JPS62163936A - Measuring method for temperature in furnace of hot isostatic pressing unit - Google Patents

Measuring method for temperature in furnace of hot isostatic pressing unit

Info

Publication number
JPS62163936A
JPS62163936A JP555286A JP555286A JPS62163936A JP S62163936 A JPS62163936 A JP S62163936A JP 555286 A JP555286 A JP 555286A JP 555286 A JP555286 A JP 555286A JP S62163936 A JPS62163936 A JP S62163936A
Authority
JP
Japan
Prior art keywords
temperature
wavelength
furnace
absorption
temperature measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP555286A
Other languages
Japanese (ja)
Inventor
Tomotaka Manabe
知多佳 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP555286A priority Critical patent/JPS62163936A/en
Priority to DE8787100299T priority patent/DE3782505T2/en
Priority to EP87100299A priority patent/EP0229653B1/en
Priority to US07/003,143 priority patent/US4815098A/en
Publication of JPS62163936A publication Critical patent/JPS62163936A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To enable more accurate and stable measurement of temperature, by selecting a temperature measuring wavelength not subjected to absorption by a low boiling point metal beforehand to measure the temperature by the wavelength. CONSTITUTION:A radiation light at the tip of an end-closed pipe is focused by an optical system 1 and the wavelength other than the absorption wavelengths of a low melting point metal is selected by a filter 2, then, the wavelength is transmitted through an optical fiber or the like and converted into electricity by a signal processor 4 to output a temperature. This eliminates overlapping of the absorption with a temperature measuring wavelength even in the presence of a gas of a low boiling point metal. Therefore, correct temperature measurement is possible regardless of glass for a processing capsule in the furnace.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は熱間静水圧力口圧(以下、HI Pと略記する
。)装置の炉内の温度を測定する方法、特に測温に使用
する波長域に改善をmえた上記HI P装置の炉内温度
の測定方法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for measuring the temperature inside a furnace of a hot isostatic pressure (hereinafter abbreviated as HIP) device, particularly for use in temperature measurement. This invention relates to a method for measuring the temperature inside the furnace of the above-mentioned HIP apparatus, which has been improved in the wavelength range.

(従来の技術) HIP装置は高温と高圧の相乗効果を利用して粉体の加
圧焼結、焼結品矢鍛造品の欠陥除去あるいは拡散接合な
とを行う装置であって、近年、頓にその工業的利用が注
目されているが、最近ではその適用はエンジニアリング
セラミンクスを対象として1700℃〜2100℃の高
温頭載に拡がっている。
(Prior art) HIP equipment is a device that uses the synergistic effect of high temperature and high pressure to perform pressure sintering of powder, removal of defects in sintered and forged products, and diffusion bonding. Its industrial use has been attracting attention, and recently its application has expanded to high-temperature overheads of 1700° C. to 2100° C. for engineering ceramics.

ところで、かかる装置においてはその高温高圧炉内の温
度制御は処理効果の上に極めて重要であり、そのため炉
内温度を検知するための温度測定手段が種々溝ぜられて
おり、現在では閉端管を利用して放射測温手段等の採用
が取沙汰されている。
By the way, temperature control inside the high-temperature, high-pressure furnace in such equipment is extremely important for processing effectiveness, and therefore various temperature measurement means are installed to detect the temperature inside the furnace, and currently closed-end tubes are used. There has been talk of adopting radiation temperature measurement methods using this method.

第4図、第7図はかかる炉内の温度測定手段を設けた既
知のHI P装置の各側を示す。
FIGS. 4 and 7 show each side of a known HIP apparatus provided with such means for measuring the temperature within the furnace.

即ち、第4図は閉端管(15)と光ファイバ(16)を
使用し、該閉端管(15)を断熱層(12)を含む高圧
容器(11)の下M (13)上に試料台(14)が設
置されたHIP!置の前記断熱層(12)によって区画
形成された炉室内に被測温部位に先端が位置されるよう
設置し、閉端管からの熱放射を閉端管下部にある光ファ
イバ(16)により炉外に導き、放射温度計(17)か
らなる測定系に接続した装置(特開昭60−13332
7号公報参照)であり、閉端管(15)からの放射光を
光ファイバ(16)へ取り入れるのに第5図の如く直接
、光ファイバ(16)へ入射させる方法あるいは第6図
の如くレンズ(19)を用いたコリメータ(20)で光
ファイバ(16)へ集光する方法などがあり、一方、第
7図はHIP装置の炉室、即ち、処理室に上端が閉鎖さ
れた長短細長円管(30) (31)を、その上端部が
処理室外に位置するよう設置し、その開口端部に放射温
度計の測定端子(32) (33)を細長円管(30)
 (31)上端部に焦点を結ぶように調節して取り付け
、測定端子(32) (33)を通してHIP装置内の
温度変換装置(36)に導き、これにより温度に対応し
た出力を高圧容器を貫通するリード線(37)を介して
外部へ取り出し、処理室温度自動制御装置(38) 、
サイリスク制御装置(39)等により上下のヒータ(4
0) (41)の制御を行うようにした装置(特開昭6
0−144627号公報参照)である。
That is, FIG. 4 uses a closed-end tube (15) and an optical fiber (16), and places the closed-end tube (15) on the lower M (13) of a high-pressure container (11) containing a heat insulating layer (12). HIP with sample stand (14) installed! The tube is installed so that its tip is located at the area to be measured in the furnace chamber defined by the heat insulating layer (12), and the heat radiation from the closed-end tube is transmitted through the optical fiber (16) at the bottom of the closed-end tube. A device led outside the furnace and connected to a measurement system consisting of a radiation thermometer (17) (Japanese Patent Laid-Open No. 60-13332)
(Refer to Publication No. 7) In order to introduce the emitted light from the closed-end tube (15) into the optical fiber (16), there is a method of directly inputting it into the optical fiber (16) as shown in Fig. 5, or a method as shown in Fig. 6. There is a method of focusing light onto an optical fiber (16) using a collimator (20) using a lens (19).On the other hand, Fig. 7 shows a method of focusing the light onto an optical fiber (16) using a collimator (20) using a lens (19). Install the circular tubes (30) (31) so that their upper ends are located outside the processing chamber, and connect the measurement terminals (32) (33) of the radiation thermometer to the open ends of the elongated circular tubes (30).
(31) Adjust and attach it so that the focus is on the upper end, and guide it through the measurement terminals (32) and (33) to the temperature converter (36) in the HIP device, thereby transmitting an output corresponding to the temperature to the high-pressure container. The processing chamber temperature automatic control device (38) is taken out to the outside via the lead wire (37)
The upper and lower heaters (4) are controlled by the Cyrisk control device (39), etc.
0) A device designed to control (41) (Unexamined Japanese Patent Publication No. 6
0-144627).

ところで、上記の如き測温法において閉端管先端部の放
射光を直接に光ファイバへ入射させる方法では、光ファ
イバの視野角が広いため温度分布をもった閉端管(15
)側壁からの熱放射が入射し、これが先端部からの熱放
射に加わり、先端部の測温に対し誤差の原因となる。
By the way, in the above-mentioned temperature measurement method, in which the emitted light from the tip of the closed-end tube is directly incident on the optical fiber, the closed-end tube (15
) Thermal radiation from the side wall enters, which is added to the thermal radiation from the tip, causing an error in temperature measurement at the tip.

そこで、かかる誤差を解消する手段が検討され実験の結
果、検出波長を0.6μm以下とすれば2000℃近傍
での測温誤差は1%以下に抑えるこが可能であることが
知見された。但しコリメータなどにより視野を閉端管先
端部に限定している場合はこの限りではない。
Therefore, means to eliminate such errors were investigated, and as a result of experiments, it was found that if the detection wavelength was set to 0.6 μm or less, it was possible to suppress the temperature measurement error in the vicinity of 2000° C. to 1% or less. However, this does not apply when the field of view is limited to the tip of the closed-end tube using a collimator or the like.

しかし、一方、波長は短い程、測温誤差は減少するにし
ても、光学材料の制限から短波長側の限界もあり、0.
2μm以下では検出することは難しく、0,3μmまで
が好適であることが分かった。
However, on the other hand, although the temperature measurement error decreases as the wavelength becomes shorter, there is a limit on the short wavelength side due to limitations of optical materials, and 0.
It was found that it is difficult to detect a particle size of 2 μm or less, and that a particle size of 0.3 μm or less is suitable.

しかも、光電子増倍管(PM)による光子計数法を用い
ることを前提として時定数1秒で1000℃の対象に対
する温度分解能の波長依存性を計算した結果、温度分解
能をIK以上とするには、0.3μm以上でなければな
らないことも判明した。
Moreover, as a result of calculating the wavelength dependence of temperature resolution for a target of 1000°C with a time constant of 1 second on the premise that a photon counting method using a photomultiplier tube (PM) is used, in order to make the temperature resolution higher than IK, It was also found that the thickness must be 0.3 μm or more.

従って、これらの点より放射温度計の具体的な検出波長
は実際上、0.3μm〜0.6μmの範囲、但しコリメ
ータなどにより測温対象点に視野を限定している場合に
0.3μm以上の範囲として測温されている。
Therefore, from these points, the specific detection wavelength of the radiation thermometer is actually in the range of 0.3 μm to 0.6 μm, however, if the field of view is limited to the temperature measurement point using a collimator etc., it will exceed 0.3 μm. The temperature is measured as a range of .

とは云っても、しかし上記測温に利用する放射光の分光
特性については黒体、灰色体ということ以外に関しては
全く言及されていない。
However, there is no mention of the spectral characteristics of the synchrotron radiation used for temperature measurement, other than that it is a black body or a gray body.

そこで、実際のHIP装置からの放射光を分光してみる
と、第3図に示すように明瞭な吸収が認められる。これ
はHI P装置内の炉内処理物あるいはカプセル用ガラ
ス等から蒸発した低沸点金属により起こる吸収であるが
、このようなことはHrp装置のような高温の密閉容器
では低沸点金属が内部にあった場合、昇温中に低沸点金
属が蒸発し、ガスとなり、容器内から排出されることな
く容器内に漂うことになる。
Therefore, when the radiation light from an actual HIP device is spectrally analyzed, clear absorption is observed as shown in FIG. This is absorption caused by low-boiling metals evaporated from the furnace-processed materials or capsule glass in the HRP equipment, but this is because low-boiling metals are evaporated from the inside of a high-temperature closed container like the HRP equipment. If there is, the low-boiling metal will evaporate during the temperature rise and become a gas, which will float inside the container without being discharged from the container.

そのため、放射測温を行う場合、測温対象点とコリメー
タとの間の光路に存在する金属ガスによる吸収が起こる
Therefore, when performing radiation temperature measurement, absorption occurs by the metal gas present in the optical path between the temperature measurement target point and the collimator.

ところが、従来の測温方法は上記の如き吸収の起こる状
況下の測温は想定しておらず、金属ガスの吸収と測温に
使用する波長が重なり、大きな誤差を生ずる恐れがある
However, conventional temperature measurement methods do not assume temperature measurement under conditions where absorption occurs as described above, and the wavelengths used for metal gas absorption and temperature measurement may overlap, resulting in large errors.

(発明が解決しようとする問題点) 本発明は畝上の如き実状に対処し、特に測温波長の選定
により前記の欠陥を解消し、より正確なかつ、安定した
測温を可能ならしめることを目的とするものである。
(Problems to be Solved by the Invention) The present invention deals with the actual situation such as ridges, and specifically aims to eliminate the above-mentioned defects by selecting the temperature measurement wavelength and to enable more accurate and stable temperature measurement. This is the purpose.

(問題点を解決するための手段) 即ち、上記目的に適合し、その効果を達成する本発明の
特徴とするところは、前記の如きHIP装置の測温方法
において、特に予め低沸点金属の吸収を避けた測温波長
を選定し、その波長で測温を行うことにある。
(Means for Solving the Problems) That is, the present invention, which is compatible with the above objects and achieves the effects, is characterized in that, in the temperature measuring method of the HIP device as described above, in particular, the absorption of low boiling point metals is The purpose of this method is to select a temperature measurement wavelength that avoids this and perform temperature measurement at that wavelength.

勿論、測温波長としては、前述の0.3μm〜0.6μ
mの範囲、コリメータなどにより測温対象点に視野を限
定している場合は0.3μm以上の範囲にあることは云
うまでもなく、そして低沸点金属の吸収をこけた波長を
選定することはフィルタを使用し、その透過波長域を低
沸点金属の吸収波長以外の波長域とすることによって容
易に行われる。
Of course, the temperature measurement wavelength is 0.3 μm to 0.6 μm as mentioned above.
Needless to say, if the field of view is limited to the temperature measurement point using a collimator, etc., it is in the range of 0.3 μm or more, and it is important to select a wavelength that is beyond the absorption of low boiling point metals. This is easily accomplished by using a filter and setting its transmission wavelength range to a wavelength range other than the absorption wavelength of the low boiling point metal.

(作用) 上記の如く低沸点金属の吸収を避けた波長を選定し測温
することにより、HIP装置内にそれら蒸発した低沸点
金属のガスが存在してもその吸収は回避され、閉端管先
端部の放射光を適確に受光し、正確な測定が行われる。
(Function) As mentioned above, by selecting a wavelength that avoids the absorption of low-boiling point metals and measuring the temperature, even if there is vaporized low-boiling point metal gas in the HIP device, its absorption is avoided, and the closed-end pipe The emitted light from the tip is accurately received and accurate measurements are performed.

(実施例) 以下、更に上記本発明に係る測温方法の具体的な実施態
様を添付図面にもとづいて説明する。
(Example) Hereinafter, specific embodiments of the temperature measuring method according to the present invention will be further described based on the accompanying drawings.

第1図は本発明測温方法に係る光学系の概要図であり、
(1)はコリメータの如き集光光学系、(2)はフィル
タ、(3)は受光部、(4)は信号処理装置を示し、図
示していない閉端管先端部の放射光を光学系(1)で集
光し、フィルタ(2)で低沸点金属の吸収波長以外の波
長を選定した後、該波長を光ファイバ(図示せず)等に
よって伝送し、信号処理装置(4)で光電変換を行い温
度出力として温度表示又は必要に応じヒータ制御に供す
るようになっている。
FIG. 1 is a schematic diagram of an optical system related to the temperature measurement method of the present invention,
(1) is a condensing optical system such as a collimator, (2) is a filter, (3) is a light receiving unit, and (4) is a signal processing device. After concentrating the light in (1) and selecting a wavelength other than the absorption wavelength of low-boiling point metals in filter (2), the wavelength is transmitted through an optical fiber (not shown), etc., and photoelectrically transmitted by signal processing device (4). The conversion is performed and the temperature output is used for temperature display or heater control as required.

上記過程においてフィルタ(2)で波長の制定を行をこ
とは本発明の重要なる点であり、ここで回避する低沸点
金属の吸収波長は次のように決定する。
It is an important point of the present invention that the wavelength is determined by the filter (2) in the above process, and the absorption wavelength of the low boiling point metal to be avoided here is determined as follows.

(イ)想定使用温度で蒸発する金属を選ぶ。(b) Select a metal that evaporates at the expected usage temperature.

(II)HIP装置程度の温度(〜2500K)では大
多数の原子が基底状態にあるから基底状態から励起され
るスペクトル波長を選ぶ。
(II) Since the majority of atoms are in the ground state at a temperature comparable to that of a HIP device (~2500K), a spectral wavelength that is excited from the ground state is selected.

などである。etc.

又、測温方式としては別設限定はなく、如何なる手段で
も要は上記の如く吸収波長を避けるものであれば差し支
えない。
Further, there is no particular limitation on the temperature measurement method, and any means may be used as long as it avoids absorption wavelengths as described above.

なお、上記実施例ではフィルタ(2)を使用しているが
、分光式の温度計の場合にはフィルタの選択はできない
ので第2図の如く予め吸収波長のテーブル(6)を記憶
させておき、吸収波長に対応するデータを除去すること
ができるようにすればよい。
In the above embodiment, filter (2) is used, but since the filter cannot be selected in the case of a spectroscopic thermometer, a table (6) of absorption wavelengths must be stored in advance as shown in Fig. 2. , the data corresponding to the absorption wavelength may be removed.

この場合、波長走査は飛ばしても可能である。In this case, it is possible to skip wavelength scanning.

図中、(5)は分光器を示す。In the figure, (5) indicates a spectrometer.

かくして、低沸点金属ガスが存在しても該金属ガスに影
響されることなく測温を行うことができる。
In this way, even if a low boiling point metal gas is present, temperature measurement can be performed without being affected by the metal gas.

(発明の効果) 本発明は以上の如<HIP装置の炉内の温度の測定にお
いて、低沸点金属の吸収波長を避け、それ以外の波長で
測温するようにしたものであり、低沸点金属の蒸発によ
るガスが存在することにより従来、これが測温波長域に
よっては吸収と重なり、到来する放射エネルギーが減少
し測温誤差を生ぜしめていたのを解消し、それら低沸点
金属のガスが存在していても吸収が測温波長とき重なる
ことがなく、従って、ガスの存在に影響を受けず炉内処
理カプセル用ガラスなどとは関係のない正確な測温が可
能となり、HIP装置の測温精度を向上し、同装置の工
業的利用の推進に顕著な効果が期待される。
(Effects of the Invention) As described above, the present invention avoids the absorption wavelength of low boiling point metals in measuring the temperature inside the furnace of a HIP device, and measures the temperature at other wavelengths. Conventionally, the presence of gases caused by evaporation of metals overlaps with absorption depending on the temperature measurement wavelength range, reducing the incoming radiant energy and causing temperature measurement errors. The absorption does not overlap with the temperature measurement wavelength even if the temperature is measured. Therefore, accurate temperature measurement is possible that is unaffected by the presence of gas and is independent of the glass for the furnace processing capsule, etc., and the temperature measurement accuracy of the HIP device is improved. It is expected that this method will have a significant effect on improving industrial performance and promoting the industrial use of this equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明測温方法の要部を示す概要図
、第3図は閉端管放射光分光分布図表、第4図は本発明
測温方法が適用されるHIP装置例を示す断面概要図、
第5図及び第6図は同第3図装置に使用される各光学系
概要図、第7図は本発明方法が適用されるF(IP装置
の他の例を示す要部概要図である。 (1)・・・光学系。 (2)・ ・ ・フィルタ。 (3)・・・受光部。 (4)・・・信号処理装置。 (5)・・・分光器。 (6)・・・吸収波長テーブル。 特許出願人  株式会社 神戸製鋼所 、2.−代理人
 弁理士  宮  本  泰  −′−゛・、−1−2
・′ 都1凹 唇2已 葵3図 涼長(n?n) 間y彩管g肘尤今尤今市 華4図
Figures 1 and 2 are schematic diagrams showing the main parts of the temperature measurement method of the present invention, Figure 3 is a closed-end tube emitted light spectral distribution chart, and Figure 4 is an example of a HIP device to which the temperature measurement method of the present invention is applied. A cross-sectional schematic diagram showing
5 and 6 are schematic diagrams of each optical system used in the device shown in FIG. 3, and FIG. 7 is a schematic diagram of main parts showing another example of an F (IP device) to which the method of the present invention is applied. (1)... Optical system. (2)... Filter. (3)... Light receiving section. (4)... Signal processing device. (5)... Spectrometer. (6)... ...Absorption wavelength table. Patent applicant Kobe Steel, Ltd., 2. - Agent Patent attorney Yasushi Miyamoto -'-゛・, -1-2
・' Capital 1 concave lip 2 Aoi 3 figure Ryocho (n?n) between y Aishikan g elbow cursor Imaichi Hana 4 figure

Claims (1)

【特許請求の範囲】[Claims] 1、熱間静水圧加圧装置の高圧炉内に閉端管を設置し、
該閉端管先端部の熱放射光を光学系で集束し、これを信
号処理装置に導き、炉内の温度を測定する方法において
、炉内処理物あるいはカプセル用ガラス等から蒸発した
低い沸点金属の吸収の起る波長を回避し、それ以外の検
出波長で測温することを特徴とする熱間静水圧加圧装置
の炉内温度の測定方法。
1. Install a closed-end tube in the high-pressure furnace of the hot isostatic pressurization device,
In this method, the thermal radiation at the tip of the closed-end tube is focused by an optical system and guided to a signal processing device to measure the temperature inside the furnace. 1. A method for measuring the temperature inside a furnace of a hot isostatic pressurizing device, which avoids the wavelength at which absorption occurs and measures the temperature at a detection wavelength other than that.
JP555286A 1986-01-14 1986-01-14 Measuring method for temperature in furnace of hot isostatic pressing unit Withdrawn JPS62163936A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP555286A JPS62163936A (en) 1986-01-14 1986-01-14 Measuring method for temperature in furnace of hot isostatic pressing unit
DE8787100299T DE3782505T2 (en) 1986-01-14 1987-01-13 METHOD AND DEVICE FOR MEASURING THE OVEN TEMPERATURE IN AN ISOSTATIC HOT PRESSING UNIT.
EP87100299A EP0229653B1 (en) 1986-01-14 1987-01-13 Method of measuring furnace temperature in hot isostatic pressing unit and device for measuring same
US07/003,143 US4815098A (en) 1986-01-14 1987-01-14 Method of measuring furnace temperature in hot isostatic pressing unit and device for measuring same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP555286A JPS62163936A (en) 1986-01-14 1986-01-14 Measuring method for temperature in furnace of hot isostatic pressing unit

Publications (1)

Publication Number Publication Date
JPS62163936A true JPS62163936A (en) 1987-07-20

Family

ID=11614358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP555286A Withdrawn JPS62163936A (en) 1986-01-14 1986-01-14 Measuring method for temperature in furnace of hot isostatic pressing unit

Country Status (1)

Country Link
JP (1) JPS62163936A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60133327A (en) * 1983-12-22 1985-07-16 Kobe Steel Ltd Method for measuring temperature in furnace in hot hydrostatic-pressure applying apparatus using closed-end pipe

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60133327A (en) * 1983-12-22 1985-07-16 Kobe Steel Ltd Method for measuring temperature in furnace in hot hydrostatic-pressure applying apparatus using closed-end pipe

Similar Documents

Publication Publication Date Title
US5310260A (en) Non-contact optical techniques for measuring surface conditions
US5769540A (en) Non-contact optical techniques for measuring surface conditions
US6181419B1 (en) Method and apparatus for applying laser induced incandescence for the determination of particulate measurements
JP6198944B2 (en) Field on-line detection apparatus and method for long-range metallurgical liquid metal components
Taylor Construction of apparatus for heat pulse thermal diffusivity measurements from 300-3000K
WO1992019944A1 (en) Non-contact optical techniques for measuring surface conditions
IT9019833A1 (en) MEASUREMENTS AND TEMPERATURE CONTROL FOR PHOTOTHERMAL PROCESSES
CN111289496B (en) Detection method and device for long-distance zoom laser-induced breakdown spectroscopy
JPH03206927A (en) High temperature sensor
CN112129743A (en) System and method for measuring mercury content in flue gas on line based on LIBS technology
CN110044495B (en) Temperature measurement system and temperature measurement method based on multispectral
CN105928625B (en) Metal surface dynamic temperature point measuring method based on reflectivity change
CN111829971A (en) Method for reducing measurement error of wide spectrum transmittance
JPS62163936A (en) Measuring method for temperature in furnace of hot isostatic pressing unit
RU2664969C1 (en) Laser radiation with structural materials interaction parameters examination test bench
CN109358036A (en) Laser induced breakdown spectroscopy signal errors corrects system and method
CN111458033A (en) Dual-wavelength temperature measuring device and method for steel-making furnace
JPS62188919A (en) Method and instrument for direct emission analysis by multistage laser excitation
KR100299451B1 (en) Apparatus and method for measuring compositions of alloy steel using laser plasma
JPS60133326A (en) Method for measuring temperature in furnace in hot hydrostatic-pressure applying apparatus
Schubnell et al. Temperature measurement under concentrated radiation
CN210802694U (en) Self-reflection type infrared emissivity and temperature measuring device
JP2004109023A (en) Method and apparatus for measuring surface temperature of steel product
JPS60129626A (en) Optical temperature distribution measurement
RU165793U1 (en) OPTICAL-ELECTRONIC DEVICE FOR DETERMINING THE RADIATION COEFFICIENT AND TEMPERATURE OF THE RECORDED OBJECT

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees