JPS62164813A - Converter lance - Google Patents

Converter lance

Info

Publication number
JPS62164813A
JPS62164813A JP432586A JP432586A JPS62164813A JP S62164813 A JPS62164813 A JP S62164813A JP 432586 A JP432586 A JP 432586A JP 432586 A JP432586 A JP 432586A JP S62164813 A JPS62164813 A JP S62164813A
Authority
JP
Japan
Prior art keywords
lance
oxygen
converter
nozzle
gaseous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP432586A
Other languages
Japanese (ja)
Inventor
Tsugio Chikama
近間 次雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP432586A priority Critical patent/JPS62164813A/en
Publication of JPS62164813A publication Critical patent/JPS62164813A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make thorough secondary combustion of gaseous CO generated during decarburization by positioning an oxygen nozzle provided to the top end of a lance near to the base part of an inside pipe, providing an outdoor suction pipe to the outside of the nozzle and opening the lance through a gas restricting part. CONSTITUTION:The gaseous oxygen conducted to the converter lance 1 arrives at the oxygen nozzle 6 and passes the gaseous oxygen restricting part 6a at a sound velocity. The gaseous oxygen expands in a nozzle expanding part 6b and is ejected at the supersonic velocity from the nozzle 6. The gaseous oxygen is mixed with the in-furnace gas which is essentially composed of the gaseous CO sucked from the outdoor air suction pipe 7 and passes the gaseous mixture restricting part 5a. The velocity energy is converted to pressure energy during this time to develop the pressure higher than the pressure in the suction stage by which the gaseous CO and the gaseous oxygen are thoroughly mixed and are substantially burned when both gases are ejected from an aperture 5b. The efficiency of converter blowing is improved by using such lance 1 and the saving of energy is attained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、転炉吹錬において脱炭の際に生じるCOガス
を充分に燃焼させてCO2となし、転炉内の熱レベルを
上昇させて経済的な転炉吹錬を行なうことの出来る転炉
ランスに関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is a method of sufficiently burning CO gas generated during decarburization in converter blowing to convert it into CO2, thereby increasing the heat level inside the converter. This invention relates to a converter lance that enables economical converter blowing.

〔従来の技術〕[Conventional technology]

転炉において、吹錬中に炉内で溶湯から発生する多量の
COガスに転炉ランス(以下ランスとのみ言う事がある
)から吹き込まれる自由酸素を接触させて炉内二次燃焼
を促進し、その燃焼熱を溶湯に伝えて湯温を上げ、炉内
の溶湯中に投入する冷材(例えば銘柄の判っているスク
ラップ鋼材や合金鉄など)の比率を増加させて処理能力
(T/H)を向上させるなど熱効率の良い製鋼技術が開
発されつつある。この技術のポイン1−は、いかにラン
スから吹き込む自由酸素と溶鋼(溶rJjり界面から発
生するCOガスをうまく接触させてランスルミ14H間
で二次燃焼を充分に行なわしめるかにある。従来、この
ような技術としてランスノズルの改良が例えば特開昭5
3−102205号や特開昭60−17711.8号で
提案されている。前者は上吹きランスの主ノズルの側方
に二次燃焼用酸素を吹き出させる副ノズルを設けた複式
ランスノズルに関するものであり、後者は副ノズルの形
状を酸素が水平に広がり易いように構成したものである
In a converter, free oxygen blown in from a converter lance (hereinafter referred to simply as a lance) is brought into contact with a large amount of CO gas generated from molten metal in the furnace during blowing to promote secondary combustion in the furnace. The heat of combustion is transferred to the molten metal to raise the temperature of the molten metal, and the ratio of cold material (for example, scrap steel or ferroalloy of a known brand) to the molten metal in the furnace is increased to increase the processing capacity (T/H). ) Steelmaking technology with high thermal efficiency is being developed. The key point of this technology is how to properly bring the free oxygen blown in from the lance into contact with the molten steel (CO gas generated from the interface between the molten steel and the molten metal) to cause sufficient secondary combustion between the lances. Improvements to lance nozzles were developed as such technology, for example, in Japanese Patent Application Laid-open No. 5
This method has been proposed in No. 3-102205 and Japanese Unexamined Patent Publication No. 17711.8/1986. The former relates to a dual lance nozzle that has a secondary nozzle installed on the side of the main nozzle of the top-blowing lance to blow out oxygen for secondary combustion, while the latter has a configuration in which the shape of the secondary nozzle is configured so that oxygen can easily spread horizontally. It is something.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記の如き従来の改良ランスノズルでは
、転炉内ではCOOガスその燃焼特性上充分に燃焼させ
ることは困難である。その理由は次のようである。
However, with the conventional improved lance nozzle as described above, it is difficult to combust COO gas sufficiently in a converter due to its combustion characteristics. The reason is as follows.

■ 転炉内ではCOOガス度は殆んど100%近く、C
O燃焼に対する不活性領域であること(COと酸素との
混合ガスの燃焼範囲はCOOガス度で15.5〜94%
である)、 ■ COOガス火炎伝播速度は0.3〜0.4m/秒で
あり、吹錬時に発生するCOガス上上昇速度3〜5m秒
に較べると非常に小さいこと。
■ In the converter, the COO gas concentration is almost 100%, C
It is an inert region for O combustion (the combustion range of a mixed gas of CO and oxygen is 15.5 to 94% in COO gas degree)
(2) The COO gas flame propagation speed is 0.3 to 0.4 m/sec, which is very small compared to the CO gas upward rise rate of 3 to 5 msec generated during blowing.

よって、上吹きランスから二次燃焼用酸素を噴出させて
も転炉内の大部分で燃焼し得す、殆んど炉口付近に至っ
て燃焼しているのが実状である。
Therefore, even if secondary combustion oxygen is injected from the top blowing lance, it can burn in most of the inside of the converter, and in reality, it burns almost all the way to the furnace mouth.

このことは、吹錬停止直後ランスを引き上げる際にラン
ス内の残圧でなおも噴出する酸素ジェットが炉口付近で
火炎を形成しているのが見られることからもうかがわれ
る。このように、従来の改良ランスでは、二次燃焼が炉
口付近でしか行なわれないため、その燃焼熱を溶湯へ伝
熱させ湯温を上げることは殆んど期待できないという問
題点があった。
This can be seen from the fact that when the lance is pulled up immediately after blowing has stopped, the oxygen jet that is still ejected due to the residual pressure inside the lance forms a flame near the furnace throat. In this way, with conventional improved lances, secondary combustion occurs only near the furnace mouth, so there was a problem in that it was almost impossible to transfer the combustion heat to the molten metal and raise the temperature of the molten metal. .

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記従来技術の問題点を解決して二次燃焼を炉
内の溶鋼から遠く離れない場所で行なわしめるための転
炉ランスの開発に努めた結果、ランスノズル自体で二次
燃焼を行なわしめる構造を採ることにより解決できるこ
とを究明して本発明を完成した。
The present invention has been made to solve the above-mentioned problems of the prior art and to develop a converter lance that performs secondary combustion not far from the molten steel in the furnace. The present invention was completed by determining that the problem can be solved by adopting a structure that closes the problem.

すなわち本発明は、酸素流路の外側に冷却水路が形成さ
れている構造の転炉ランスにおいて、該酸素流路先端に
設けた酸素ノズルが冷却水路を形成する最内管内でラン
ス先端よりも基部側寄りに位置していると共に、該酸素
ノズル近傍の冷却水路を貫通して酸素ノズル外側の上記
最内管内空間とランス外側とを連通せしめる複数の外気
吸入管が設けられており、ランス先端では上記最内管が
混合ガス絞り部を経て外に向って広がる開口部を形成し
ていることを特徴とする転炉ランスに関するものである
That is, the present invention provides a converter lance having a structure in which a cooling water channel is formed outside the oxygen flow channel, in which the oxygen nozzle provided at the tip of the oxygen flow channel is located closer to the base than the lance tip within the innermost tube forming the cooling water channel. A plurality of outside air suction pipes are located on the side and pass through the cooling waterway near the oxygen nozzle to communicate the space inside the innermost pipe outside the oxygen nozzle with the outside of the lance. The present invention relates to a converter lance characterized in that the innermost tube forms an opening that expands outward through a mixed gas throttle section.

〔構成の説明〕[Explanation of configuration]

以下に本発明を図面によって詳細に説明する。 The present invention will be explained in detail below with reference to the drawings.

第1図は本発明の1実施例の主要部を示す断面図。FIG. 1 is a sectional view showing the main parts of one embodiment of the present invention.

第2図は第1図中のA−A線端面図、第3図は本発明に
係る転炉ランスを使用して製鋼実施中の炉体内部の状態
を透視的に示す断面説明図である。
FIG. 2 is an end view taken along the line A-A in FIG. 1, and FIG. 3 is a cross-sectional explanatory view transparently showing the state inside the furnace body during steelmaking using the converter lance according to the present invention. .

図面中、1は転炉ランスであって酸素流路2を芯部にし
てその外側に冷却水水路として冷却°水柱路3及び冷却
水復路4が順次形成されている点は従来の転炉ランスと
同じである。冷却水路を形成する3重管のうちの最内管
5はその内側にランス基部1a側から酸素流路2をも形
成しており、酸素及び冷却水はそれぞれ矢印の方向に流
される。酸素流路2は先端に酸素ノズル6を有するが、
この酸素ノズル6の位置は、従来の転炉ランスの如く最
内管5によってランス先端に形成されていたのとは異な
り、最内管5内のランス先端1bよりもランス基部Ia
側寄りに別途設けられているのである。
In the drawing, reference numeral 1 denotes a converter lance, which has an oxygen flow path 2 at its core and a cooling water column path 3 and a cooling water return path 4 formed in sequence on the outside as a cooling water path, which is similar to a conventional converter lance. is the same as The innermost tube 5 of the triple tubes forming the cooling waterway also forms an oxygen flow path 2 from the lance base 1a side inside thereof, and oxygen and cooling water are respectively flowed in the directions of the arrows. The oxygen flow path 2 has an oxygen nozzle 6 at the tip,
Unlike the conventional converter lance where the oxygen nozzle 6 is formed at the tip of the lance by the innermost tube 5, the oxygen nozzle 6 is located at the lance base Ia rather than at the lance tip 1b in the innermost tube 5.
It is installed separately on the side.

この酸素ノズル6は第1図に示す如く上流側から酸素ガ
ス絞り部6a及びノズル広がり部6aを有しており、こ
のノズル広がり部6bは最内管5内に開口しているので
ある。酸素ノズル6の近傍には、第1図及び第2図に示
す如く、冷却水路を貫通して酸素ノズル6の外側の最内
管5内空間と転炉ランス1の外側とを連通せしめる複数
好ましくは3個以上(図例では4個)の外側吸入管7が
設けられている。冷却水柱路3と冷却水復路4とはラン
ス先端で接続されており、ランス先端1bでは最内管5
が第1図に示す如く上流側から下流側に混合ガス絞り部
5aを経て外側に向かって広がる開口部5bを形成して
いるのである。なお、8は転炉本体。
As shown in FIG. 1, this oxygen nozzle 6 has an oxygen gas throttle part 6a and a nozzle widening part 6a from the upstream side, and this nozzle widening part 6b opens into the innermost tube 5. In the vicinity of the oxygen nozzle 6, as shown in FIGS. 1 and 2, there are preferably a plurality of holes that penetrate the cooling waterway and communicate the inner space of the innermost tube 5 outside the oxygen nozzle 6 with the outside of the converter lance 1. is provided with three or more (four in the illustrated example) outer suction pipes 7. The cooling water column path 3 and the cooling water return path 4 are connected at the lance tip, and the innermost pipe 5 is connected to the lance tip 1b.
As shown in FIG. 1, an opening 5b is formed that extends outward from the upstream side to the downstream side via the mixed gas throttle section 5a. In addition, 8 is the main body of the converter.

9は転炉本体8内の溶鋼、10は炉口フード、11は底
吹き羽口である。
9 is molten steel in the converter main body 8, 10 is a furnace mouth hood, and 11 is a bottom blowing tuyere.

〔作用及び効果〕[Action and effect]

本発明に係る転炉ランス1を使用して吹錬するときは次
の如き作用及び効果を表わす。転炉ランス1へ導かれた
酸素ガスは酸素流路2から酸素ノズル6に至り、酸素ガ
ス絞り部6aを音速で通過し、ノズル広がり部6bでは
酸素ガスは膨張して超音速となって酸素ノズル6から噴
出する。この超音速の酸素ガスは転炉本体8内の溶鋼9
の真上に位置している外気吸入管7から吸い込まれたC
Oガスを主とする炉内ガスと混合して混合ガス絞り部5
aを通過する間に速度のエネルギーは圧力のエネルギー
に変換され、吸入圧力よりも高い圧力となって開口部5
bから噴出するときはCOガスと酸素ガスとはほぼ完全
に混合されていて充分に燃焼するのである。このような
転炉ランス1の作用が転炉本体8内で行なわれる様子を
第3図により更に具体的に説明する。転炉本体8内に高
炉溶銑や副原料を溶解して得られた溶銑などの溶湯を供
給し1本発明に係る転炉ランス1を上方から装入し、酸
素ガスを転炉ランス1に導くと、当初は酸素ガスが溶湯
すなわち溶鋼9の面に吹き付られて溶鋼9中の炭素と反
応してCOガスを発生させる。このようにして大量にC
Oガスが発生するようになると、多量のCOガスが転炉
ランス1の外気吸入管7がら吸入されて、前記の如く作
用してCOガスを主とする炉内ガスと酸素ガスとの混合
ガスは転炉ランス1の先端の開口部5b付近で燃焼し、
生成するCO□ガスと余剰の酸素ガスが火炎を形成しな
がら第3図に示す如く溶鋼9に吹き付けられる。このと
き余剰の酸素ガスは上記の如く溶鋼9中の炭素と反応し
てCOガスを発生させ、その一部は転炉ランス1の外気
吸入管7から吸入されて開口部5a付近で燃焼し、以下
これを繰り返すのである。このようにして発生するCO
2ガスと転炉ランス1に引入されなかったCOガスの一
部が炉口フードlOから排出される。第3図に示す転炉
本体8には溶鋼9を攪拌するための底吹き羽口11が設
けられているが、必ずしも底吹き羽口11は必要でない
When blowing using the converter lance 1 according to the present invention, the following functions and effects are exhibited. The oxygen gas led to the converter lance 1 reaches the oxygen nozzle 6 through the oxygen flow path 2, passes through the oxygen gas constriction part 6a at sonic speed, and in the nozzle widening part 6b, the oxygen gas expands and becomes supersonic, and becomes oxygen. It is ejected from nozzle 6. This supersonic oxygen gas flows into the molten steel 9 inside the converter main body 8.
C sucked in from the outside air intake pipe 7 located directly above the
The mixed gas is mixed with the furnace gas mainly composed of O gas and
While passing through the opening 5, velocity energy is converted to pressure energy, and the pressure becomes higher than the suction pressure.
When ejected from b, the CO gas and oxygen gas are almost completely mixed and are sufficiently combusted. The operation of the converter lance 1 in the converter main body 8 will be explained in more detail with reference to FIG. Molten metal such as blast furnace hot metal or hot metal obtained by melting auxiliary raw materials is supplied into the converter body 8, and the converter lance 1 according to the present invention is charged from above, and oxygen gas is introduced into the converter lance 1. Initially, oxygen gas is blown onto the surface of the molten metal, that is, the molten steel 9, and reacts with carbon in the molten steel 9 to generate CO gas. In this way, a large amount of C
When O gas starts to be generated, a large amount of CO gas is sucked in through the outside air suction pipe 7 of the converter lance 1, and acts as described above to create a mixed gas of the furnace gas, mainly CO gas, and oxygen gas. burns near the opening 5b at the tip of the converter lance 1,
The generated CO□ gas and surplus oxygen gas are blown onto the molten steel 9 as shown in FIG. 3 while forming a flame. At this time, the excess oxygen gas reacts with carbon in the molten steel 9 as described above to generate CO gas, and a part of it is sucked in from the outside air suction pipe 7 of the converter lance 1 and burned near the opening 5a. This is repeated below. CO generated in this way
2 gas and a portion of the CO gas that was not drawn into the converter lance 1 is discharged from the furnace mouth hood lO. Although the converter main body 8 shown in FIG. 3 is provided with a bottom blowing tuyere 11 for stirring the molten steel 9, the bottom blowing tuyere 11 is not necessarily required.

上記の如く転炉ランス1が作用することにより、脱炭の
際に生じるCOガスの二次燃焼を充分に行なわせること
が出来る上、その火炎は転炉ランス1の先端から溶鋼9
の面に吹き付けられるので、燃焼熱を溶鋼9に極めて効
果的に伝えて転炉内の熱レベルを上昇させ、副原料であ
る除材の投入比率を増加させて転炉の処理能力(T/H
)並びに省エネルギを向上することが出来るのである。
By the action of the converter lance 1 as described above, it is possible to sufficiently perform secondary combustion of the CO gas generated during decarburization, and the flame is transmitted from the tip of the converter lance 1 to the molten steel 9.
The combustion heat is extremely effectively transferred to the molten steel 9, increasing the heat level in the converter, increasing the input ratio of removed material, which is an auxiliary raw material, and increasing the converter's processing capacity (T/ H
) and can improve energy savings.

〔参考例〕[Reference example]

次に本発明に係る転炉ランス1(寸法:外径230m、
長さ14,600nn、最内管内径85g+、外気吸入
管内径50mm、X4個)を使用して転炉本体8内に溶
鋼9を50トン供給して製鋼するときの発生熱量及び除
材増加量の例を具体的に説明する。
Next, the converter lance 1 according to the present invention (dimensions: outer diameter 230 m,
Amount of heat generated and increased amount of material removed when making steel by supplying 50 tons of molten steel 9 into the converter body 8 using a converter with a length of 14,600 nn, an innermost tube inner diameter of 85 g+, an outside air suction tube inner diameter of 50 mm, and 4 pieces) An example will be explained in detail.

送1!2量600ONm’ /時rj訂で転炉ランスl
から酸素ノズル6より噴出させると、外気吸入管7より
200ONm37時間のCOガスを主とする炉内ガスが
吸入される(以下、簡単化のためこの炉内ガスのCOガ
ス濃度を100%として計算する)。この吸入量は酸素
ノズル6の酸素ガス絞り部6aと最内管5の混合ガス絞
り部5aとの断面積比及び送酸圧によって変動するが、
本例では上記の吸入量で計算する。
Feed 1!2 quantity 600ONm'/hour rj revision converter lance l
When the oxygen is ejected from the oxygen nozzle 6, 200ONm37 hours of furnace gas, mainly CO gas, is sucked in from the outside air suction pipe 7. do). This suction amount varies depending on the cross-sectional area ratio of the oxygen gas constriction section 6a of the oxygen nozzle 6 and the mixed gas constriction section 5a of the innermost pipe 5 and the oxygen supply pressure.
In this example, the above inhalation amount is used for calculation.

この吸入したCOガスは開口部5b付近で酸素と次の如
く発熱反応を起こす。
This inhaled CO gas causes an exothermic reaction with oxygen near the opening 5b as follows.

co+q○2→CO7+3oooKc4’、、3−c。co+q○2→CO7+3oooKc4',,3-c.

上式のネαとしてはCOガスが200ONm3/時間吸
入されるから送酸f&600ONm’/時間のうち、1
100ON’/時間が消費される。吹錬15分間に上記
発熱量の80%が溶鋼に伝熱されるとすると、二次燃焼
による供給熱量は。
In the above equation, since CO gas is inhaled at 200ONm3/hour, 1 of the oxygen supply f&600ONm'/hour
100ON'/hour is consumed. Assuming that 80% of the above calorific value is transferred to the molten steel during 15 minutes of blowing, the amount of heat supplied by secondary combustion is:

3000Kca%、−X 2000 N%間x 15 
剣0分X 89100 =1200X103K”345
分g 一方、副原料である除材(比熱0 、18KcaQ /
 kg ’C。
3000Kca%, -X 2000 N% x 15
Sword 0 minutes x 89100 = 1200 x 103K”345
On the other hand, removed wood (specific heat 0, 18KcaQ/
kg'C.

融解潜熱65.5KcaA/ kg)を1850℃の溶
鋼温度の転炉に投入したとき吸入すべき熱片は、1トン
当たり、 片400 X 10’にcaV、、ア よって15分間毎の除材投入可能址は、1200 X 
103KcaQ 400 X 10 KcaQ/ T  = 3°0トン
と計算されるが、実際の転炉操業として実施した結果も
同様に、3〜4トンの投入が可能であった。
When the latent heat of fusion (65.5 KcaA/kg) is introduced into a converter with a molten steel temperature of 1850°C, the heat particles to be inhaled are caV per ton of 400 pieces x 10', so the removal of material is introduced every 15 minutes. Possibility is 1200
It is calculated that 103 KcaQ 400 X 10 KcaQ/T = 3°0 tons, but the result of actual converter operation also showed that it was possible to input 3 to 4 tons.

これは従来の転炉ランスを使用したこと以外はほぼ同様
な条件で転炉操業を行なった場合に比べて約5割増の除
材投入量であり、転炉吹錬が能率良く省エネルギを達成
しながら経済的に行なわれた。
This is about a 50% increase in the amount of material removed compared to the case of operating a converter under almost the same conditions except for using a conventional converter lance, and converter blowing is efficient and saves energy. However, it was done economically.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例の主要部を示す断面図、第2
図は第1図中のA−A線端面図、第3図は本発明に係る
転炉ランスを使用して製鋼実施中の炉体内部の状態を透
視的に示す断面説明図である。 1・・・・転炉ランス la・・・・ランス基部 1b・・・・ランス先端 2・・・・酸素流路 3・・・・冷却水往路 4・・・・冷却水復路 5・・・・最内管 5a・・・・混合ガス絞り部 5b・・・・開口部 6・・・・酸素ノズル 6a・・・・酸素ガス絞り部 6b・・・・ノズル広がり部 7・・・・外気吸入管 8・・・・転炉本体 9・・・・溶鋼 10・・・・炉口フード 11・・・・底吹き羽口
FIG. 1 is a sectional view showing the main parts of one embodiment of the present invention, and FIG.
The figure is an end view taken along the line A--A in FIG. 1, and FIG. 3 is a cross-sectional explanatory view transparently showing the state inside the furnace body during steelmaking using the converter lance according to the present invention. 1...Converter lance la...Lance base 1b...Lance tip 2...Oxygen flow path 3...Cooling water outgoing path 4...Cooling water return path 5...・Innermost pipe 5a...Mixed gas throttle part 5b...Opening part 6...Oxygen nozzle 6a...Oxygen gas throttle part 6b...Nozzle widening part 7...Outside air Suction pipe 8... Converter body 9... Molten steel 10... Furnace hood 11... Bottom blowing tuyere

Claims (1)

【特許請求の範囲】[Claims] 1 酸素流路の外側に冷却水路が形成されている構造の
転炉ランスにおいて、該酸素流路先端に設けた酸素ノズ
ルが冷却水路を形成する最内管内でランス先端よりも基
部側寄りに位置していると共に、該酸素ノズル近傍の冷
却水路を貫通して酸素ノズル外側の上記最内管内空間と
ランス外側とを連通せしめる複数の外気吸入管が設けら
れており、ランス先端では上記最内管が混合ガス絞り部
を経て外に向って広がる開口部を形成していることを特
徴とする転炉ランス。
1 In a converter lance having a structure in which a cooling waterway is formed outside the oxygen flow path, the oxygen nozzle provided at the tip of the oxygen flow path is located closer to the base side than the lance tip within the innermost pipe forming the cooling waterway. At the same time, a plurality of outside air suction pipes are provided that penetrate the cooling waterway near the oxygen nozzle and communicate the space inside the innermost pipe outside the oxygen nozzle with the outside of the lance, and at the tip of the lance, the innermost pipe A converter lance is characterized in that the lance forms an opening that expands outward through a mixed gas throttle.
JP432586A 1986-01-14 1986-01-14 Converter lance Pending JPS62164813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP432586A JPS62164813A (en) 1986-01-14 1986-01-14 Converter lance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP432586A JPS62164813A (en) 1986-01-14 1986-01-14 Converter lance

Publications (1)

Publication Number Publication Date
JPS62164813A true JPS62164813A (en) 1987-07-21

Family

ID=11581296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP432586A Pending JPS62164813A (en) 1986-01-14 1986-01-14 Converter lance

Country Status (1)

Country Link
JP (1) JPS62164813A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790347A (en) * 1993-03-01 1995-04-04 Berry Metal Co Blow assembly for steel manufacture
US20150344982A1 (en) * 2012-12-18 2015-12-03 Posco Lance and operation method using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790347A (en) * 1993-03-01 1995-04-04 Berry Metal Co Blow assembly for steel manufacture
US20150344982A1 (en) * 2012-12-18 2015-12-03 Posco Lance and operation method using the same
JP2016505715A (en) * 2012-12-18 2016-02-25 ポスコ Lance and operation method using the same
EP2937428A4 (en) * 2012-12-18 2016-07-27 Posco Lance, and fishing method using same
US9863014B2 (en) 2012-12-18 2018-01-09 Posco Lance and operation method using the same

Similar Documents

Publication Publication Date Title
KR19980080280A (en) Lance / Burner for Molten Metal Furnace
SU955866A3 (en) Apparatus for feeding and burning additional fuel in shaft furnace
KR870002182B1 (en) Process of making molten metal in cupola
US5632953A (en) Process and device for melting iron metallurgical materials in a coke-fired cupola
JPS61213312A (en) Water cooled lance
US2362085A (en) Method of heating open-hearth furnace charges
US5304232A (en) Fumeless cupolas
US3758090A (en) Combustion apparatus for blast furnaces
US5681526A (en) Method and apparatus for post-combustion of gases during the refining of molten metal
JPS62164813A (en) Converter lance
US4366953A (en) Oxygen lance
JP2006328432A (en) Blowing method for converter and top-blowing lance for converter blowing
JP2761885B2 (en) Pulverized coal burner
JPS62280315A (en) Melt reduction method
JPH1112612A (en) Lance for injecting pulverized fine coal into blast furnace
SU899661A1 (en) Gas-oxygen tuyere for blasting melts
JP2963422B2 (en) Pulverized coal burner for blast furnace operation
SU1121293A1 (en) Blowing tuyere of blast furnace
JP2606507B2 (en) Tuyere for blast furnace
JP2565040B2 (en) Tuyere for blast furnace
SU672216A1 (en) Tuyer for blowing metal with gas-oxygen mix
RU1768874C (en) Burner
KR930012176B1 (en) Method of refining metal
JPS62280314A (en) Melt reduction method
JPH0277514A (en) Method for heating iron scrap in converter