JPS62163939A - Evaluation method for infrared detector - Google Patents

Evaluation method for infrared detector

Info

Publication number
JPS62163939A
JPS62163939A JP61006850A JP685086A JPS62163939A JP S62163939 A JPS62163939 A JP S62163939A JP 61006850 A JP61006850 A JP 61006850A JP 685086 A JP685086 A JP 685086A JP S62163939 A JPS62163939 A JP S62163939A
Authority
JP
Japan
Prior art keywords
detector
temperature
bias current
heat generation
holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61006850A
Other languages
Japanese (ja)
Inventor
Naoki Oda
直樹 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61006850A priority Critical patent/JPS62163939A/en
Publication of JPS62163939A publication Critical patent/JPS62163939A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To enable comparison between a theoretical value and a measured data, by measuring sensitivity after a rise in the temperature of a detector itself caused by heat due to a bias current is offset. CONSTITUTION:In the evaluation of sensitivity of a photoconductive type infrared detector with a large heat generation by a bias current, a means for adjusting the temperature of a detector holder is provided and the maximum of an output is read from a data obtained with the output of the detector at a several bias current values as function of temperature of a detector holder and are plotted as functions of bias currents to correct the effect of the heat generation. In other words, in order to correct the effect of the heat generation, it is necessary to offset a rise in the temperature of the detector itself by setting the temperature of the detector holder at a low temperature. The responsivity as obtained when the temperature of the detector holder is lowered step by step reaches the maximum at a certain temperature. This measurement is conducted for several bias currents and the maximums of the response are plotted with respect to the bias currents to obtain a data for the dependence of response on bias current with a corrected effect of the heat generation.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はバイアス電流による発熱が大きな光伝導型赤外
線検出器の感度の評価において、発熱による感度の劣化
を補正して正しい感度を知る方法に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a method for determining the correct sensitivity by correcting deterioration in sensitivity due to heat generation in evaluating the sensitivity of a photoconductive infrared detector that generates a large amount of heat due to bias current. It is something.

(従来の技術) HgCdTe光伝導型赤外線検出器の感度のバイアス電
流依存性を測定する際、検出器ホールダの温度を例えば
液体窒素温度77Kに固定していた(第4図)。同図に
おいて黒体炉1の赤外線輻射はチョッパー2によって交
流化されてデユワ−3内の検出器ホールダ5に取り付け
られた検出器4に入射する。
(Prior Art) When measuring the bias current dependence of the sensitivity of a HgCdTe photoconductive infrared detector, the temperature of the detector holder was fixed at, for example, the liquid nitrogen temperature of 77 K (FIG. 4). In the figure, infrared radiation from a blackbody furnace 1 is converted into alternating current by a chopper 2 and is incident on a detector 4 attached to a detector holder 5 in a dewar 3.

6はデユワ一台である。量検出器ホールダは液体窒素溜
7によって冷却されその温度はホールダに取り付けられ
た測温抵抗体と測温器11によって知ることができる。
6 is a single deyuwa. The quantity detector holder is cooled by a liquid nitrogen reservoir 7, and its temperature can be determined by a temperature measuring resistor and a temperature measuring device 11 attached to the holder.

検出器の出力はプリアンプ9によって増幅された後スペ
クトルアナライザ10に入力される。同図の評価装置を
用いた場合バイアス電流による発熱のため検出器自体の
温度が上昇して感度が下降することが以前から知られて
いた(シー・ティー・エリオツド(C,T、Ellio
tt)等インフラレッドフィジクス(Infrared
 Physics)第22巻(1982)31頁)。
The output of the detector is amplified by a preamplifier 9 and then input to a spectrum analyzer 10. It has been known for some time that when the evaluation device shown in the figure is used, the temperature of the detector itself increases due to the heat generated by the bias current, and the sensitivity decreases (C.T. Elliot
tt) etc. Infrared Physics (Infrared
Physics) Vol. 22 (1982, p. 31).

(発明が解決しようとする問題点) HgCdTe光伝導型赤外線検出器に関する従来の評価
方法だと検出器ホールダの温度を一定に保った場合、あ
る値より大きなバイアス電流を流すとしスボンシヴイテ
ィが下降する。その詳細は次の通りである。HgCdT
e検出器はエポキシ系接着剤によってサファイアのよう
な絶縁基板に接着されている。接着剤の厚みが311m
程度だと、その低い熱伝導率のため大きなバイアス電流
を必要とする。
(Problems to be Solved by the Invention) According to the conventional evaluation method for HgCdTe photoconductive infrared detectors, when the temperature of the detector holder is kept constant, the susceptibility decreases when a bias current larger than a certain value is applied. The details are as follows. HgCdT
The e-detector is bonded to an insulating substrate such as sapphire with an epoxy adhesive. Adhesive thickness is 311m
At low thermal conductivity, large bias currents are required due to the low thermal conductivity.

HgCdTe検出器の場合ジュール熱によって検出器自
体の温度が上昇する。この状況下で検出器のレスポンシ
ヴイティのバイアス電流依存性をプロットすると第5図
のようになる。同図を見て分かるように検出器ホールダ
の温度を一定に保った場合バイアス電流がある値より大
きくなるとレスポンシヴイティが下降する。その主な原
因はバイアス電流に起因する発熱にある。これでは検出
器の性能を理論値と比較することが非常に難しくつまり
性能を決める諸量のうちどれを改善すれば性能向上につ
ながるかという対応関係を見出すのが容易ではない。本
発明の目的はバイアス電流に起因する発熱による検出器
自体の温度上昇を相殺した上で感度を測定して発熱の影
響を補正したデータを提供し理論値との比較を容易なら
しめる方法を提供することにある。
In the case of a HgCdTe detector, the temperature of the detector itself increases due to Joule heat. If the dependence of the responsivity of the detector on the bias current is plotted under this situation, the result will be as shown in FIG. As can be seen from the figure, when the temperature of the detector holder is kept constant, the responsivity decreases when the bias current exceeds a certain value. The main cause of this is heat generated by bias current. This makes it very difficult to compare the performance of the detector with the theoretical value, which means that it is not easy to find a correspondence between the various quantities that determine performance that should be improved to improve performance. The purpose of the present invention is to provide a method that offsets the temperature rise of the detector itself due to heat generated by bias current, measures sensitivity, provides data corrected for the effects of heat generation, and facilitates comparison with theoretical values. It's about doing.

(問題点を解決するための手段) 本発明はバイアス電流による発熱が大きな光伝導型赤外
線検出器の感度の評価において検出器ホールダの温度を
調節する手段を備え、いくつかのバイアス電流値におけ
る検出器の出力を検出器ホールダの温度の関数として得
たデータから出力の最大値を読み取りそれらをバイアス
電流の関数としてプロットし発熱の影響を補正すること
を特徴とする。
(Means for Solving the Problems) The present invention includes a means for adjusting the temperature of a detector holder in evaluating the sensitivity of a photoconductive infrared detector that generates a large amount of heat due to bias current, and detects detection at several bias current values. The present invention is characterized in that the maximum value of the output is read from data obtained as a function of the temperature of the detector holder and the maximum value of the output is plotted as a function of the bias current to correct for the effect of heat generation.

(作用) 前述の発熱の影響を補正するには検出器ホールダの温度
をより低温にすることにより検出器自体の温度上昇を相
殺する必要がある。検出器ホールダの温度を下げていっ
た時のレスボンシヴイティはある温度で最大値を持つ。
(Function) In order to correct the effect of heat generation mentioned above, it is necessary to offset the temperature rise of the detector itself by lowering the temperature of the detector holder. When the temperature of the detector holder is lowered, the responsiveness reaches a maximum value at a certain temperature.

この測定をいくつかのバイアス電流に対して行いレスボ
ンシヴイティの最大値をバイアス電流に対してプロット
することによって発熱の影響を補正したレスボンシヴイ
ティのバイアス電流依存性のデータを得ることができる
。このように発熱の影響を補正することによって初めて
理論値と測定データの比較が可能になり更には性能を決
める諸量のうちどれを改善すれば性能向上につながるか
という対応関係を見い出すこともできる。
By performing this measurement for several bias currents and plotting the maximum value of responsivity against the bias current, it is possible to obtain data on the bias current dependence of responsivity that has been corrected for the effects of heat generation. can. By correcting the effects of heat generation in this way, it becomes possible to compare theoretical values and measured data, and it is also possible to find correspondences that determine which variables that determine performance should be improved to improve performance. .

(実施例) 第1〜3図は本発明の実施例を示す。光伝導型赤外線検
出器4としてはn型のHg0.795CdO,205T
eの単結晶を13pmの厚さに薄くしてCr−Au電極
を付けた、通称スプライト(SPRITE)と呼ばれる
積分型のものを用いた。素子の大きさはドリフト領域の
長さ700pm、同領域の幅65pm、読出領域の長さ
6011m、同領域の幅40pmである。この素子は厚
さ0.5mmのサファイア基板にエポキシ系接着剤によ
って貼り付けられている。接着剤の厚みは4.511m
であった。
(Example) Figures 1 to 3 show examples of the present invention. The photoconductive infrared detector 4 is an n-type Hg0.795CdO, 205T.
An integral type crystal, commonly called SPRITE, was used, which was made by thinning a single crystal of E to a thickness of 13 pm and attaching a Cr--Au electrode. The dimensions of the device are as follows: the length of the drift region is 700 pm, the width of the same region is 65 pm, the length of the read region is 6011 m, and the width of the same region is 40 pm. This element is attached to a sapphire substrate with a thickness of 0.5 mm using an epoxy adhesive. The thickness of the adhesive is 4.511m
Met.

第1図は赤外線検出器の感度の評価装置を示す。黒体炉
1からの赤外線輻射はチョッパー2によって交流化され
デユワ−3の中の検出器ホールダ5に取付けられた検出
器4に入射する。検出器の出力はプリアンプ9によって
増幅されスペクトルアナライザ10に入力される。検出
器ホールダ5には測温抵抗体が取付けられており温度は
測温器11に表示される。また減圧装置8によって液体
窒素溜7を減圧することによって検出器ホールダ5の温
度をより低温にすることができる。同図に示すように素
子4の口径比16゜7のダイアフラム12と狭帯域干渉
フィルタ13(中心波長10.9pm、波長幅0.75
pm、透過率75%)とともにデユワ−3に納めて液体
窒素温度に冷却した。液体窒素溜7はロータリーポンプ
、ニードルバルブ、ブ   ・ルドン管から成る減圧装
置8によって減圧された結果、固体窒素温度約50Kに
まで冷やされる。温度は検出器ホールダ5に取り付けた
Pt−Co測温抵抗体を測温器11に接続することによ
って測定された。測温器は1mAの定電流源ディジタル
ポルトメータから成る。黒体炉1は500Kに設定され
、炉からの赤外線は回転式チョッパー2により13Hz
に交流化され検出器4に入射する。検出器からの信号は
ゲイン100の低雑音プリアンプ9によって増幅されス
ペクトルアナライザ10に入力される。周知のように検
出語のレスボンシヴイティ(v/w)は同スペクトルア
ナライザで解析された電圧(V)を黒体炉からの入射パ
ワー(W)で割ることによって求められる。
FIG. 1 shows an apparatus for evaluating the sensitivity of an infrared detector. Infrared radiation from the blackbody furnace 1 is converted into alternating current by a chopper 2 and is incident on a detector 4 attached to a detector holder 5 in a dewar 3. The output of the detector is amplified by a preamplifier 9 and input to a spectrum analyzer 10. A resistance temperature detector is attached to the detector holder 5, and the temperature is displayed on the temperature detector 11. Further, by reducing the pressure in the liquid nitrogen reservoir 7 using the pressure reducing device 8, the temperature of the detector holder 5 can be lowered. As shown in the figure, a diaphragm 12 with an aperture ratio of 16°7 and a narrow band interference filter 13 (center wavelength 10.9 pm, wavelength width 0.75
pm, transmittance 75%) and was placed in a Dewar-3 and cooled to liquid nitrogen temperature. The liquid nitrogen reservoir 7 is depressurized by a pressure reducing device 8 consisting of a rotary pump, a needle valve, and a Bourdon tube, and is cooled to a solid nitrogen temperature of about 50K. The temperature was measured by connecting a Pt-Co resistance temperature detector attached to the detector holder 5 to the temperature meter 11. The temperature meter consists of a 1 mA constant current source digital portometer. The blackbody furnace 1 is set at 500K, and the infrared rays from the furnace are converted to 13Hz by the rotary chopper 2.
is converted into alternating current and enters the detector 4. The signal from the detector is amplified by a low noise preamplifier 9 with a gain of 100 and input to a spectrum analyzer 10. As is well known, the responsiveness (v/w) of a detected word is determined by dividing the voltage (V) analyzed by the spectrum analyzer by the incident power (W) from the blackbody furnace.

前述のように検出器ホールダ5の温度は減圧装置8によ
って液体窒素溜7を減圧することによって下げることが
できる。その時のレスボンシヴイティと温度の関係をバ
イアス電流8mAに対して測定したものを第2図に示す
。図から分るように検出器ホールダが62.5Kに冷え
るまでレスボンシヴイティは増加し続け、それ以下では
減少する。ここでバイアス電流に起因するジュール熱H
(Watt)による検出器の温度上昇ΔTは熱伝導の観
点からΔT : IH/kAわと近似的に表される。こ
こに1は接着剤の厚み、kは接着剤の熱伝導率、Aは検
出器の面積である。この実施例の場合1=4.5pm。
As mentioned above, the temperature of the detector holder 5 can be lowered by reducing the pressure of the liquid nitrogen reservoir 7 using the pressure reducing device 8. FIG. 2 shows the relationship between responsiveness and temperature measured at a bias current of 8 mA. As can be seen from the figure, the responsivity continues to increase until the detector holder cools down to 62.5K, and below that, it decreases. Here, Joule heat H due to bias current
The temperature rise ΔT of the detector due to (Watt) is approximately expressed from the viewpoint of heat conduction as ΔT: IH/kA. Here, 1 is the thickness of the adhesive, k is the thermal conductivity of the adhesive, and A is the area of the detector. In this example, 1=4.5pm.

A=5X10−’am2、エポキシ系接着剤の液体窒素
温度での熱伝導率に〜1.4mW/am−になのでΔT
〜0゜643H(HはmW単位)と表わされる。バイア
ス電流が8mAの場合H〜20mW従ってΔT〜13に
となる。このようにして求めた検出器自体の温度上昇Δ
Tを、レスボンシヴイティを最大にする検出器ホールダ
の温度Tm=62.5Kに加えると検出器自体の温度T
Dニア5.5Kになる。このような測定と考察をいくつ
かのバイアス電流(IB)に対して行った結果、得られ
たΔ’r、’rm、’r、、の値を表1に示す。
A=5X10-'am2, the thermal conductivity of the epoxy adhesive at liquid nitrogen temperature is ~1.4 mW/am-, so ΔT
~0°643H (H is in mW). When the bias current is 8 mA, H~20 mW, so ΔT~13. The temperature rise Δ of the detector itself obtained in this way
When T is added to the temperature of the detector holder that maximizes responsiveness, Tm = 62.5K, the temperature of the detector itself is T.
It becomes D near 5.5K. Table 1 shows the values of Δ'r, 'rm, 'r, ., obtained as a result of such measurements and considerations for several bias currents (IB).

表を見て分るようI”−バイアス電流が大きくなるとT
mが減少しているに対し、発熱の影響を補正した検出器
自体の温度TDはほぼ一定である。従ってTm(K)に
おけるレスボンシヴイティの値つまり最大値をバイアス
電流に対してプロットしたデータ(第3図)は発熱の影
響を補正した正しいレスポンシヴイティとバイアス電流
の関係を表わすことになる。
As you can see from the table, as the I''-bias current increases, T
While m is decreasing, the temperature TD of the detector itself after correcting the influence of heat generation remains almost constant. Therefore, the data (Figure 3) in which the value of responsivity at Tm (K), that is, the maximum value, is plotted against the bias current represents the correct relationship between responsivity and bias current, corrected for the effects of heat generation. .

同図において破線は積分型光伝導型HgCdTe赤外線
検出器のレスポンシヴイティの理論曲線を示す。
In the figure, the broken line indicates the theoretical responsivity curve of the integral photoconductive HgCdTe infrared detector.

この曲線は一次元の拡散方程式をオーミックコンタクト
という境界条件の下で解いた結果である。
This curve is the result of solving a one-dimensional diffusion equation under the boundary condition of ohmic contact.

計算に用いたパラメータは次の通りである。測定波長1
0.9pm7オトンバツクグラウンド8×1013ph
c1013ph、量子効率0,7、多数キャリア濃度1
015cm−3、少数キャリア寿命2.511sec、
少数キャ表1.各バイアス電流IBに対する検出器自体
の温度上昇ΔT、レスポンシヴイティを最大にする検出
器ホールダの温度Tm及び それらの和で表わされる検出器自体の 温度TI)の値 リアの移動度350cm2/V−seeo ここで多数
キャリア濃度はHall測定により得た。また寿命は高
周波で発振させた半導体レーザの線輻射をHgCdTe
検出器に照射させ検出器の出力をストーレッジオシロス
コープに表示することによって得た。量子効率につぃて
は今回用いた検出器には無反射コーティングを付けてな
いので、HgCdTe結晶の屈折率を考慮すると0.7
と計算される。フォトンバックグラウンドは300にの
環境からの熱輻射が前述の狭帯域フィルタとダイアフラ
ムを通って検出器に降ってくるという状況から計算され
る。
The parameters used in the calculation are as follows. Measurement wavelength 1
0.9pm 7 oton background 8 x 1013ph
c1013ph, quantum efficiency 0.7, majority carrier concentration 1
015cm-3, minority carrier life 2.511sec,
Minority number table 1. The temperature rise ΔT of the detector itself for each bias current IB, the temperature Tm of the detector holder that maximizes the responsiveness, and the temperature TI of the detector itself expressed by the sum of these values. seeo Here, the majority carrier concentration was obtained by Hall measurement. In addition, the lifetime is determined by the line radiation of a semiconductor laser oscillated at high frequency.
It was obtained by irradiating the detector and displaying the output of the detector on a storage oscilloscope. The quantum efficiency is 0.7 considering the refractive index of the HgCdTe crystal since the detector used this time does not have an anti-reflection coating.
It is calculated as follows. The photon background is calculated from the situation where 300° of thermal radiation from the environment falls on the detector through the narrow band filter and diaphragm described above.

このように発熱の影響を補正する前述の評価方法を用い
ると測定データと理論値との比較が容易に、なり、どの
パラメータを改侍すれば検出器の性能を有効に向上でき
るかを判断することができる。
By using the above-mentioned evaluation method that corrects for the effects of heat generation, it becomes easy to compare measured data with theoretical values, and determine which parameters should be modified to effectively improve the performance of the detector. be able to.

なお本発明は上記の実施例に見られる結晶材料、半導体
の型、波長帯、冷却方法に限らず要するに大きいバイア
ス電流を必要とする光伝導型検出器において普遍的に成
立つ。例えば単結晶Pb5nTeを材料とした検出器循
還冷却器を用いた温度調節方法にも本発明を適用するこ
とができる。
Note that the present invention is not limited to the crystal materials, semiconductor types, wavelength bands, and cooling methods shown in the above embodiments, but is universally applicable to photoconductive detectors that require a large bias current. For example, the present invention can also be applied to a temperature control method using a detector circulation cooler made of single crystal Pb5nTe.

(発明の効果) 以上で説明したように本発明によればバイアス電流によ
る発熱が大きな光伝導型検出器のレスポンシヴティの評
価において、検出器ホールダの温度を下げることによっ
て発熱による検出器自体の温度上昇を相殺して、正しい
レスボンシヴテイとバイアス電流の関係を提供しかつそ
れによって測定データと理論との比較が容易になり検出
器の性能向上を効率よく行うことができる。
(Effects of the Invention) As explained above, according to the present invention, in evaluating the responsiveness of a photoconductive detector that generates a large amount of heat due to bias current, the temperature of the detector itself increases due to heat generation by lowering the temperature of the detector holder. This provides a correct relationship between responsiveness and bias current, which facilitates comparison of measured data with theory and allows efficient improvement of detector performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の詳細な説明するための赤外線検出器
の評価装置を示す模式図。1は黒体炉、2はチョッパー
、3はデユワ−14は検出器、5は検出器ホールダ、6
はデユワ一台、7は液体窒素溜、8は減圧装置、9はプ
リアンプ、10はスペクトルアナライザ、11は測fL
器、12はダイアフラム、13は狭帯域干渉フィルタで
ある。第2図は検出器ホールダの温度を下げていった時
のレスポンシヴイティの変化をバイアス電流8mAに対
して示した図である。第3図は発熱の影響を補正したレ
スポンシヴイティとバイアス電流の関係を示す図。同図
において黒丸印は測定データを、破線は理論値を示す。 第4図は従来の赤外線検出器の評価方法を示す図、図中
の番号は第1図における説明と同じである。第5図は検
出器ホールダの温度を77Kに保った時のレスボンシヴ
イティとバイアス電流の関係を示す図。 72 図 Xl06V/W 検出器ホールダの温度IKI 73 図 xlo6V/W バイアス電流(mAl
FIG. 1 is a schematic diagram showing an infrared detector evaluation device for explaining the present invention in detail. 1 is a blackbody furnace, 2 is a chopper, 3 is a dewar-14 is a detector, 5 is a detector holder, 6
1 is a dewar, 7 is a liquid nitrogen reservoir, 8 is a pressure reducer, 9 is a preamplifier, 10 is a spectrum analyzer, 11 is a measuring fL
12 is a diaphragm, and 13 is a narrowband interference filter. FIG. 2 is a diagram showing the change in responsivity with respect to a bias current of 8 mA as the temperature of the detector holder is lowered. FIG. 3 is a diagram showing the relationship between responsivity and bias current after correcting the influence of heat generation. In the figure, black circles indicate measured data, and broken lines indicate theoretical values. FIG. 4 is a diagram showing a conventional evaluation method for an infrared detector, and the numbers in the diagram are the same as those in the explanation in FIG. 1. FIG. 5 is a diagram showing the relationship between responsivity and bias current when the temperature of the detector holder is maintained at 77K. 72 Figure Xlo6V/W Detector holder temperature IKI 73 Figure xlo6V/W Bias current (mAl

Claims (1)

【特許請求の範囲】[Claims] バイアス電流による発熱が大きな光伝導型赤外線検出器
の感度の評価方法において、検出器ホールダの温度を調
節する手段を備え、いくつかのバイアス電流値における
検出器の出力を検出器ホールダの温度の関数として得た
データから出力の最大値を読み取り、それらをバイアス
電流の関数としてプロットし発熱の影響を補正すること
を特徴とする赤外線検出器の評価方法。
In a method for evaluating the sensitivity of a photoconductive infrared detector that generates a large amount of heat due to bias current, the method includes means for adjusting the temperature of the detector holder, and the output of the detector at several bias current values is determined as a function of the temperature of the detector holder. An evaluation method for an infrared detector, characterized in that the maximum output value is read from data obtained as a function of bias current, and the effects of heat generation are corrected by plotting them as a function of bias current.
JP61006850A 1986-01-14 1986-01-14 Evaluation method for infrared detector Pending JPS62163939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61006850A JPS62163939A (en) 1986-01-14 1986-01-14 Evaluation method for infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61006850A JPS62163939A (en) 1986-01-14 1986-01-14 Evaluation method for infrared detector

Publications (1)

Publication Number Publication Date
JPS62163939A true JPS62163939A (en) 1987-07-20

Family

ID=11649711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61006850A Pending JPS62163939A (en) 1986-01-14 1986-01-14 Evaluation method for infrared detector

Country Status (1)

Country Link
JP (1) JPS62163939A (en)

Similar Documents

Publication Publication Date Title
Rai Temperature sensors and optical sensors
US9229114B2 (en) Radiation analyzer and method for analyzing radiation
US20110103424A1 (en) Electro-Magnetic Radiation Detector
Teubner et al. Quantitative assessment of the power loss of silicon PV modules by IR thermography and its dependence on data‐filtering criteria
CN104713642B (en) Measurement device for absolute energy of vacuum ultraviolet laser
JP5146745B2 (en) X-ray analyzer
JP4043572B2 (en) Determination of concentration of measured gas components
US6304328B1 (en) Non-contact temperature and concentration measurement on liquid surfaces
JPS62163939A (en) Evaluation method for infrared detector
US6437331B1 (en) Bolometer type infrared sensor with material having hysterisis
CN113932940B (en) Temperature measuring method, temperature measuring device, temperature measuring sensor and computer readable storage medium
Eisenman et al. Operational characteristics of infrared photodetectors
JP5146746B2 (en) X-ray analyzer
Eppeldauer et al. Characterization of a high sensitivity composite silicon bolometer
Spencer Noise and signal response in lead sulfide photoconductive films
Vass et al. Amorphous bismuth‐germanium thin films: Infrared detector characterization
CN110350075A (en) A kind of hot induced voltage material and its application
Grattan et al. Fluorescence referencing for fiber‐optic thermometers using visible wavelengths
Stoddart et al. High-temperature studies of surface acoustic wave velocities in silicon by Brillouin scattering
JPH0543276B2 (en)
US5008523A (en) Current measuring circuit with means for nullifying the effects of current source and lead resistance
Eppeldauer The Properties of Optical Radiation Detectors and Radiometers
Dusi et al. A study of temperature dependence of some relevant parameters performed on a set of CdTe detectors
Vasić et al. Study of the increased temperature influence on the degradation of the photodetectors through ideality factor
JP3534103B2 (en) Bolometer type infrared sensor