JPS62164834A - Floating type strip passing device - Google Patents
Floating type strip passing deviceInfo
- Publication number
- JPS62164834A JPS62164834A JP649986A JP649986A JPS62164834A JP S62164834 A JPS62164834 A JP S62164834A JP 649986 A JP649986 A JP 649986A JP 649986 A JP649986 A JP 649986A JP S62164834 A JPS62164834 A JP S62164834A
- Authority
- JP
- Japan
- Prior art keywords
- strip
- magnetic field
- gas
- floating
- shifting magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は、連続焼鈍ライン、連続亜鉛メツキラ、イン、
ステンレス焼鈍ライン、カラー鉄板コーティングライン
等金属帯状体を扱うラインに用いられる浮揚式通板装置
に関する。[Detailed Description of the Invention] <Industrial Application Field> The present invention is applicable to continuous annealing lines, continuous galvanizing lines,
This invention relates to a floating plate threading device used in lines that handle metal strips, such as stainless steel annealing lines and colored iron plate coating lines.
〈従来の技術〉
まず、金属帯状体(以下、ストリップという)を通板さ
せるラインの一例として冷fffl圧延鋼板用連続焼鈍
炉について説明する。<Prior Art> First, a continuous annealing furnace for cold fffl rolled steel sheets will be described as an example of a line for passing a metal strip (hereinafter referred to as a strip).
ペイオフリールから繰り出されクリーニングタンクやル
ーパを通ったストリップは、第7図2ζ示す連続焼鈍炉
に供給される。同図に示す炉中には、上方と下方とにロ
ール2が配列されており、ストリップ1は、このロール
2rIRを上下方向に走行しながら必要な加熱や冷却が
行なわれ、常温の状態で所定の高い抗張力や良好な深絞
り性等の材料的な特質が付与されろ。より詳しくは、ス
トリップ1の表面酸化の防止のためにか中には、還元性
のHNガスが充満され、ストリップ1は通常650℃〜
ssO’cf1度までラジアントチューブ3により加#
4帯で加熱され、その後数十秒間均熱され、更に400
℃程度まで急冷され、400℃程度にて約2分間程の過
時効処理を受け、最後に急冷されて常温となるという工
程を経る。The strip fed out from the payoff reel and passed through the cleaning tank and looper is supplied to a continuous annealing furnace shown in FIG. 7, 2ζ. In the furnace shown in the same figure, rolls 2 are arranged in the upper and lower parts, and the strip 1 is heated and cooled as necessary while running up and down on the rolls 2rIR, and is heated and cooled to a predetermined level at room temperature. Material properties such as high tensile strength and good deep drawability should be added. More specifically, the inside of the strip 1 is filled with reducing HN gas to prevent surface oxidation, and the strip 1 is normally heated at 650°C to 650°C.
Added by radiant tube 3 up to ssO'cf1 degree
It is heated in 4 zones, then soaked for several tens of seconds, and then heated at 400℃.
It undergoes a process of being rapidly cooled to about 100°C, subjected to an overaging treatment at about 400°C for about 2 minutes, and finally rapidly cooled to room temperature.
ところで、かかる連続焼鈍炉の加熱帯の出口近傍におい
ては1、高1のストソップ1とやや冷たいロール2との
接触になり、ストリップ1の幅方向の不均一冷却などに
基づくストリップ1の変形、圧延油中のカーポジ等が付
着しtこ不均一ロール面との接触によるストリップ1の
疵発生、などが問題となる。By the way, in the vicinity of the exit of the heating zone of such a continuous annealing furnace, the stosop 1 with a height of 1 comes into contact with the slightly cold roll 2, and the strip 1 is deformed and rolled due to uneven cooling in the width direction of the strip 1. Problems include the occurrence of defects in the strip 1 due to the adhesion of carposis in the oil and contact with the uneven roll surface.
上述の問題から、高温のストリップをロールと接触させ
ず、しかもストリップを水平方向に走行させるためには
、第8図に示すように炉内にフロータ(気体浮揚支持装
置)4を、ス1−リップ1の下側又は上下両側に配列し
て、ストリップ1を浮かせると共に水平方向に走行させ
る方式が採られる。第8図においては、金属のストリッ
プ1は図中左から右に走行しており、3はストリップ1
の上面と下面とに設置されたラジアントチューブ、4は
HNガスを噴出してストリップとの間で圧力を生じせし
めてストリップの自重を支持するフロータ、即ち気体浮
揚支持装置、5はフロータ4への供給用ガスダクト、6
は炉壁である。フロータ4は第9図に示す断面構造を有
し、ガスダクト5に連通ずるフロータ4では、HNガス
の噴出口にスリット9を有して、乙のス’)yh9から
噴出したHNガスは流れ方向が急変させられその運動量
変化によりストリップ1との間に圧力を生せしめるもの
である。Due to the above-mentioned problem, in order to prevent the high-temperature strip from coming into contact with the rolls and to run the strip horizontally, a floater (gas flotation support device) 4 is installed in the furnace as shown in FIG. A method is adopted in which the strips are arranged below the lip 1 or on both upper and lower sides to make the strip 1 float and run horizontally. In Figure 8, the metal strip 1 runs from left to right in the figure;
Radiant tubes installed on the upper and lower surfaces; 4 is a floater that supports the weight of the strip by ejecting HN gas to generate pressure between the strip; 5 is a gas flotation support device; 5 is a gas flotation support device for supporting the strip; Supply gas duct, 6
is the furnace wall. The floater 4 has a cross-sectional structure shown in FIG. 9, and the floater 4, which communicates with the gas duct 5, has a slit 9 at the HN gas ejection port, so that the HN gas ejected from the hole 9 is directed in the flow direction. is suddenly changed, and pressure is generated between the strip 1 and the strip 1 due to the change in momentum.
〈発明が解決しようとする問題点〉
高温のストリップ1の加熱温度による弊害を除くため、
フロータ4を水平方向に配列した第8図に示す構成とし
ている。そして連続焼鈍炉内において通板すべきストリ
ップ1は、全長数100mに及ぶ場合があり、且つ上下
あるいは水平方向に幾重にも蛇行状に引き回されるもの
であるから、ストリップ1を炉外に引き出すには大きな
張力を必要とする。このため、ストリップ1には炉の出
側になる程大きな張力が作用することとなり、時として
過大な張力がストリップ1に負荷され、殊に高温域に存
在するストリップ1にクリープ現象や片伸び、皺などの
発生が見られ、製品品質の劣化を招(おそれがあった。<Problems to be solved by the invention> In order to eliminate the adverse effects caused by the heating temperature of the high temperature strip 1,
The structure shown in FIG. 8 is such that the floaters 4 are arranged horizontally. The strip 1 to be passed through the continuous annealing furnace may have a total length of several hundred meters, and is routed in a meandering manner many times vertically or horizontally, so it is difficult to pass the strip 1 outside the furnace. It requires a lot of tension to pull it out. For this reason, a larger tension acts on the strip 1 as it approaches the exit side of the furnace, and sometimes an excessive tension is applied to the strip 1, causing creep phenomena and one-sided elongation, especially in the strip 1 that exists in a high temperature range. Wrinkles, etc. were observed, leading to deterioration of product quality.
本発明は上述した問題点に鑑み、炉内通板中のストリッ
プに、入側・出側の間において全長にわたりほぼ均一し
た低張力がかかり、円滑に通板を行うことができる浮揚
式通板装置の提供を目的とする。In view of the above-mentioned problems, the present invention is a floating strip threading method that applies a low tension that is almost uniform over the entire length between the entry and exit sides of the strip during threading in the furnace, and allows smooth strip threading. The purpose is to provide equipment.
く問題点を解決するための手段〉
本発明の浮揚式通板装置は、通板される金属帯状体(ス
トリップ)を気体を噴出させて該気体圧により浮揚支持
する気体浮揚支持装置と、前記金属帯状体(スl−IJ
ツブ)の通板方向への移動磁界を発生する直線移動磁界
型誘導電動機(以下、リニアモータという)とを備えt
こことを特徴とする。Means for Solving the Problems> The floating type strip threading device of the present invention includes a gas levitation support device for ejecting gas and floating and supporting the metal strip to be threaded by the gas pressure; Metal strip (sl-IJ)
The motor is equipped with a linear moving magnetic field type induction motor (hereinafter referred to as a linear motor) that generates a moving magnetic field in the threading direction of the lubricant.
It is characterized by:
く作 用〉
ストリップが正規のパスラインで通板されている場合、
ストリップは要所、要所に配置したりニアモータの移動
磁界に起因しtこ通板方向に作用する駆動力を受け、こ
の駆動力の存在が炉外より作用する張力を緩和させつつ
、パスラインを円滑に通過する。Effect〉 If the strip is threaded along the regular pass line,
The strip is placed at key points and receives a driving force acting in the direction of strip passing due to the moving magnetic field of the near motor, and the presence of this driving force relieves the tension acting from outside the furnace and pass through smoothly.
く実 施 例〉
本発明の一実施例を第1図〜第5図を参照して説明する
。尚、従来と同一部分には同一符号を付す。Embodiment An embodiment of the present invention will be described with reference to FIGS. 1 to 5. Incidentally, the same parts as the conventional ones are given the same reference numerals.
第1図に示すように、浮揚式通板装置は、スリット9が
形成されると共にガスダクト5に連通されたフロータ4
から成る気体浮揚支持装置と、フロータ4により浮揚支
持されたストリップ1の通板方向に対して左右対称に且
つ該ストリップ1の下方に配設された一対の直線移動磁
界型誘導電動機(リニアモータ)10A、IOBとから
構成されている。As shown in FIG. 1, the floating plate threading device includes a floater 4 having a slit 9 formed therein and communicating with a gas duct 5.
a pair of linearly moving magnetic field type induction motors (linear motors) disposed below the strip 1 and symmetrically with respect to the threading direction of the strip 1 supported in levitation by the floater 4; It consists of 10A and IOB.
リニアモータIOA、IOBは共に、第2図及び第3図
に示すように、幾つかの歯部12aを有する磁性金属材
料から成るヨーク12と、歯部12aに巻かれると共に
図示していない交流電源に接続された複数のコイル11
とから構成されており、リニアモータIOA、IOBは
互し)に通板方向に副い等しい大きさの移動磁界を発生
する。As shown in FIGS. 2 and 3, both linear motors IOA and IOB include a yoke 12 made of a magnetic metal material having several teeth 12a, and an AC power source (not shown) that is wound around the teeth 12a. A plurality of coils 11 connected to
The linear motors IOA and IOB each generate a moving magnetic field of equal magnitude in the sheet passing direction.
これらリニアモータIOA、IOBの駆動原理は従来よ
り知られたものと特に異なるものではなく、駆動方法に
は電流の相数や極微(N、S極の数)によって種々のも
のがあるが、特に限られた方法に限定するものではない
。ここでは、最も典型的な2極3相方式を説明する。第
3図及び第4図において図中のA、B、Cは3相にそれ
ぞれ対応したコイル11を示すもので、A’ 、 B’
、 C’のコイル11はそれぞれA、B、Cのコイノ
111の逆向きにヨーク12に巻かれている。これらA
。The driving principles of these linear motors IOA and IOB are not particularly different from those known in the past, and there are various driving methods depending on the number of current phases and micropoles (number of N and S poles). It is not limited to a limited method. Here, the most typical two-pole three-phase system will be explained. In FIGS. 3 and 4, A, B, and C in the drawings indicate coils 11 corresponding to three phases, respectively, and A', B'
, C' are wound around the yoke 12 in the opposite direction to the coils 111 of A, B, and C, respectively. These A
.
B、C,A’、B’、C’のコイル11にそれぞれ位相
が%πずれた電流IA) rBI Io# IA’ l
I@’ P■o′を流すと、それぞれのコイル11が
巻かれな歯部12aにはその電流に比例した磁界が発生
する。Current IA whose phase is shifted by %π in the coils 11 of B, C, A', B', and C' rBI Io# IA' l
When I@'P■o' flows, a magnetic field proportional to the current is generated in the toothed portion 12a around which each coil 11 is wound.
IA、 IA’ =I。繍θ
[、、[、’ = Io幽(θ+百π)Io、 Io’
=IOam (θ−iπ)第4図中に実線で示したグ
ラフはヨーク12の上方(Y方向)位置に発生する磁界
のX方向強度成分を表すもので、電流位相θ=Oの場合
のものである。この磁界の形は、リニアモータIOA、
IOBの極数が2極であることがらN極、S極がそれぞ
れ1つづつ生じるため、はぼ正弦波の形となっており、
上記電流位相θがある周期でO〜2πまで変化すると、
その変化に合せて磁界の正弦波も位相が進んで行く方向
(第4図中X方向)へ移動して行く。尚、第4図中点線
で示すグラフは電流位相θ=%πの場合のものである。IA, IA' = I. Embroidery θ [,, [,' = Io Yu (θ+100π) Io, Io'
=IOam (θ-iπ) The graph shown by the solid line in Figure 4 represents the X-direction intensity component of the magnetic field generated above the yoke 12 (in the Y-direction), and is for the case where the current phase θ=O. It is. The shape of this magnetic field is the linear motor IOA,
Since the number of poles of IOB is two, one N pole and one S pole are generated, so it is almost in the form of a sine wave.
When the above current phase θ changes from O to 2π in a certain period,
In accordance with this change, the sine wave of the magnetic field also moves in the direction in which the phase advances (X direction in FIG. 4). The graph shown by the dotted line in FIG. 4 is for the case where the current phase θ=%π.
このようにヨーク12の上方に発生して直線状に移動す
る磁界は、このヨーク12の上方に配された導電体に下
記の力を及ぼす。すなわち、移動する磁界が導電体を横
切ると、マックスウェルの誘導磁界の法則により導電体
内部に烏電流が発生し、この島電流と磁界との作用によ
り移動磁界の移動方向と同方向に所謂ローレンツ力が発
生するのである。The magnetic field generated above the yoke 12 and moving linearly exerts the following force on the conductor disposed above the yoke 12. In other words, when a moving magnetic field crosses a conductor, a magnetic current is generated inside the conductor according to Maxwell's law of induced magnetic field, and the interaction between this island current and the magnetic field causes a so-called Lorentz current to flow in the same direction as the moving magnetic field. Power is generated.
前記リニアモータIOA、IOBは導電体であるストリ
ップ1の中心RM (通板方向、第5図参照)に対して
左右対称に且つ該ストリップ1の下方に成る間隙をもっ
て配設されていると共に、これらリニアモータ10A。The linear motors IOA and IOB are disposed symmetrically with respect to the center RM (passing direction, see FIG. 5) of the strip 1, which is a conductor, and with a gap below the strip 1. Linear motor 10A.
10Bでそれぞれ発生する移動磁界の強さが等しく且つ
第5図中に矢印で示すようにその移動方向がストリップ
1の通板方向に副うよう設定されている。従って、第5
図に示すように中心線MがリニアモータIOA、IOB
間の中央となった正規の通板位置にあるストリップ1に
は、それぞれのりニアモータIQA。The strength of the moving magnetic fields generated in each of the magnetic strips 10B is set to be equal, and the moving direction thereof is set to follow the direction in which the strip 1 passes, as shown by the arrows in FIG. Therefore, the fifth
As shown in the figure, center line M is linear motor IOA, IOB
Strip 1, which is located at the regular threading position in the center between the strips, is equipped with a near motor IQA.
10Bの移動磁界に起因した力fA、 f、が該ストリ
ップ1の進行方向に副い且っ同等の大きさで作用する。Forces fA and f caused by the moving magnetic field 10B act in the direction of travel of the strip 1 and have the same magnitude.
このようにストリップ1が正規の通板位置(パスライン
)で走行している場合には、スj・リップ1に作用する
力fA、fBは互いに相乗され乙のストリンプ1を通板
方向に移動させろ。この駆動力fA、 fBはストリッ
プ1の板厚や走行速度等に応じて調整する必要があるが
、これはりニアモータに加える電流の大きさ並びに周波
数及びリニアモータの大きさ等によって容易に実施でき
る。In this way, when the strip 1 is running at the normal threading position (pass line), the forces fA and fB acting on the strip j and lip 1 are multiplied with each other, and the strip 1 moves in the threading direction. Let me. These driving forces fA and fB need to be adjusted according to the thickness of the strip 1, the running speed, etc., but this can be easily done by adjusting the magnitude and frequency of the current applied to the linear motor, the size of the linear motor, etc.
尚、リニアモータを幾対設けるかは適宜設定されろもの
であり、また、板幅によっては1個であってもよい。ま
たリニアモータの設置位置もストリップ1の下方のみな
らず、上方又は上方と下方といったように適宜自由に設
定することができる。また、上記実施例では、リニアモ
ータは第1図に示す如くフロータ4の中間位置に配され
ているが、フロータに接近して配したり、フロータの直
上に配したり、または、第6図に示すようにフロータ4
に組込んで配することもできる。Note that the number of pairs of linear motors to be provided can be determined as appropriate, and depending on the plate width, it may be one. Furthermore, the installation position of the linear motor can be freely set not only below the strip 1 but also above, or above and below. Further, in the above embodiment, the linear motor is arranged at an intermediate position of the floater 4 as shown in FIG. Floater 4 as shown in
It can also be incorporated into and distributed.
〈発明の効果〉
本発明の浮揚式通板装置によれば、気体浮揚支持装置に
より浮揚支持されて通板されるストリップに作用する張
力を、通板途中複数個部においてリニアモータにより分
散して付与せしめるようにしたので、炉内に存在するス
トリップの全長に亙って過大な張力がかからない。従っ
て、本発明を連続焼鈍炉に適用した場合には、過時効帯
を支障なく短縮化することができ、高品質製品の生産を
達成することができる。<Effects of the Invention> According to the floating type threading device of the present invention, the tension acting on the strip threaded while being floated and supported by the gas levitation support device is dispersed by the linear motor at multiple parts during threading. This prevents excessive tension from being applied over the entire length of the strip present in the furnace. Therefore, when the present invention is applied to a continuous annealing furnace, the overaging zone can be shortened without any problem, and high quality products can be produced.
第1図〜第5図は本発明の一実施例に係り、第1図は浮
揚式通板装置の斜視図、第2図はりニアモータの平面図
、第3図は第2図中のI−■矢視断面図、第4図はりニ
アモータの作動説明図、第5図は浮揚式通板装置のりニ
アモータ部分の平面図である。第6図はりニアモータ内
蔵のフロータの断面図である。第7図は連続焼鈍炉の概
略構成図、第8図は過時効帯の断面図、第9図はフロー
タの断面図である。
図 面 中、
1はストリップ、
4はフロータ、
10A、IOBはりニアモータ、
Mはストリップの中心線である。
第2図
第4図
第6図
第7図
■
第8図1 to 5 relate to one embodiment of the present invention, in which FIG. 1 is a perspective view of a floating plate threading device, FIG. 2 is a plan view of a beam near motor, and FIG. 3 is an I-- (2) A cross-sectional view taken in the direction of arrows, FIG. 4 is an explanatory diagram of the operation of the beam near motor, and FIG. 5 is a plan view of the beam near motor portion of the floating plate threading device. FIG. 6 is a sectional view of a floater with a built-in beam near motor. FIG. 7 is a schematic diagram of a continuous annealing furnace, FIG. 8 is a sectional view of an overaging zone, and FIG. 9 is a sectional view of a floater. In the drawing, 1 is the strip, 4 is the floater, 10A is the IOB beam near motor, and M is the center line of the strip. Figure 2 Figure 4 Figure 6 Figure 7■ Figure 8
Claims (1)
り浮揚支持する気体浮揚支持装置と、前記金属帯状体の
通板方向への移動磁界を発生する直線移動磁界型誘導電
動機とを備えたことを特徴とする浮揚式通板装置。A gas levitation support device for ejecting gas to levitate and support a metal strip to be threaded by the gas pressure, and a linear moving magnetic field type induction motor for generating a magnetic field for moving the metal strip in the threading direction. A floating sheet threading device characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP649986A JPS62164834A (en) | 1986-01-17 | 1986-01-17 | Floating type strip passing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP649986A JPS62164834A (en) | 1986-01-17 | 1986-01-17 | Floating type strip passing device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62164834A true JPS62164834A (en) | 1987-07-21 |
Family
ID=11640136
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP649986A Pending JPS62164834A (en) | 1986-01-17 | 1986-01-17 | Floating type strip passing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62164834A (en) |
-
1986
- 1986-01-17 JP JP649986A patent/JPS62164834A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109716860B (en) | Compact continuous annealing solution heat treatment | |
US9446929B2 (en) | Steel strip stabilizing apparatus | |
KR940019368A (en) | Plating Equipment and Operation Method of Plating Equipment | |
JP6525339B2 (en) | Continuous processing line processing a nonmagnetic metal strip comprising a galvanic ring section, and a method of inductively heating the strip in the galvanic ring section | |
US5897683A (en) | Method and apparatus for holding molten metal | |
US5195344A (en) | Warm rolling facility for steel strip coils | |
JP4912699B2 (en) | Hot dipping equipment | |
JPS62164834A (en) | Floating type strip passing device | |
JP2012503101A (en) | Method and apparatus for draining coated liquid metal at the outlet of an immersion metal coating bath | |
JPS62161926A (en) | Floating type sheet passing device | |
JPS62164833A (en) | Non-contact type traveling direction changer for metallic belt-like body | |
JPS62164832A (en) | Floating type strip passing device | |
US2445866A (en) | Apparatus for electric resistance heating of moving metallic strip | |
JPS62107030A (en) | Floating type strip passing device | |
JPS62167826A (en) | Traveling direction changer for metallic belt-like body | |
JPS6345445B2 (en) | ||
US2224410A (en) | Apparatus for continuous heat treatment and metal coating of metallic objects | |
JPS6312557A (en) | Steering device for conveying metal plate | |
JP2002275614A (en) | Method for controlling plating deposition on hot-dip metal coated steel plate | |
JPS6312555A (en) | Steering system for conveying metal plate | |
JPS58495B2 (en) | Renzokushiyoudonouchi | |
JPS5825627B2 (en) | lentils | |
JP6051944B2 (en) | Manufacturing apparatus and manufacturing method of differential steel plate | |
US3537917A (en) | Process for coordinated cleaning and flow brightening of tinplated steel | |
JP2014161892A (en) | Manufacturing apparatus and manufacturing method for differential thickness steel plate |