JPS621647Y2 - - Google Patents
Info
- Publication number
- JPS621647Y2 JPS621647Y2 JP1982085132U JP8513282U JPS621647Y2 JP S621647 Y2 JPS621647 Y2 JP S621647Y2 JP 1982085132 U JP1982085132 U JP 1982085132U JP 8513282 U JP8513282 U JP 8513282U JP S621647 Y2 JPS621647 Y2 JP S621647Y2
- Authority
- JP
- Japan
- Prior art keywords
- water
- hot water
- storage tank
- temperature
- heat exchanger
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 286
- 239000003507 refrigerant Substances 0.000 claims description 23
- 238000005057 refrigeration Methods 0.000 claims description 15
- 238000010438 heat treatment Methods 0.000 description 15
- 238000009833 condensation Methods 0.000 description 7
- 230000005494 condensation Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 3
- 238000009434 installation Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
Description
【考案の詳細な説明】
本考案は、ヒートポンプ式給湯機、詳しくは冷
凍装置の冷媒回路に給湯用熱交換器を介装し、冷
凍サイクルにおける凝縮熱を利用して貯湯槽内の
水を加温するごとくした給湯機に関する。[Detailed description of the invention] This invention is a heat pump type water heater, more specifically, a heat exchanger for hot water supply is interposed in the refrigerant circuit of a refrigeration system, and the water in the hot water storage tank is heated using condensation heat in the refrigeration cycle. Regarding a hot water heater that warms the body.
従来、冷凍サイクルの凝縮熱を利用して温水を
形成して給湯するごとくしたヒートポンプ式給湯
機は、実開昭53−40570号公報に示されている通
り、すでに知られている。 2. Description of the Related Art Conventionally, a heat pump type water heater that uses condensation heat of a refrigeration cycle to generate hot water for hot water supply is already known, as shown in Japanese Utility Model Application Publication No. 53-40570.
この給湯機は、第1図に示したごとく、冷凍装
置における圧縮機Cの吐出管Aに給湯用熱交換器
Eを介装し、この熱交換器Eに、貯湯槽Bから延
びる1対の第1及第2水配管W1,W2を接続する
と共に、前記第1水配管W1にポンプPを介装
し、前記貯湯槽Bの底部から吸入した水を、前記
熱交換器Eで加温し、前記貯湯槽Bの中間部に戻
して、該貯湯槽B内の水を加温し、給湯管Dから
出湯するごとく成したものである。 As shown in Fig. 1, this water heater has a hot water supply heat exchanger E interposed in a discharge pipe A of a compressor C in a refrigeration system, and a pair of hot water supply heat exchangers E that extend from a hot water storage tank B. The first and second water pipes W 1 and W 2 are connected, and a pump P is interposed in the first water pipe W 1 so that the water sucked from the bottom of the hot water tank B is transferred to the heat exchanger E. The water in the hot water storage tank B is heated and returned to the middle part of the hot water storage tank B, and the water in the hot water storage tank B is heated and hot water is discharged from the hot water supply pipe D.
しかしながら、以上のごとく構成する給湯機に
おいて、前記貯湯槽Bの水を加温する場合、前記
熱交換器Eにおける加熱で、該熱交換器E通過す
る水は加温されるが、前記貯湯槽B内の水は、
ほゞ均一に上昇するので出湯温度になるまで時間
がかかるし、また、大量の湯を消費した場合、次
の出湯まで長時間待つ必要があつた。 However, in the water heater configured as described above, when heating the water in the hot water storage tank B, the water passing through the heat exchanger E is heated by heating in the heat exchanger E; The water in B is
Since the temperature rises almost uniformly, it takes a long time for the hot water to reach the hot water temperature, and if a large amount of hot water has been consumed, it is necessary to wait for a long time until the next hot water is poured.
しかして、以上の如き問題に対しては、前記第
2水配管W2を貯湯槽Bの上部に接続すると共
に、前記熱交換器Eを通過する水の流量を減少
し、かつ、前記熱交換器Eの伝熱面積を大きくす
ることにより、貯湯槽Bの上部から高温の湯を貯
溜でき、短時間で高温の湯を供給できるのである
が、前記熱交換器Eの通過水流を減少するため、
冷凍装置の成績係数が悪くなり、また、前記熱交
換器Eが大型となつて不経済となる問題が生ずる
のである。一方また、貯湯槽の上下方向に対応
し、かつ該貯湯槽の水中に直接的に、冷凍装置の
凝縮器を並列状に二分割して配置し、これら二つ
の凝縮器に各々電磁弁を介装して、水温が低いと
きには、前記電磁弁の切換操作をして貯湯槽上部
側の凝縮器のみに冷媒を流して上部側の水を集中
的に加温するごとくしたものは、例えば実開昭53
−85642号公報により知られている。ところが、
この公報記載のものでは、冷媒循環側を二系統と
成しているため、冷媒側の配管構成が複雑とな
り、据付時に高度な冷媒接続作業が必要となつ
て、その取り扱いが非常に厄介となる問題が起る
のであつた。また、凝縮器を直接、貯湯槽の水中
に介装しているため、貯湯槽の水温上昇に伴つ
て、凝縮温度の上昇を招き、冷媒回路における高
圧圧力が上昇して効率が悪化するという問題も起
こるのであつた。 Therefore, to solve the above problems, the second water pipe W2 is connected to the upper part of the hot water storage tank B, the flow rate of water passing through the heat exchanger E is reduced, and the heat exchanger By increasing the heat transfer area of the heat exchanger E, high temperature hot water can be stored from the upper part of the hot water storage tank B and hot water can be supplied in a short time. ,
Problems arise in that the coefficient of performance of the refrigeration system deteriorates and the heat exchanger E becomes large and uneconomical. On the other hand, the condenser of the refrigeration system is arranged in two parts in parallel, corresponding to the vertical direction of the hot water storage tank and directly under the water of the hot water storage tank, and a solenoid valve is connected to each of these two condensers. For example, a system in which the solenoid valve is switched to flow the refrigerant only to the condenser at the top of the hot water storage tank to intensively heat the water at the top when the water temperature is low has been developed in practical use, for example. Showa 53
It is known from the publication No.-85642. However,
The system described in this publication has two systems on the refrigerant circulation side, so the piping configuration on the refrigerant side is complicated, requiring sophisticated refrigerant connection work at the time of installation, and is extremely difficult to handle. There was a problem. In addition, since the condenser is directly inserted into the water in the hot water storage tank, as the water temperature in the hot water storage tank rises, the condensation temperature also increases, causing high pressure in the refrigerant circuit to rise and reducing efficiency. It was hot because it also happens.
本考案の目的は、取り扱い容易で運転効率の悪
化を防止できながら、貯湯槽の底部から吸入して
給湯用熱交換器により加熱熱する水量を、貯湯槽
の上部水温が低いとき小量化して、貯湯槽の上部
に、該上部水温が設定温度になる迄流入させ、し
かる後、小量化させずに貯湯槽の底部に流入さ
せ、もつて冷凍装置の成績係数を下げることな
く、また、給湯用熱交換器を大形にすることな
く、短時間で十分に高温の給湯が行なえると共
に、所望温度の給湯を多量に行なええるようにす
る点にある。 The purpose of this invention is to reduce the amount of water sucked from the bottom of the hot water storage tank and heated by the hot water heat exchanger when the water temperature at the top of the hot water storage tank is low, while being easy to handle and preventing deterioration of operational efficiency. , the water is allowed to flow into the upper part of the hot water storage tank until the temperature of the upper part reaches the set temperature, and then the water is allowed to flow into the bottom of the hot water storage tank without being reduced in volume. To provide hot water at a sufficiently high temperature in a short time without increasing the size of a heat exchanger for use, and to supply a large amount of hot water at a desired temperature.
本考案の構成は、冷凍装置の冷媒回路に給湯用
熱交換器を介装し、該熱交換器に貯湯槽の底部か
ら延びる第1水配管と、上部から延びる第2水配
管とをそれぞれ接続し、これら水配管の一方にポ
ンプを介装して、前記貯湯槽の底部の水を、前記
第1水配管から吸込み、前記熱交換器を経て第2
水配管から前記貯湯槽の上部に戻す水の第1循環
路を形成すると共に、前記ポンプの吐出側となる
前記第2水配管の途中に、前記貯湯槽の底部から
延びる第3水配管を接続して、前記貯湯槽の底部
の水を、前記第1水配管から吸込み、前記熱交換
器を経て第3水配管から前記貯湯槽の底部に戻す
水の第2循環路を形成する一方、前記熱交換器を
通過して加熱された温水の貯湯槽への戻りを、貯
湯槽の上部の水の温度により、前記第2水配管と
第3水配管とに切換えて、水循環経路を、前記第
1循環路と第2循環路とに選択する選択機構を設
け、かつ、前記第2水配管からの前記貯湯槽の上
部への戻り系に、絞りを設けたことにより、取扱
いが容易で、かつ、効率の低下を防止できながら
短時間で高温の給湯と、所望温度での多量の給湯
とを可能にしたことを特徴とするものである。 The configuration of the present invention is that a heat exchanger for hot water supply is interposed in the refrigerant circuit of a refrigeration system, and a first water pipe extending from the bottom of the hot water storage tank and a second water pipe extending from the top are respectively connected to the heat exchanger. A pump is interposed in one of these water pipes, and the water at the bottom of the hot water storage tank is sucked from the first water pipe and passed through the heat exchanger to the second water pipe.
A first circulation path for water returning from the water pipe to the upper part of the hot water storage tank is formed, and a third water pipe extending from the bottom of the hot water storage tank is connected to the middle of the second water pipe that is the discharge side of the pump. to form a second circulation path for drawing water at the bottom of the hot water storage tank from the first water pipe and returning it to the bottom of the hot water tank from the third water pipe via the heat exchanger; The return of hot water heated through the heat exchanger to the hot water storage tank is switched to the second water pipe and the third water pipe depending on the temperature of the water at the upper part of the hot water storage tank, and the water circulation path is changed to the second water pipe and the third water pipe. A selection mechanism for selecting between the first circulation path and the second circulation path is provided, and a restriction is provided in the return system from the second water pipe to the upper part of the hot water storage tank, making it easy to handle. This system is characterized by being able to supply hot water at a high temperature in a short period of time and supply a large amount of hot water at a desired temperature while preventing a decrease in efficiency.
次に本考案給湯機の実施例を第2図に基づいて
説明する。 Next, an embodiment of the water heater of the present invention will be described based on FIG.
第2図において1は、圧縮機10、蒸発器1
1、膨張弁12を備えた冷凍装置であつて、この
冷媒回路即ち、前記圧縮機10の吐出口と膨張弁
12との間には給湯用熱交換器2を介装するので
ある。 In FIG. 2, 1 is a compressor 10, an evaporator 1
1. It is a refrigeration system equipped with an expansion valve 12, and a heat exchanger 2 for hot water supply is interposed between the refrigerant circuit, that is, the discharge port of the compressor 10 and the expansion valve 12.
この熱交換器2は、前記冷媒回路の吐出ガス管
14と前記膨張弁12に通ずる液管15とに接続
する冷媒通路21と、貯湯槽3の底部から延びる
第1水配管4と、上部から延びる第2水配管5と
に接続する水通路22とを備え、これら冷媒通路
21を流れる冷媒と、水通路22を流れる水とを
対向流として熱交換させ、前記冷媒を凝縮させる
と共に、前記水を加熱するのである。 The heat exchanger 2 includes a refrigerant passage 21 connected to a discharge gas pipe 14 of the refrigerant circuit and a liquid pipe 15 leading to the expansion valve 12, a first water pipe 4 extending from the bottom of the hot water storage tank 3, and a first water pipe 4 extending from the top. The refrigerant flowing through the refrigerant passages 21 and the water flowing through the water passage 22 are exchanged with each other as counter-flows to condense the refrigerant and the water is heated.
また、前記第1水配管4には、ポンプ6を、ま
た前記第2水配管5には絞り7をそれぞれ介装
し、このポンプ6の駆動により、前記貯湯槽3の
底部から吸入し、前記第1水配管4を介して前記
熱交換器2の水通路22を経て、前記第2水配管
5から絞り7により小流量にして前記貯湯槽3の
上部に吐出する第1循環路を形成して、斯く吐出
する加熱水により、貯湯槽3の上部に温水を集め
て、該上部の水を急速に給湯可能温度に加温すべ
く成すのである。ところで、前記絞り7の抵抗値
は、前記小流量値が、前記熱交換器2における最
適水量の例えば10乃至15%になるごとく設定する
のである。 In addition, a pump 6 is installed in the first water pipe 4 and a throttle 7 is installed in the second water pipe 5. By driving the pump 6, hot water is drawn from the bottom of the storage tank 3, and the water is drawn in from the bottom of the storage tank 3. A first circulation path is formed in which the water is discharged from the second water pipe 5 through the water passage 22 of the heat exchanger 2 through the first water pipe 4 to the upper part of the hot water storage tank 3 at a small flow rate using a throttle 7. The heated water thus discharged collects the hot water in the upper part of the hot water storage tank 3, and the water in the upper part is rapidly heated to a temperature at which hot water can be supplied. By the way, the resistance value of the throttle 7 is set so that the small flow rate value is, for example, 10 to 15% of the optimum amount of water in the heat exchanger 2.
また、前記ポンプ6の吐出側となる前記第2水
配管5における前記水通路21と絞り7との間
に、前記貯湯槽3の底部から延びる第3水配管8
を接続して、該第3水配管8と第2水配管5と
を、選択機構9により選択的に開通すべく成すの
である。 A third water pipe 8 extends from the bottom of the hot water tank 3 between the water passage 21 and the throttle 7 in the second water pipe 5 on the discharge side of the pump 6.
By connecting the third water pipe 8 and the second water pipe 5, the selection mechanism 9 selectively opens the third water pipe 8 and the second water pipe 5.
この選択機構9は、1つの入口9aと、2つの
出口9b,9cとをもつた三方弁を用い、この三
方弁を前記貯湯槽3内に設けるサーモスタツト
th1の水温感温部th11によりコントロールするごと
く成すもので、前記入口9aを、前記第2水配管
5における前記水通路21に、また出口9bを絞
り7に連通させるごとく介装すると共に、三方弁
の出口9cに前記第3水配管8の端部を接続する
のである。一方、前記水温感温部th11は、前記貯
湯槽3の上下中間位置に設置するのであつて、こ
の水温感温部th11により、該感温部th11周りの水
温がサーモスタツトth1の設定温度より低いと
き、三方弁の入口9a、出口9b間を選択開通さ
せて、前記第1循環路の第2水配管5を開通さ
せ、また、前記水温が設定温度に達したとき、三
方弁の入口9a、出口9c間を選択開通させて、
前記ポンプ6の駆動により、前記貯湯槽3の底部
から吸入し、前記熱交換器2の水通路22に流入
して、第2水配管5の途中から前記第3水配管8
を介して貯湯槽3の底部に吐出する第2循環路を
形成して、前記貯湯槽下方の水を加温すべく成す
のである。そして、この貯湯槽下方には、該下方
の水温が所望温度になつたとき、前記圧縮機10
を停止させるサーモスタツトth2の感温体th22を設
けるのである。 This selection mechanism 9 uses a three-way valve having one inlet 9a and two outlets 9b and 9c, and this three-way valve is installed in the hot water tank 3 using a thermostat.
The inlet 9a is connected to the water passage 21 in the second water pipe 5 , and the outlet 9b is connected to the throttle 7. The end of the third water pipe 8 is connected to the outlet 9c of the three-way valve. On the other hand, the water temperature sensing part th 11 is installed at an intermediate position above and below the hot water tank 3, and the water temperature around the water temperature sensing part th 11 is adjusted to the temperature of the thermostat th 1 by the water temperature sensing part th 11 . When the water temperature is lower than the set temperature, the inlet 9a and outlet 9b of the three-way valve are selectively opened to open the second water pipe 5 of the first circulation path, and when the water temperature reaches the set temperature, the three-way valve is opened. selectively open between the inlet 9a and outlet 9c,
When the pump 6 is driven, hot water is sucked from the bottom of the storage tank 3, flows into the water passage 22 of the heat exchanger 2, and flows from the middle of the second water pipe 5 to the third water pipe 8.
A second circulation path is formed through which water is discharged to the bottom of the hot water storage tank 3 to heat the water below the hot water storage tank. The compressor 10 is installed below the hot water storage tank when the water temperature below reaches a desired temperature.
A temperature sensing element th22 of the thermostat th2 is provided to stop the operation.
尚、第2図において31は給水管、32は出湯
管である。 In addition, in FIG. 2, 31 is a water supply pipe, and 32 is a hot water outlet pipe.
本考案給湯機は以上の如く構成するもので、貯
湯槽3内の水を加温する場合、前記冷凍装置1の
圧縮機10を駆動すると共に、前記ポンプ6を駆
動することにより行なうのであつて、第1循環路
及び第2循環路が水温感温部th1により選択的に
開通して、貯湯槽3内の水が前記熱交換器2との
間を循環するのである。 The water heater of the present invention is constructed as described above, and when heating the water in the hot water storage tank 3, it is heated by driving the compressor 10 of the refrigeration device 1 and also driving the pump 6. , the first circulation path and the second circulation path are selectively opened by the water temperature sensing section th1 , and the water in the hot water storage tank 3 circulates between it and the heat exchanger 2.
しかして、第1循環路による水の循環は、絞り
7により貯湯槽3の底部から小流量を吸入して前
記熱交換器2における冷媒通路21の出口に対向
する水通路22の入口に流入して、冷媒の凝縮潜
熱により加熱された後、吐出ガス冷媒の凝縮顕熱
により加熱され、貯湯槽3の上部に吐出され、該
上部の水集中的に加熱する。 Therefore, the water is circulated through the first circulation path by sucking a small amount of water from the bottom of the hot water storage tank 3 through the throttle 7 and flowing into the inlet of the water passage 22 opposite to the outlet of the refrigerant passage 21 in the heat exchanger 2. After being heated by the latent heat of condensation of the refrigerant, it is heated by the sensible heat of condensation of the discharged gas refrigerant, and is discharged to the upper part of the hot water storage tank 3, thereby intensively heating the water in the upper part.
そのため、前記貯湯槽3の上部における水温
は、全体を平均的に上昇させる場合に比較して急
速に上昇させられるのであつて、短時間で高温の
給湯が可能になるのである。 Therefore, the water temperature in the upper part of the hot water storage tank 3 can be raised more rapidly than in the case where the entire water temperature is raised averagely, and hot water can be supplied at a high temperature in a short time.
そして、前記貯湯槽3の上部の水温が前記設定
温度になると、貯湯槽3の下部の水が第1循環路
を循環するのであつて、この循環は、貯湯槽3の
底部から、熱交換器2にとつて、最適水量の水を
吸入して熱交換器2の水通路22を流通し、冷媒
の凝縮熱により加熱さて、貯湯槽3の底部に吐出
され、貯湯槽3における大量の水を所望温度に加
熱できるのである。 When the water temperature in the upper part of the hot water tank 3 reaches the set temperature, the water in the lower part of the hot water tank 3 circulates through the first circulation path, and this circulation starts from the bottom of the hot water tank 3 through the heat exchanger. 2, the optimum amount of water is sucked in, flows through the water passage 22 of the heat exchanger 2, is heated by the condensation heat of the refrigerant, and is discharged to the bottom of the hot water storage tank 3, discharging a large amount of water in the hot water storage tank 3. It can be heated to the desired temperature.
因みに、前記感温部th11の設定温度を45℃乃至
65℃としておくことにより、貯湯槽3における上
部の水温をこの45℃乃至65℃に急速加熱できると
共に、斯く加熱した部分より下位の大量の水も所
望温度に加熱できるのである。 By the way, the set temperature of the temperature sensing part th 11 is set to 45℃
By setting the temperature at 65°C, the water temperature in the upper part of the hot water storage tank 3 can be rapidly heated from 45°C to 65°C, and a large amount of water below the heated part can also be heated to the desired temperature.
以上のごとく、貯湯槽3の上部における水温を
設定温度に加熱する場合、その加熱時間は全体の
加熱時間にくらべて、きわめて短時間にできると
共に、前記貯湯槽3の上部の加熱後は、下部の加
熱に切換えられるのであつて、前記熱交換器2に
は、上部加熱後において最適流量を流すことがで
きるから、全体として冷凍装置1の成積係数を減
少することなく運転させ得るのである。しかも、
上部加熱後には、貯湯槽3の底部に加熱水を吐出
するので、上部に滞溜する高温水が、この吐出加
熱水により撹拌されて低温化することはなく、安
定に設定温度に保持されるのである。 As described above, when heating the water temperature in the upper part of the hot water storage tank 3 to the set temperature, the heating time can be extremely short compared to the entire heating time, and after heating the upper part of the hot water storage tank 3, the water temperature in the lower part is heated. Since the optimum flow rate can be passed through the heat exchanger 2 after the upper part is heated, the refrigeration system 1 can be operated without reducing the bulk coefficient of the refrigeration system 1 as a whole. Moreover,
After the upper part is heated, heated water is discharged to the bottom of the hot water storage tank 3, so the high temperature water that accumulates in the upper part is not stirred by the discharged heated water and lowered in temperature, and is stably maintained at the set temperature. It is.
ところで、以上の説明は、貯湯槽3の上部を設
定温度に加熱した後、下部を加熱すべくした全水
加運転の場合であるが、以下第3図の電気回路に
示す通り、切換操作により、貯湯槽3の上部を設
定温度に加熱した後、直ちに運転を停止する上部
水加温運転に切換えるようにできるのである。 By the way, the above explanation is for the case of full water addition operation in which the upper part of the hot water storage tank 3 is heated to the set temperature and then the lower part is heated. After heating the upper part of the hot water storage tank 3 to a set temperature, the operation can be switched to the upper water heating operation where the operation is immediately stopped.
即ち、電源線路間に、前記下部のサーモスタツ
トth2と圧縮機10のモータMCの電磁開閉器MS
との第1直列回路と、前記上部のサーモスタツト
th1と前記三方弁9との第2直列回路と、前記電
磁開閉器MSの常開接点MSaと前記圧縮機10の
モータMCとの第3直列回路と、電磁開閉器MS
の常開接点MSaと前記フアンモータMFとの第4
直列回路と、電磁開閉器MSの常開接点MSaと前
記ポンプ6のモータMPとの第5直列回路とを、
それぞれ並列に接続すると共に、端子t1,t2間端
子t1,t3間との導通を手動により切換可能とした
切換スイツチSW1を前記第1直列回路に設け、こ
の切換スイツチSW1の切換端子t2,t3の一方t2を
電源に、他方t3を上部のサーモスタツトth1の低
温時閉成する接点に接続するのである。ところ
で、前記三方弁9は、通電により入口9a、出口
9b間が開通し、非通電により入口9a、出口9
c間が開通するごとく切換わる三方電磁弁を用い
るである。 That is, between the power supply line, the lower thermostat TH2 and the electromagnetic switch MS of the motor MC of the compressor 10 are connected.
a first series circuit with the upper thermostat;
a second series circuit between th 1 and the three-way valve 9; a third series circuit between the normally open contact MSa of the electromagnetic switch MS and the motor MC of the compressor 10; and a third series circuit between the electromagnetic switch MS and the motor MC of the compressor 10.
The fourth contact MSa between the normally open contact MSa and the fan motor MF
a series circuit, and a fifth series circuit of the normally open contact MSa of the electromagnetic switch MS and the motor MP of the pump 6,
A changeover switch SW1 is provided in the first series circuit, and the changeover switch SW1 is connected in parallel with each other and can manually switch the continuity between the terminals t1 and t2 and the terminals t1 and t3 . One of the switching terminals t 2 and t 3 , t 2, is connected to the power source, and the other t 3 is connected to the contact of the upper thermostat th 1 , which closes when the temperature is low. By the way, the three-way valve 9 opens between the inlet 9a and the outlet 9b when energized, and opens between the inlet 9a and the outlet 9 when not energized.
A three-way solenoid valve is used that switches as if the gap between c and c is opened.
尚、CBは漏電ブレーカ、SW2は電源スイツチ
である。 Note that CB is an earth leakage breaker and SW 2 is a power switch.
以上の構成において、前記切換スイツチSW1を
第3図のごとく端子t1,t2間が導通するごとく切
換操作しておくことにより、貯湯槽3の上部がサ
ーモスタツトth1の設定温度迄加熱された後、下
部がサーモスタツトth2の設定温度迄加熱され
て、電磁開閉器MSの非励磁により運転が停止さ
れる全水加温運転を行なえ、また前記切換スイツ
チSW1を、端子t1,t2が導通するごとく切換操作
しておくことにより、貯湯槽3の上部がサーモス
タツトth1の設定温度迄加熱されると、該サーモ
スタツトth1が開いて直ちに運転が停止される上
部加温運転を行なえるのである。 In the above configuration, the upper part of the hot water tank 3 is heated to the temperature set by the thermostat th 1 by operating the changeover switch SW 1 so that the terminals t 1 and t 2 are electrically connected as shown in FIG. After that, the lower part is heated to the set temperature of thermostat th 2 , and the operation is stopped by de-energizing the electromagnetic switch MS . , t 2 conducts, and when the upper part of the hot water storage tank 3 is heated to the set temperature of the thermostat th 1 , the thermostat th 1 opens and the operation is immediately stopped. This allows for warm operation.
従つて、少量の高温水のみ欲しい場合には、後
者の運転を行なうことにより、短時間で運転を停
止できるのであり、また、大量の高温水が欲しい
場合には、前者の運転を行なうことにより、高温
水を短時間で得られながら、大量の高温水も得ら
れるのである。しかも、これらの運転は、いずれ
も運転途中で何らの操作行なう必要がなく、切換
スイツチSW1を予め操作するだけで選択できるの
であつて、手間をかけずに必要な温水の給湯を行
なえると共に、無駄な運転を防止でき、全体にみ
て、給湯コスト低減できる。 Therefore, if you only want a small amount of high-temperature water, you can stop the operation in a short time by doing the latter operation, and if you want a large amount of high-temperature water, you can do the former operation. , high-temperature water can be obtained in a short time, and a large amount of high-temperature water can also be obtained. Furthermore, all of these operations do not require any operation during operation, and can be selected by simply operating changeover switch SW 1 in advance, allowing you to supply the necessary hot water without any effort. , wasteful operation can be prevented, and overall hot water supply costs can be reduced.
尚、前記三方電磁弁9は、非導通により入口9
a、出口9b間が開通し、通電により入口9a、
出口9c間が開通するごとく切換わるようにして
もよく、斯くした場合には、第4図に示すごと
く、前記サーモスタツトth1を単極双投型に形成
し、低温時閉成する接点に前記切換スイツチSW1
の切換端子t2,t3の他方t3を接続し、高温時閉成
する接点に三方電磁弁9を直列に接続するのであ
る。 Note that the three-way solenoid valve 9 is disconnected from the inlet 9 due to non-conduction.
A, the outlet 9b is opened, and the inlet 9a is opened by energization.
The switch may be made so that the outlet 9c is opened, and in this case, as shown in FIG . Said changeover switch SW 1
The other of the switching terminals t 2 and t 3 t 3 is connected, and the three-way solenoid valve 9 is connected in series to the contact that closes when the temperature is high.
また、以上の説明では、前記ポンプ6は第1水
配管4に設けたが、三方弁の入口9aと、水通路
22との間の第2水配管5に設けてもよい。 Further, in the above description, the pump 6 is provided in the first water pipe 4, but it may be provided in the second water pipe 5 between the inlet 9a of the three-way valve and the water passage 22.
また、以上の説明では、前記選択機構9として
三方弁を用いたが、2つの二方弁を用いてもよ
い。即ち、絞り7と水通路22との間の第2水配
管5に第3水配管8の端部を接続し、この接続個
所の貯湯槽3側の第2水配管5と、第3水配管8
とにそれぞれ二方弁を設けて、両水配管5,8水
温加熱部th11により選択的に開通すべくしてもよ
い。 Furthermore, in the above description, a three-way valve was used as the selection mechanism 9, but two two-way valves may also be used. That is, the end of the third water pipe 8 is connected to the second water pipe 5 between the throttle 7 and the water passage 22, and the second water pipe 5 on the hot water storage tank 3 side at this connection point and the third water pipe 8
A two-way valve may be provided for each of the water pipes 5 and 8, and the water temperature heating portion th11 may be used to selectively open the water pipes.
また、前記絞り7は、キヤピラリーチユーブを
用いてもよいし、また二方弁または三方弁内部に
設けるようにしてもよい。 Further, the aperture 7 may be a capillary reach tube, or may be provided inside a two-way valve or a three-way valve.
以上のごとく本願考案によれば、貯湯槽3の上
部の水温が低いときには、選択手段9により第1
水循環路を選択して、貯湯槽3の底部の水を、熱
交換器2を経て、絞り7を介して少量化と成して
貯湯槽3の上部に循環させることにより、該貯湯
槽3の上部の水温を急速に高めることができ、始
動時及び大量の湯を消費した場合でも、短時間に
十分高温度の給湯が行えるのである。 As described above, according to the present invention, when the water temperature in the upper part of the hot water storage tank 3 is low, the selection means 9 selects the first
By selecting a water circulation path and circulating the water at the bottom of the hot water tank 3 through the heat exchanger 2 and through the throttle 7 to the upper part of the hot water storage tank 3, The water temperature in the upper part can be raised rapidly, and hot water can be supplied at a sufficiently high temperature in a short period of time even when starting up or when a large amount of hot water is consumed.
また、この第1循環路による循環により、前記
貯湯槽3の上部の水温が高くなると、前記選択手
段9により第2循環路を選択して、貯湯槽3の底
部の水を、熱交換器2を経て、第3水循環路8を
介して前記絞り7を通さない本来の最適水量に増
量して、貯湯槽3の底部に循環させることによ
り、該貯湯槽3の上部の高温水を攬拌することな
く設定温度に安定的に保持できながら、該貯湯槽
3の上部側高温水の下位側の低温水の加温が行
え、所望温度の大量給湯が行えるのである。 Further, when the water temperature in the upper part of the hot water storage tank 3 increases due to the circulation through the first circulation path, the second circulation path is selected by the selection means 9, and the water in the bottom part of the hot water storage tank 3 is transferred to the heat exchanger 2. After that, the amount of water is increased to the original optimum amount without passing through the throttle 7 through the third water circulation path 8, and is circulated to the bottom of the hot water storage tank 3, thereby stirring the high temperature water at the top of the hot water storage tank 3. While the temperature can be stably maintained at the set temperature without any problems, the high temperature water in the upper part of the hot water storage tank 3 can be heated and the low temperature water in the lower part can be heated, and a large amount of hot water can be supplied at the desired temperature.
しかも、前記貯湯槽3の上部の水の温度上昇を
急速に行うのにあたり、水循環側を第1及び第2
水循環路の二系統構成と成したから、つまりは、
冷媒循環側即ち凝縮器側を二系統と成したもので
は全くないのであるから、冷媒循環側を二系統に
分ける場合に生じる問題、即ち冷媒配管構成が複
雑となつて装置の据付時に冷媒の接続作業が厄介
になるといつた問題は全く起こらないのであつ
て、その取り扱いも容易なものと成し得るに至つ
たのである。 Moreover, in order to rapidly raise the temperature of the water in the upper part of the hot water storage tank 3, the water circulation side is
Because it has a two-system configuration of the water circulation path, in other words,
Since the refrigerant circulation side, that is, the condenser side, is not composed of two systems at all, there are problems that arise when dividing the refrigerant circulation side into two systems, namely, the refrigerant piping configuration becomes complicated and it is difficult to connect the refrigerant at the time of equipment installation. Problems that would have made the work cumbersome did not occur at all, and the handling became easy.
更にまた、前記貯湯槽3の上部の水の温度上昇
を急速に行うのにあたり、貯湯槽3と熱交換器2
との間を水配管4,5を介して接続し、これら水
配管4,5を流通する水と前記熱交換器2とを熱
交換させたから、つまりは、冷媒側の凝縮器を直
接的に貯湯槽の水中に介装するものでは全くない
のであるから、凝縮器を直接的に貯湯槽の水中に
介装する場合に生じる問題、即ち貯湯槽内の水温
の上昇に伴つて、凝縮温度が上昇し、冷凍装置に
おける高圧圧力が上昇して効率が低下するといつ
た問題も起こらないのであつて、全体として効率
の良い給湯運転ができるに至つたのである。 Furthermore, in order to rapidly raise the temperature of the water in the upper part of the hot water storage tank 3, the hot water storage tank 3 and the heat exchanger 2
Since the water flowing through the water pipes 4 and 5 is connected to the heat exchanger 2 through the water pipes 4 and 5, and the heat exchanger 2 is connected to the heat exchanger 2, in other words, the refrigerant side condenser is directly Since the condenser is not inserted into the water in the hot water tank at all, there is a problem that occurs when the condenser is directly inserted into the water in the hot water storage tank, namely, the condensation temperature increases as the water temperature in the hot water storage tank increases. This eliminates the problem of a drop in efficiency due to an increase in the high pressure in the refrigeration system, and overall efficient hot water supply operation has been achieved.
しかも以上のごとく、貯湯槽3の上部水温を設
定温度に、また上部水下位の水温を所望温度に加
熱運転する場合、全体の加熱時間中に占める上部
加熱の時間は、小さく、また、下部加熱において
は前記熱交換器にその最適流量を流すことができ
るので、冷凍装置1の成積係数が低下することは
ないし、前記熱交換器2を大形にする必要もない
のである。 Moreover, as described above, when heating the upper water temperature of the hot water storage tank 3 to the set temperature and the lower water temperature of the upper water to the desired temperature, the time occupied by the upper heating in the entire heating time is small, and the lower heating In this case, the optimal flow rate can be passed through the heat exchanger, so the bulk coefficient of the refrigeration system 1 does not decrease, and there is no need to make the heat exchanger 2 large.
第1図は従来例を示す配管系統図、第2図は本
考案の一実施例を示す配管系統図、第3図、第4
図は電気回路図である。
1……冷凍装置、2……給湯用熱交換器、3…
…貯湯槽、4……第1水配管、5……第2水配
管、6……ポンプ、7……絞り、8……第3水配
管、9……選択機構。
Fig. 1 is a piping system diagram showing a conventional example, Fig. 2 is a piping system diagram showing an embodiment of the present invention, Figs.
The figure is an electrical circuit diagram. 1... Refrigeration device, 2... Heat exchanger for hot water supply, 3...
... Hot water tank, 4... First water pipe, 5... Second water pipe, 6... Pump, 7... Throttle, 8... Third water pipe, 9... Selection mechanism.
Claims (1)
装し、該熱交換器2に貯湯槽3の底部から延びる
第1水配管4と、上部から延びる第2水配管5と
をそれぞれ接続し、これら水配管4,5の一方に
ポンプ6を介装して、前記貯湯槽3の底部の水
を、前記第1水配管4から吸込み、前記熱交換器
2を経て第2水配管5から前記貯湯槽3の上部に
戻す水の第1循環路を形成すると共に、前記ポン
プ6の吐出側となる前記第2水配管5の途中に、
前記貯湯槽3の底部から延びる第3水配管8を接
続して、前記貯湯槽3の底部の水を、前記第1水
配管4から吸込み、前記熱交換器2を経て第3水
配管8から前記貯湯槽3の底部に戻す水の第2循
環路を形成する一方、前記熱交換器2を通過して
加熱された温水の貯湯槽3への戻りを、貯湯槽3
に上部の水の温度により、前記第2水配管5と第
3水配管8とに切換えて、水循環径路を、前記第
1循環路と第2循環路とに選択する選択機構9を
設け、かつ、前記第2水配管5からの前記貯湯槽
3の上部への戻り系に、絞り7を設けたことを特
徴とするヒートポンプ式給湯機。 A hot water supply heat exchanger 2 is interposed in the refrigerant circuit of the refrigeration device 1, and a first water pipe 4 extending from the bottom of the hot water storage tank 3 and a second water pipe 5 extending from the top are connected to the heat exchanger 2, respectively. A pump 6 is interposed in one of these water pipes 4 and 5, and the water at the bottom of the hot water tank 3 is sucked from the first water pipe 4, passes through the heat exchanger 2, and is transferred to the second water pipe 5. In the middle of the second water pipe 5, which forms a first circulation path for returning water from the water to the upper part of the hot water storage tank 3, and which becomes the discharge side of the pump 6,
A third water pipe 8 extending from the bottom of the hot water tank 3 is connected to draw water from the bottom of the hot water tank 3 through the first water pipe 4 and from the third water pipe 8 through the heat exchanger 2. A second circulation path for water to be returned to the bottom of the hot water storage tank 3 is formed, while a second circulation path for returning hot water heated through the heat exchanger 2 to the hot water storage tank 3 is formed.
is provided with a selection mechanism 9 that switches between the second water pipe 5 and the third water pipe 8 and selects the water circulation path between the first circulation path and the second circulation path according to the temperature of the upper water, and , A heat pump water heater characterized in that a throttle 7 is provided in a return system from the second water pipe 5 to the upper part of the hot water storage tank 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8513282U JPS58186344U (en) | 1982-06-07 | 1982-06-07 | Heat pump water heater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8513282U JPS58186344U (en) | 1982-06-07 | 1982-06-07 | Heat pump water heater |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58186344U JPS58186344U (en) | 1983-12-10 |
JPS621647Y2 true JPS621647Y2 (en) | 1987-01-14 |
Family
ID=30094042
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8513282U Granted JPS58186344U (en) | 1982-06-07 | 1982-06-07 | Heat pump water heater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58186344U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015040670A (en) * | 2013-08-23 | 2015-03-02 | 株式会社ノーリツ | Hot water storage and supply device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013083363A (en) * | 2011-10-06 | 2013-05-09 | Panasonic Corp | Water heating device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52126445U (en) * | 1976-03-24 | 1977-09-26 | ||
JPS5746532Y2 (en) * | 1976-12-14 | 1982-10-13 | ||
JPS5450234U (en) * | 1977-09-14 | 1979-04-07 |
-
1982
- 1982-06-07 JP JP8513282U patent/JPS58186344U/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015040670A (en) * | 2013-08-23 | 2015-03-02 | 株式会社ノーリツ | Hot water storage and supply device |
Also Published As
Publication number | Publication date |
---|---|
JPS58186344U (en) | 1983-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4098092A (en) | Heating system with water heater recovery | |
US4241588A (en) | Energy conserving water heating system | |
JPS63210577A (en) | Integrated heat pump and hot-water supply device | |
JP4378900B2 (en) | Heat pump type water heater | |
CN204630138U (en) | Air-conditioner | |
KR100524578B1 (en) | Heat pump type hot water supply heater | |
US3240261A (en) | Thermoelectric apparatus and method | |
CN210245678U (en) | Liquid cooling temperature equalizing system of battery pack | |
JPS621647Y2 (en) | ||
CN114132169A (en) | Work vehicle and thermal management system thereof | |
JP3047831B2 (en) | Heat pump system | |
KR20050005744A (en) | Heat pump type hot water supplier | |
JP3888117B2 (en) | Hot water storage water heater | |
JP4893165B2 (en) | Heat pump type water heater | |
JPS621646Y2 (en) | ||
JP3129210B2 (en) | Water heater | |
JPH06221673A (en) | Heat pump type hot water supplying apparatus | |
CN109341063A (en) | A kind of gas-heating water heater and its quick heating method | |
JP2014228214A (en) | Heat pump water heater | |
JPH01163553A (en) | Hot water supplier | |
CN213920601U (en) | Vehicle warm water heating installation and vehicle | |
JPH0124508Y2 (en) | ||
WO2020211463A1 (en) | Water path system of water dispenser and water dispenser having same | |
JPH0327255Y2 (en) | ||
JPH033902Y2 (en) |