JPS62163333A - Plasma oxidation method and device thereof - Google Patents

Plasma oxidation method and device thereof

Info

Publication number
JPS62163333A
JPS62163333A JP526386A JP526386A JPS62163333A JP S62163333 A JPS62163333 A JP S62163333A JP 526386 A JP526386 A JP 526386A JP 526386 A JP526386 A JP 526386A JP S62163333 A JPS62163333 A JP S62163333A
Authority
JP
Japan
Prior art keywords
plasma
workpiece
oxygen
electron beam
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP526386A
Other languages
Japanese (ja)
Inventor
Shuzo Fujimura
藤村 修三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP526386A priority Critical patent/JPS62163333A/en
Publication of JPS62163333A publication Critical patent/JPS62163333A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To enable mask-less selective oxidation at a low temperature on the surface of a semiconductor through a plasma oxidation method combining electron beam irradiation. CONSTITUTION:A gas containing oxygen gas is introduced from a gas introducing port 2, and pressure in a vacuum tank is controlled at several Torr-10<-4> Torr. The introduced gas is excited by microwaves in a chamber 4, and oxygen plasma is generated. Since the periphery of a susceptor 7 is changed into the after-glow space of oxygen plasma, the periphery of the susceptor is filled with rich oxygen radicals. The surface of a work 8 consisting of a semiconductor is irradiated by electron beams from an electron-beam irradiation mechanism 5 under said conditions. The formation of an oxide progresses on the surface of the semiconductor in the presence of oxygen radicals and electrons.

Description

【発明の詳細な説明】 〔概要〕 シリコン等の半導体表面に選択的酸化膜を形成する方法
として窒化膜をマスクとして熱酸化する方法が専ら用い
られているが、高温酸化であるため高密度の集積化、欠
陥の発生等の問題を生じる。
[Detailed Description of the Invention] [Summary] A method of thermal oxidation using a nitride film as a mask is exclusively used as a method of forming a selective oxide film on the surface of a semiconductor such as silicon. This causes problems such as integration and generation of defects.

本発明では電子線を照射法とプラズマ酸化法を適用して
、低温で且つマスクを使用せずに選択酸化膜を形成する
方法を述べる。
The present invention describes a method of forming a selective oxide film at low temperature and without using a mask by applying an electron beam irradiation method and a plasma oxidation method.

〔産業上の利用分野〕[Industrial application field]

本発明は、低温でマスクを使用せずプラズマによる選択
酸化を行う方法と、その装置に関する。
The present invention relates to a method and apparatus for performing selective oxidation using plasma at low temperatures without using a mask.

シリコンの表面に選択的に酸化膜を形成する手段として
は、窒化膜のマスクを積層し、酸素ガスを含む雰囲気中
で高温酸化する方法が専ら用いられている。
As a means for selectively forming an oxide film on the surface of silicon, a method is exclusively used in which a nitride film mask is stacked and oxidation is performed at high temperature in an atmosphere containing oxygen gas.

熱酸化以外に酸化膜を形成する方法として陽極酸化法が
あるがウェット手法であり、ドライ法ではプラズマ酸化
法があるが、この方法では窒化膜のマスクが使用出来な
い問題がある。
Anodic oxidation is a wet method for forming an oxide film other than thermal oxidation, and plasma oxidation is a dry method, but this method has the problem that a nitride film mask cannot be used.

化合物半m体としてのGaAsの場合は、Siの如(高
温酸化を適用出来ない問題があり、低温での選択酸化法
の開発か要望されている。
In the case of GaAs as a semi-molar compound, like Si, there is a problem in which high temperature oxidation cannot be applied, and there is a demand for the development of a selective oxidation method at low temperatures.

(従来の技術) 半導体(材料を高温の雰囲気に曝すことなく酸化させる
方法として、酸素プラズマ中に半導体装置いて酸化させ
る方法か開発されている。
(Prior Art) As a method for oxidizing semiconductor materials without exposing them to a high-temperature atmosphere, a method has been developed in which a semiconductor device is oxidized in oxygen plasma.

この方法では、例えばSi表面の全面に酸化膜を形成す
ることば可能であるが、熱酸化の場合の如<5ixN−
膜をマスクとして選択酸化を行ってもS i 3 N 
4膜はマスクの機能を果たさない。マスク材料の開発が
問題となる。
With this method, for example, it is possible to form an oxide film on the entire surface of the Si surface, but as in the case of thermal oxidation,
Even if selective oxidation is performed using the film as a mask, S i 3 N
4 membrane does not function as a mask. The problem is the development of mask materials.

マスクを用いない選択酸化法として、酸素雰囲気中で基
板に電子線を照射して照射領域のみを選択的に酸化する
方法も行われているが、酸化レートが低いと云う欠点が
ある。
As a selective oxidation method that does not use a mask, a method in which a substrate is irradiated with an electron beam in an oxygen atmosphere and only the irradiated area is selectively oxidized has been used, but this method has the disadvantage that the oxidation rate is low.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記に述へた、従来の技術による方法では、低温での選
択酸化法が未だ確立されていない状況である。
In the conventional methods described above, a selective oxidation method at low temperatures has not yet been established.

プラズマ酸化法で使用するマスク材料として、アルミナ
(A120.)膜が有効であることが判明しているが、
Al2O3膜のバクーンの形成、酸化後のAl2O3膜
の除去等の問題を生ずる。
Alumina (A120.) film has been found to be effective as a mask material used in plasma oxidation.
This causes problems such as formation of a bubble in the Al2O3 film and removal of the Al2O3 film after oxidation.

電子線照射法は、ビームを走査することにより特定の領
域を選択的に酸化することが可能であり、マスクを不要
とするが、酸化速度が遅いため実用化が困難である。
The electron beam irradiation method can selectively oxidize a specific region by scanning the beam and does not require a mask, but the slow oxidation rate makes it difficult to put it into practical use.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は、電子線を使用することによってマスクを
不要とし、また一方酸化速度を上昇せしめるため、酸素
プラズマを用いることよりなる本発明の酸化法とその装
置によって解決される。
The above-mentioned problems are solved by the oxidation method and apparatus of the present invention, which uses an electron beam to eliminate the need for a mask, while also using an oxygen plasma to increase the oxidation rate.

酸化法としては少なくとも酸素を含むプラズマのアフタ
ー・グロー空間に設置された支持台上に被加工物を載置
し、該被加工物に向けて電子線を照射することにより選
択的に被加工物の照射領域に酸化膜を形成することが出
来る。
In the oxidation method, the workpiece is placed on a support stand installed in an afterglow space of plasma containing at least oxygen, and the workpiece is selectively irradiated with an electron beam. An oxide film can be formed in the irradiated area.

その装置として、被加工物を載置する支持台を収容せる
真空槽には、少なくともガス導入孔及びガス排出孔と、
プラズマを励起するチャンバーと、電子線を該被加工物
に照射する機構を設ける。
As the device, a vacuum chamber that accommodates a support on which the workpiece is placed has at least a gas introduction hole and a gas discharge hole;
A chamber for exciting plasma and a mechanism for irradiating the workpiece with an electron beam are provided.

上記構造で、チャンバーは、真空槽の前記ガス4入孔側
に設置され、電磁波は遮断してプラズマを自由に通過せ
しめる連蔽板により被加工物が設置された真空槽側と空
間的に隔離された構造となっている。
In the above structure, the chamber is installed on the gas 4 inlet side of the vacuum chamber, and is spatially isolated from the vacuum chamber side where the workpiece is installed by a connecting plate that blocks electromagnetic waves and allows plasma to freely pass through. It has a built-in structure.

〔作用〕[Effect]

半導体に対する電子線照射を、酸素雰囲気中でなく、酸
素プラズマのアフター・グロー空間、即ち酸素ラジカル
の豊富なる雰囲気中で行う。
Electron beam irradiation to a semiconductor is performed not in an oxygen atmosphere but in an afterglow space of oxygen plasma, that is, an atmosphere rich in oxygen radicals.

電子線によるエレクトロンと、酸素ラジカルとが半導体
材料の表面でどのように物理化学反応を起こすかについ
ては明確ではない。然し、結果として酸化反応が著しく
促進されるごとが判明している。
It is not clear how electrons generated by an electron beam and oxygen radicals cause a physicochemical reaction on the surface of a semiconductor material. However, it has been found that the oxidation reaction is significantly accelerated as a result.

〔実施例〕〔Example〕

本発明による一実施例を図面により詳細説明する。図面
は本発明に使用するプラズマ酸化装置の断面を模式的に
示す。以下図面によりその構造の主要部と機能を説明す
る。
An embodiment according to the present invention will be described in detail with reference to the drawings. The drawing schematically shows a cross section of a plasma oxidation apparatus used in the present invention. The main parts and functions of the structure will be explained below with reference to the drawings.

図面において、1は真空槽、2はガス導入孔、3はガス
排出孔、4はプラズマ発生用のチャンバー、5は電子線
照射機構、6はマイクロ波導入管、7は支持台で、装置
の主要部は構成されている。
In the drawing, 1 is a vacuum chamber, 2 is a gas introduction hole, 3 is a gas discharge hole, 4 is a chamber for plasma generation, 5 is an electron beam irradiation mechanism, 6 is a microwave introduction tube, and 7 is a support stand. The main parts are configured.

半導体材料よりなる被加工物8は、支持台7に搭載され
、必要に応じて電#9により電圧を印加可能としている
A workpiece 8 made of a semiconductor material is mounted on a support base 7, and a voltage can be applied by a voltage #9 as needed.

マイクロ波導入管6には、マグネトロン発振器より2.
45GHzの高周波が供給され、誘電体窓10によりチ
ャンバー4内にマイクロ波電力が照射される。
The microwave introduction pipe 6 receives 2.
A high frequency of 45 GHz is supplied, and microwave power is irradiated into the chamber 4 through the dielectric window 10 .

ガス導入孔2より酸素ガスを含むガスが4入され、真空
槽内の圧力はfiTorr ”10−’Torrに制9
卸される。
Four gases containing oxygen gas are introduced through the gas introduction holes 2, and the pressure inside the vacuum chamber is controlled to fiTorr "10-'Torr".
Wholesale.

導入されたガスは、チャンバー4内においてマイクロ波
により励起されて酸素プラズマを発生する。
The introduced gas is excited by microwaves in the chamber 4 to generate oxygen plasma.

チャンバーは、真空槽の主要部とは金属メソシュ、ある
いは多数の孔を開口せる金属板よりなる遮蔽板11によ
り隔離されていて、マイクロ波は遮断されるが、プラズ
マは自由に通過して作業領域に拡散する。
The chamber is isolated from the main part of the vacuum chamber by a shielding plate 11 made of a metal mesh or a metal plate with many holes, and microwaves are blocked, but plasma can freely pass through to the work area. spread to.

支持台7の周辺は、酸素プラズマのアフター・グロー空
間となっているので豊富なる酸素ラジカルが充満される
The area around the support base 7 is an after-glow space of oxygen plasma and is therefore filled with abundant oxygen radicals.

上記の条件で半導体の被加工物8の表面に、電子線照射
機構5から電子線を照射する。酸素ラジカルと電子の存
在により、半導体の表面には酸化物の形成が進行する。
The surface of the semiconductor workpiece 8 is irradiated with an electron beam from the electron beam irradiation mechanism 5 under the above conditions. Due to the presence of oxygen radicals and electrons, oxide formation progresses on the surface of the semiconductor.

この場合、被加工物に電源9から20〜100 Vの電
圧を印加することにより反応は促進される。
In this case, the reaction is promoted by applying a voltage of 20 to 100 V from the power source 9 to the workpiece.

電子線を所定のパターンに従って走査することにより、
特定の領域に選択的ムこ酸化膜を形成することが出来る
By scanning the electron beam according to a predetermined pattern,
A selective mucooxide film can be formed in a specific region.

以上の方法で、被加工物を加熱することなく、またマス
クを必要とせずに半導体酸化膜が形成可能で、Siのみ
ならずGaAs等の化合物半導体でも酸化膜を形成する
ことが出来る。
With the above method, it is possible to form a semiconductor oxide film without heating the workpiece or requiring a mask, and it is possible to form an oxide film not only on Si but also on compound semiconductors such as GaAs.

〔発明の効果〕〔Effect of the invention〕

以上に説明せるごとく、本発明の電子線照射を併用せる
プラズマ酸化法により、半導体の表面に、低?Lでマス
クレス選択酸化が可能となった。
As explained above, the plasma oxidation method combined with electron beam irradiation of the present invention produces a low Maskless selective oxidation is now possible with L.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明にかかわるプラズマ酸化装置の構造断面図
を模式的に示す。 図面において、 1は真空槽、 2はガス導入孔、 3はガス排出孔、 4はチャンバー、 5は電子線照射機構、 6はマイクロ波導入管、 7は支持台、 8は被加工物、 9は電源、 10は誘電体窓、 11は遮蔽板、 をそれぞれ示す。 2ガス4人J乙 I壽p小−力・pi;37°う2”Z酸イ4昌鳴Zの、
ヂ」Lわ軽−エ「Itr口
The drawing schematically shows a structural cross-sectional view of a plasma oxidation apparatus according to the present invention. In the drawings, 1 is a vacuum chamber, 2 is a gas introduction hole, 3 is a gas discharge hole, 4 is a chamber, 5 is an electron beam irradiation mechanism, 6 is a microwave introduction tube, 7 is a support stand, 8 is a workpiece, 9 is a power source, 10 is a dielectric window, and 11 is a shielding plate. 2 gas 4 people J Otsu I Hisashi p small force・pi; 37° U2”
ヂもももも゜゜も゜゜゜゜゜

Claims (2)

【特許請求の範囲】[Claims] (1)少なくとも酸素を含むプラズマのアフターグロー
空間に設置された支持台(7)上に、被加工物(8)を
載置し、 該被加工物に向けて電子線を照射して、被加工物の電子
線照射領域に酸化膜を形成することを特徴とするプラズ
マ酸化法。
(1) A workpiece (8) is placed on a support stand (7) installed in a plasma afterglow space containing at least oxygen, and an electron beam is irradiated toward the workpiece. A plasma oxidation method characterized by forming an oxide film on the electron beam irradiated area of the workpiece.
(2)被加工物(8)を載置する支持台(7)を収容せ
る真空槽(1)には、少なくともガス導入孔(2)及び
ガス排出孔(3)と、プラズマを励起するチャンバー(
4)と、電子線を該被加工物に照射する機構(5)を備
え、該チャンバーは、真空槽の前記ガス導入孔側に設置
され、電磁波を遮断してプラズマを通過せしめる遮蔽板
(11)により被加工物が設置された真空槽の上流側に
空間的に隔離された構造よりなることを特徴とするプラ
ズマ酸化装置。
(2) The vacuum chamber (1) that accommodates the support base (7) on which the workpiece (8) is placed has at least a gas introduction hole (2), a gas discharge hole (3), and a chamber that excites plasma. (
4) and a mechanism (5) for irradiating the workpiece with an electron beam. ) A plasma oxidation apparatus characterized by having a structure in which a workpiece is spatially isolated on the upstream side of a vacuum chamber in which a workpiece is installed.
JP526386A 1986-01-14 1986-01-14 Plasma oxidation method and device thereof Pending JPS62163333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP526386A JPS62163333A (en) 1986-01-14 1986-01-14 Plasma oxidation method and device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP526386A JPS62163333A (en) 1986-01-14 1986-01-14 Plasma oxidation method and device thereof

Publications (1)

Publication Number Publication Date
JPS62163333A true JPS62163333A (en) 1987-07-20

Family

ID=11606341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP526386A Pending JPS62163333A (en) 1986-01-14 1986-01-14 Plasma oxidation method and device thereof

Country Status (1)

Country Link
JP (1) JPS62163333A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02106933A (en) * 1988-10-17 1990-04-19 Nec Corp Forming method of silicon oxide film
JP2013207005A (en) * 2012-03-28 2013-10-07 Meidensha Corp Method of forming oxide film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02106933A (en) * 1988-10-17 1990-04-19 Nec Corp Forming method of silicon oxide film
JP2013207005A (en) * 2012-03-28 2013-10-07 Meidensha Corp Method of forming oxide film

Similar Documents

Publication Publication Date Title
JPH0729885A (en) Semiconductor manufacturing equipment and manufacture of semiconductor by use of same
TWI354328B (en) Apparatus for treating substrates using plasma, me
JPS60158627A (en) Controlling method of surface reaction
JPS6240728A (en) Dry etching device
JP3217875B2 (en) Etching equipment
JPS62163333A (en) Plasma oxidation method and device thereof
JPH07272897A (en) Microwave plasma device
KR900001238B1 (en) Resist film dry developing method and the device thereof
JPH0437129A (en) Etching and device thereof
JP3164188B2 (en) Plasma processing equipment
JPS6234834B2 (en)
JPH06275566A (en) Microwave plasma treating device
JPS6015931A (en) Reactive ion etching process
JPH01278023A (en) Method and device for dry etching
JP2624966B2 (en) Plasma etching equipment
JPH0475336A (en) Method and apparatus for surface processing
JPH05326453A (en) Microwave plasma treatment equipment
JPS6396924A (en) Manufacture of semiconductor device
JPH05347282A (en) Ashing device and method
JP2671435B2 (en) Ashing method
JPH01304730A (en) Semiconductor manufacturing apparatus
JPH01130526A (en) Resist peeling apparatus
JPH01239847A (en) Ashing
JP3150400B2 (en) Dry etching apparatus and dry etching method
JPH05136097A (en) Method and apparatus for fine processing