C), 33.0g0)) and 21.6Jil) were obtained.

これ等の結晶組成及び収率を表6に示す(液体クロマド
グ2フイー法)。表6においてA及びEは対照例で、メ
タノール濃度が低いとα−APが多量に生じ、高いとα
−A(M)PMが多量に生ずることが理解されよう。
The crystal composition and yield of these are shown in Table 6 (liquid chroma dog 2 fee method). In Table 6, A and E are control examples; when the methanol concentration is low, a large amount of α-AP is produced, and when the methanol concentration is high, α-AP is produced.
It will be understood that -A(M)PM is produced in large amounts.

【図面の簡単な説明】[Brief explanation of drawings]

図1は塩化水素濃度とα−APMの溶解度との関係を温
度を変えて測定し念結果を表し、図2は塩化物濃度とα
−APMの溶解度との関係を塩化水素濃度を変えて測定
した結果を表す。
Figure 1 shows the preliminary results of measuring the relationship between hydrogen chloride concentration and α-APM solubility at different temperatures, and Figure 2 shows the relationship between chloride concentration and α-APM solubility.
-Represents the results of measuring the relationship with the solubility of APM by changing the hydrogen chloride concentration.

Claims (4)

【特許請求の範囲】[Claims] (1)α−L−アスパルチル−L−フェニルアラニンメ
チルエステルを、水性溶媒1l当り塩化水素を約2モル
以下(ただし、α−L−アスパルチル−L−フェニルア
ラニンメチルエステル1モル当り少なくとも1モルの塩
化水素を存在させる)及び水性溶媒1l当り少なくとも
約50gの無機塩化物を含有する水性溶媒と接触させ、
次いで晶出したα−L−アスパルチル−L−フェニルア
ラニンメチルエステル塩酸塩を分離する事を特徴とする
α−L−アスパルチル−L−フェニルアラニンメチルエ
ステル塩酸塩の製造法。
(1) α-L-aspartyl-L-phenylalanine methyl ester is mixed with not more than about 2 moles of hydrogen chloride per 1 liter of aqueous solvent (however, at least 1 mole of hydrogen chloride per 1 mole of α-L-aspartyl-L-phenylalanine methyl ester). ) and an aqueous solvent containing at least about 50 g of inorganic chloride per liter of aqueous solvent;
A method for producing α-L-aspartyl-L-phenylalanine methyl ester hydrochloride, which comprises separating the crystallized α-L-aspartyl-L-phenylalanine methyl ester hydrochloride.
(2)水性溶媒が、水性溶媒1l当り約1モル以下の塩
化水素(ただし、α−L−アスパルチル−L−フェニル
アラニンメチルエステル1モル当り少なくとも1モルの
塩化水素を存在させる)及び水性溶媒1l当り少なくと
も約100gの無機塩化物を含有する特許請求の範囲第
1項に記載の方法。
(2) the aqueous solvent contains not more than about 1 mole of hydrogen chloride per liter of aqueous solvent (provided that at least 1 mole of hydrogen chloride is present per mole of α-L-aspartyl-L-phenylalanine methyl ester) and per liter of aqueous solvent; The method of claim 1 containing at least about 100 g of inorganic chloride.
(3)α−L−アスパルチル−L−フェニルアラニンを
、水性溶媒1l当り塩化水素を約2モル以下(ただし、
α−L−アスパルチル−L−フェニルアラニン1モル当
り少なくとも1モルの塩化水素を存在させる)及び水性
溶媒1l当り少なくとも約50gの無機塩化物を含有す
る水性溶媒に更にメタノールを添加したもの(ただし、
メタノールはα−L−アスパルチル−L−フェニルアラ
ニン1モル当り少なくとも1モル以上添加する)と接触
させ、次いで晶出したα−L−アスパルチル−L−フェ
ニルアラニンメチルエステル塩酸塩を分離する事を特徴
とするα−L−アスパルチル−L−フェニルアラニンメ
チルエステル塩酸塩の製造法。
(3) α-L-aspartyl-L-phenylalanine with hydrogen chloride of about 2 mol or less per liter of aqueous solvent (however,
at least 1 mole of hydrogen chloride per mole of α-L-aspartyl-L-phenylalanine) and at least about 50 g of inorganic chloride per liter of aqueous solvent, with the additional addition of methanol,
Methanol is added in an amount of at least 1 mol or more per 1 mol of α-L-aspartyl-L-phenylalanine), and then the crystallized α-L-aspartyl-L-phenylalanine methyl ester hydrochloride is separated. A method for producing α-L-aspartyl-L-phenylalanine methyl ester hydrochloride.
(4)水性溶媒が水性溶媒1l当り約1モル以下の塩化
水素(ただし、α−L−アスパルチル−L−フェニルア
ラニン1モル当り少なくとも1モルの塩化水素を存在さ
せる)及び水性溶媒1l当り少なくとも約100gの無
機塩化物を含有する水性溶媒に更にメタノールを水性溶
媒1l当り約0.5モル以上約2モル以下(ただし、α
−L−アスパルチル−L−フェニルアラニン1モル当り
少なくとも1モルのメタノールを添加する)添加したも
のである特許請求の範囲第3項に記載の方法。
(4) the aqueous solvent contains not more than about 1 mole of hydrogen chloride per liter of aqueous solvent (provided that at least 1 mole of hydrogen chloride is present per mole of α-L-aspartyl-L-phenylalanine) and at least about 100 g per liter of aqueous solvent; About 0.5 mol or more and about 2 mol or less (however, α
4. The method according to claim 3, wherein at least 1 mole of methanol is added per mole of L-aspartyl-L-phenylalanine.
JP15364585A 1985-07-12 1985-07-12 Process for producing α-L-aspartyl-L-phenylalanine methyl ester hydrochloride Expired - Lifetime JPH07640B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP15364585A JPH07640B2 (en) 1985-07-12 1985-07-12 Process for producing α-L-aspartyl-L-phenylalanine methyl ester hydrochloride
CA 513597 CA1331255C (en) 1985-07-12 1986-07-11 Method of producing –-l-aspartyl-l-phenylalanine methyl ester hydrochloride
US07/864,133 US5225587A (en) 1985-07-12 1992-04-06 Method of producing α-L-aspartyl-L-phenylalanine methyl ester hydrochloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15364585A JPH07640B2 (en) 1985-07-12 1985-07-12 Process for producing α-L-aspartyl-L-phenylalanine methyl ester hydrochloride

Publications (2)

Publication Number Publication Date
JPS6216498A true JPS6216498A (en) 1987-01-24
JPH07640B2 JPH07640B2 (en) 1995-01-11

Family

ID=15567058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15364585A Expired - Lifetime JPH07640B2 (en) 1985-07-12 1985-07-12 Process for producing α-L-aspartyl-L-phenylalanine methyl ester hydrochloride

Country Status (2)

Country Link
JP (1) JPH07640B2 (en)
CA (1) CA1331255C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5329014A (en) * 1990-08-01 1994-07-12 Ajinomoto Co., Inc. Method for recovering optically active tryptophan

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5329014A (en) * 1990-08-01 1994-07-12 Ajinomoto Co., Inc. Method for recovering optically active tryptophan

Also Published As

Publication number Publication date
JPH07640B2 (en) 1995-01-11
CA1331255C (en) 1994-08-02

Similar Documents

Publication Publication Date Title
EP0127411B1 (en) Method of preparing alpha-l-aspartyl-l-phenylalanine methyl ester and its hydrochloride
US4173562A (en) Process for the preparation of α-L-aspartyl-L-phenylalanine methyl ester
SE440506B (en) PROCEDURE FOR PREPARING ALFA-L-ASPARTYL-L-PHENYLALANINE METHYL ESTER
KR920002337B1 (en) Process for preparing alpha-l-aspartyl-l-phenylalanine methylester of hydrochloride
JPS61143397A (en) Production of n-formyl-alpha-aspartylphenylalanite
CA1137979A (en) PROCESS FOR PRODUCING AN .alpha.-L-ASPARTYL- L-PHENYLALANINE LOWER ALKYL ESTER
JPS6216498A (en) Production of alpha-l-aspartyl-l-phenylalanite methyl ester hydrochloride
JP3163661B2 (en) α-L-aspartyl-L-phenylalanine methyl ester, and a method for recovering L-phenylalanine and L-aspartic acid
JPS6257180B2 (en)
US4539147A (en) Process for preparing alpha-L-aspartyl-L-phenylalanine alkyl esters
JPS6344594A (en) Separation of n-protected-alpha-l-aspartyl-l-phenylalanine
US4788332A (en) L-aminodicarboxylic acid esters
JP4405675B2 (en) Method for crystallizing maleate of N- (1 (S) -ethoxycarbonyl-3-phenylpropyl) -L-alanyl-L-proline
CA1298682C (en) PREPARATION PROCESS OF .alpha.-L-ASPARTYL-L-PHENYL-ALANINE METHYL ESTER OR HYDROHALIDE THEREOF
JP2662287B2 (en) Method for separating α-L-aspartyl-L-phenylalanine methyl ester
US5225587A (en) Method of producing α-L-aspartyl-L-phenylalanine methyl ester hydrochloride
JP2976609B2 (en) Method for producing α-L-aspartyl-L-phenylalanine methyl ester or hydrochloride thereof
EP0327030B1 (en) Method for producing alpha-aspartylphenylalanine derivatives
JP2647420B2 (en) Method for producing N-protected-α-L-aspartyl-L-phenylalanine methyl ester
KR920003333B1 (en) Process for preparing alpha-l-aspartyl-l-phenylalanine beta-low methyl ester
JP3238175B2 (en) Method for producing N-benzyloxycarbonyl-α-L-aspartyl-L-phenylalanine methyl ester
JPH07116226B2 (en) Process for producing α-L-aspartyl-L-phenylalanine methyl ester or hydrohalide thereof
JPH07116225B2 (en) Process for producing hydrohalide salt of α-L-aspartyl-L-phenylalanine methyl ester
JPH09255644A (en) Production of adipic acid dihydrazide
JP2598467B2 (en) Method for producing N-protected-α-L-aspartyl-L-phenylalanine methyl ester