JPS62162960A - Pyrolysis device for analysis - Google Patents

Pyrolysis device for analysis

Info

Publication number
JPS62162960A
JPS62162960A JP403786A JP403786A JPS62162960A JP S62162960 A JPS62162960 A JP S62162960A JP 403786 A JP403786 A JP 403786A JP 403786 A JP403786 A JP 403786A JP S62162960 A JPS62162960 A JP S62162960A
Authority
JP
Japan
Prior art keywords
pyrolysis
sample
carrier gas
temp
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP403786A
Other languages
Japanese (ja)
Other versions
JPH076972B2 (en
Inventor
Ichiji Miyata
一司 宮田
Yoshiyuki Nagataki
義幸 長瀧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP403786A priority Critical patent/JPH076972B2/en
Publication of JPS62162960A publication Critical patent/JPS62162960A/en
Publication of JPH076972B2 publication Critical patent/JPH076972B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PURPOSE:To improve the reproducibility of analytical data and to improve the accuracy of analysis by providing a temp. control means for instantaneously changing the atmospheric temp. of a sample for pyrolysis to be transferred from the low temp. at which the pyrolysis is not caused at all to the set pyrolysis temp. CONSTITUTION:An operator removes an annular cap 15, takes out a sample holder cylinder 16, mounts a sample bar 20 contg. the sample for pyrolysis to be analyzed in a vessel 20a into a sample inserting cylinder 14, and screwing a cap 15 thereto to hermetically seal the cylinder. A carrier gas is then admitted at a prescribed flow rate from upper and lower carrier gas introducing ports 13, 22 into a pyrolysis tube 1. The transfer heat and radiation heat from a heating furnace 3 are diffused to the external air by the effect of radiation fins 21a in a holder part 12 and a non-pyrolysis region Z1 is kept at the low temp. The carrier gas admitted through the introducing port 22 is preheated and the temp. atmosphere in a pyrolysis region Z2 is kept at the set pyrolysis temp. at all times. The pyrolysis is thus instantaneously executed upon falling of the sample bar 20 and the reproducibility of the analytical data is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野1 この発明は、ガスクロマトグラフ、質量分析計、ガスク
ロマド−質量分析計およびCI−I N分析計などによ
る分析において、主として固体試料を設定温度下で熱分
解させ、この熱分解生成物をキャリヤガスとともに上記
分析機器のカラムに送出するのに使用される分析用熱分
解装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention mainly applies to the analysis of solid samples under a set temperature in analysis using gas chromatographs, mass spectrometers, gas chromatograph-mass spectrometers, CI-IN analyzers, etc. The present invention relates to an analytical pyrolysis device used to carry out pyrolysis at a temperature of 100 nm and to send the pyrolysis products together with a carrier gas to a column of the above-mentioned analytical instrument.

〔従来の技術〕[Conventional technology]

一般にこの種熱分解装置は、加熱炉内に挿入した熱分解
管の一端側に試料ホルダ一部を構成し、この試料ホルダ
一部側から熱分解管の他端側のガス出口へキャリヤガス
を一定流量で流通させ、試料ホルダ一部で保持した熱分
解用試料を熱分解管の加熱中心部つまり熱分解領域へ移
送して熱分解させ、この熱分解生成物をキャリヤガスと
ともに上記ガス出口から分析機器のカラムへ送出するよ
うになされている。たとえば、ガスクロマトグラフでは
、上記分解生成物の各成分の熱分解上りカラム出口に至
る通過時間にカラム充填物との親和性の違いによって差
異を生じるのを利用し、各成分の種類と量とを検出して
試料の特定を行っている。
Generally, this kind of pyrolysis equipment has a part of the sample holder at one end of the pyrolysis tube inserted into the heating furnace, and a carrier gas is passed from this part of the sample holder to the gas outlet at the other end of the pyrolysis tube. The sample for pyrolysis held in a part of the sample holder is transferred to the heating center of the pyrolysis tube, that is, the pyrolysis region, where it is pyrolyzed, and the pyrolysis products are released together with the carrier gas from the gas outlet. It is designed to be sent to a column of analytical equipment. For example, in a gas chromatograph, the type and amount of each component is determined by taking advantage of the fact that the transit time of each component of the decomposition product after thermal decomposition to the column outlet varies depending on the affinity with the column packing. The sample is identified by detection.

したがって、この種熱分解装置にあっては、熱分解時刻
に遅速を生じるとカラム出口での検知時刻に基つく各成
分の上記通過時間の信頼性が損われるため、熱分解が瞬
時に行われることが望まれる。そこで、このように熱分
解を瞬時に行う分析用熱分解装置として、キューリーポ
イント方式(文献不詳)や縦型熱分解管方式(特公昭5
4−32356号、同55−5060号など)の装置が
提案されている。
Therefore, in this type of pyrolysis device, if the pyrolysis time is delayed, the reliability of the above-mentioned transit time of each component based on the detection time at the column outlet will be lost, so pyrolysis is performed instantaneously. It is hoped that Therefore, as analytical pyrolysis equipment that performs pyrolysis instantaneously in this way, the Curie point method (documents unknown) and the vertical pyrolysis tube method (Japanese Patent Publication No. 5
No. 4-32356, No. 55-5060, etc.) have been proposed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、上記従来のキューリーポイント方式の装置で
は、設定熱分解温度を任意に選択できない欠点を有する
とともに、熱容量が小さいために熱分解が不充分になり
やすく再現性に乏しいという問題があった。一方、縦型
熱分解管方式の装置は、試料ホルダ一部より熱分解用試
料を熱分解管の加熱中心部へ自重で落下させるものであ
り、上記キューリーポイント方式や従来汎用の横型熱分
解管方式よりも再現性がよいものの、副分解生成物を生
じたり、キャリヤガス量が多くなるほど再現性が低下す
るという問題があった。
However, the above-mentioned conventional Curie point type apparatus has the drawback that the set thermal decomposition temperature cannot be arbitrarily selected, and the thermal decomposition tends to be insufficient due to the small heat capacity, resulting in poor reproducibility. On the other hand, in the vertical pyrolysis tube type device, the pyrolysis sample is dropped from a part of the sample holder to the heating center of the pyrolysis tube by its own weight, and it is different from the above-mentioned Curie point method or the conventional general-purpose horizontal pyrolysis tube. Although the reproducibility is better than that of the method, there are problems in that by-decomposition products are produced and the reproducibility decreases as the amount of carrier gas increases.

〔問題点を解決するための手段1 この発明者らは、上述情況に鑑みて鋭意検討を重ねた績
果、この種熱分解装置において第2図で示すように熱分
解用試料を試料ホルダ一部つまり非熱分解領域Z□から
熱分解領域Z2へ移送した際に、該試料の雰囲気温度が
図中の実線りの如く熱分解を全く生じない低温度T1か
ら時点りで瞬時に設定熱分解温度T2に変化することが
理想的であるが、前記従来の縦型熱分解管方式の装置で
は、加熱炉からの熱伝導や熱輻射によって試料ホルダ一
部が加熱され時点りつまり試料の落下に至るまでに図中
の破線l!、の如く昇温しで副分解を生じ、またキャリ
ヤガスの温度が低いためにその量が多くなるほど図中の
破線7?2の如く落下後に設定熱分解温度に達するのに
時間を要して分析の再現性が低下することが判明し、し
たがってこれら弊害要因を除くことによってすぐれた分
析用熱分解装置となしうることを見い出した。
[Means for Solving the Problems 1] In view of the above-mentioned circumstances, the inventors have made extensive studies, and as a result, in this type of pyrolysis apparatus, the sample for pyrolysis is placed in a sample holder as shown in FIG. When the sample is transferred from the non-thermal decomposition zone Z Ideally, the temperature should change to T2, but in the conventional vertical pyrolysis tube type apparatus, a part of the sample holder is heated by heat conduction or radiation from the heating furnace, which means that the sample may fall. The dashed line l in the diagram shows how far! , secondary decomposition occurs as the temperature rises, and since the temperature of the carrier gas is low, the larger the amount, the longer it takes to reach the set thermal decomposition temperature after falling, as shown by the broken line 7 to 2 in the figure. It was found that the reproducibility of analysis was reduced, and it was therefore discovered that an excellent analytical pyrolysis device could be achieved by eliminating these detrimental factors.

すなわち、この発明は、熱分解用試料を非熱分解領域か
ら熱分解領域へ移送して熱分解し、熱分解生成物をキャ
リヤガスとともに分析機器のカラムに送出する分析用熱
分解装置において、上記移送される熱分解用試料の雰囲
気温度を熱分解が全く生じない低温度から設定熱分解温
度へ瞬時に変化させるための温度制御手段を設けたこと
を特徴とする分析用熱分解装置に係る。
That is, the present invention provides an analytical pyrolysis apparatus that transfers a pyrolysis sample from a non-pyrolysis region to a pyrolysis region, pyrolyzes it, and sends the pyrolysis product together with a carrier gas to a column of an analytical instrument. The present invention relates to an analytical pyrolysis apparatus characterized by being provided with a temperature control means for instantaneously changing the ambient temperature of a transferred pyrolysis sample from a low temperature at which no pyrolysis occurs to a set pyrolysis temperature.

〔発明の構成・作用〕[Structure and operation of the invention]

この発明でいう非熱分解領域とは熱分解用試料を熱分解
させるまで装置に装填して一時的に待機させる試料ホル
ダ一部と熱分解位置への移送経路とを含む領域であり、
また熱分解領域とは該試料を熱分解させる加熱中心部を
意味する。そしてこの発明の分析用熱分解装置に設けら
れる温度制御手段は、上記非熱分解領域から熱分解領域
へ移送する試料の温度雰囲気を熱分解を全く生じない低
温度から設定熱分解温度へ瞬時に変化させるものであり
、皿々の具体的構成が存在するが通常では非熱分解領域
における冷却装置と熱分解領域直前に流入させるキャリ
ヤガスの予熱装置との組み合わせが好適に採用される。
The non-pyrolysis area in this invention is an area including a part of the sample holder where the sample for pyrolysis is loaded into the apparatus and temporarily stood by until it is pyrolyzed, and a transfer route to the pyrolysis position.
Moreover, the pyrolysis region means the heating center where the sample is thermally decomposed. The temperature control means provided in the analytical pyrolysis apparatus of the present invention instantly changes the temperature atmosphere of the sample transferred from the non-pyrolysis region to the pyrolysis region from a low temperature at which no pyrolysis occurs to a set pyrolysis temperature. There are specific configurations for each plate, but usually a combination of a cooling device in the non-thermal decomposition region and a preheating device for the carrier gas introduced just before the thermal decomposition region is preferably employed.

すなわち、非熱分解領域では熱分解領域からの熱伝導あ
るいは熱輻射による昇温を上記冷却装置で防止すること
により、試料の温度雰囲気を熱分解が全く生じない低温
度に維持する一方、移送経路の熱分解領域直前で予め加
熱したキャリヤガスを流入させることにより、従来の如
きキャリヤガスの温度が低いことに起因した設定熱分解
温度到達への時間的遅れを解消し、もって前記した瞬時
の温度変化を可能としている。
In other words, in the non-thermal decomposition region, by preventing temperature rise due to heat conduction or heat radiation from the pyrolysis region using the cooling device, the temperature atmosphere of the sample is maintained at a low temperature at which no thermal decomposition occurs. By injecting a preheated carrier gas just before the thermal decomposition zone, the time delay in reaching the set thermal decomposition temperature caused by the low temperature of the carrier gas in the conventional method is eliminated, and the above-mentioned instantaneous temperature It makes change possible.

この発明の分析用熱分解装置の装置構成としては、種々
の構造を採用可能であるが、加熱中心部が加熱炉に囲包
された熱分解管の一端側に試料ホルダ一部を形成すると
ともに他端側に分析機器のカラムに接続するガス出口を
設け、かつ試料ホルダ一部位置および加熱炉直前位置の
2ケ所にキャリヤガス導入口を設けた構造が一般的であ
る。そして上記の熱分解管は、縦型、傾斜型、横型のい
ずれであってもよいが、横型の場合では試料ホルダ一部
から加熱中心部へ試料を移送するのに棒状の操作具を用
いる必要があることから移送時間に遅速を生じ易いのに
対して、縦型および傾斜型の場合では上記移送を自重落
下にて行えるため移送時間が一定でかつ速いという利点
があるからこの発明の適用効果が大きい。
Various structures can be adopted as the device configuration of the analytical pyrolysis apparatus of this invention, but it is possible to form a part of the sample holder at one end of the pyrolysis tube whose heating center is surrounded by a heating furnace. A common structure is that a gas outlet connected to the column of the analytical instrument is provided at the other end, and carrier gas inlets are provided at two locations, one at a portion of the sample holder and one immediately before the heating furnace. The above-mentioned pyrolysis tube may be vertical, inclined, or horizontal, but in the case of a horizontal type, it is necessary to use a rod-shaped operating tool to transfer the sample from a part of the sample holder to the heating center. However, in the case of vertical and inclined types, the transfer can be carried out by falling under its own weight, which has the advantage that the transfer time is constant and fast. is large.

ここで、温度制御手段の一方である非熱分解領域におけ
る頭部装置としては、放熱フィン、空冷装置、水冷装置
およびこれらの組み合わせが挙げられ、加熱炉の熱が伝
導しやすい熱分解管や支柱の試料ホルダー側の要所ない
し全体に取付けるのがよい。
Here, the head device in the non-pyrolysis region, which is one of the temperature control means, includes radiation fins, air cooling devices, water cooling devices, and combinations thereof. It is best to attach it to key points or the entire area on the sample holder side.

また、熱分解領域直前に流入させるキャリヤガスの予熱
装置は、上記2ケ所のキャリヤガス導入口のうち加熱炉
直前位置の尋人口より熱分解管内へ流入させるキャリヤ
ガスを昇温させるものであ温 り、その予熱温度としては設定熱分鮮度に対して△ 一15°C〜+15°C程度が好適である。なお、試料
ホルダー側のガス導入口から流入させるキャリヤガスは
従来と同様に予熱を施さないことが肝要流 である。そして両導入口のキャリヤガス導へ孕比は、非
予熱分/予熱分で%〜%程度とするのがよい0 熱分解用試料としては、ガスクロマトグラフ、質量分析
計、ガスクロマド−質量分析計、CHN分析計などに供
する分析用ガスに熱分解しうるものであればよく、液体
であっても差し支えないが、一般的には固体が用いられ
る。そして、この試料は適当な容器に収容した形態で試
料ホルダ一部に保持されて熱分解領域に移送される。
Furthermore, the preheating device for the carrier gas that flows in just before the pyrolysis region is designed to raise the temperature of the carrier gas that flows into the pyrolysis tube from the fathom hole located just before the heating furnace out of the two carrier gas inlets mentioned above. The preheating temperature is preferably about -15°C to +15°C with respect to the set heat freshness. Note that it is important that the carrier gas flowing in from the gas inlet on the sample holder side is not preheated, as in the conventional case. The carrier gas introduction ratio of both inlets is preferably about % to % for non-preheated portion/preheated portion. Samples for pyrolysis are gas chromatographs, mass spectrometers, and gas chromatographs/mass spectrometers. , a CHN analyzer, etc., as long as it can be thermally decomposed into an analytical gas, and may be a liquid, but generally a solid is used. The sample is then held in a part of the sample holder in a suitable container and transported to the pyrolysis region.

第1図は、この発明を適用した縦型熱分屏管方式の分析
用熱分解装置の構造例を示す縦断面図である。
FIG. 1 is a longitudinal sectional view showing an example of the structure of a vertical thermal dividing tube type analytical pyrolysis apparatus to which the present invention is applied.

図中、1は石英管で形成された上部筒1aと下部筒1b
とを管継手2にて連結した縦型の熱分解管であり、下部
筒1bが加熱炉3に貫通配置されている。この加熱炉3
は、その内部に下部筒1bを囲包する電熱式ヒーター4
とその外周を覆う耐火レンガからなる断熱層5を備えて
おり、全体がケーシング6に収められている。また下部
筒1b内の中間位置つまり熱分解領域Z2を構成する加
熱中心部にスリット板7が嵌挿され、その下方にガラス
ウール8が充填されている。9は下部筒1bの下端に接
続されたガス出口部材である。
In the figure, 1 is an upper cylinder 1a and a lower cylinder 1b formed of quartz tubes.
It is a vertical pyrolysis tube connected with a pipe joint 2, and a lower tube 1b is arranged to penetrate through the heating furnace 3. This heating furnace 3
is an electric heater 4 that surrounds the lower cylinder 1b therein.
and a heat insulating layer 5 made of firebrick covering its outer periphery, and the entire body is housed in a casing 6. Further, a slit plate 7 is inserted into an intermediate position within the lower cylinder 1b, that is, a heating center portion constituting the thermal decomposition zone Z2, and glass wool 8 is filled below the slit plate 7. 9 is a gas outlet member connected to the lower end of the lower cylinder 1b.

そして、ケーシング6の上面に立設された複数の支柱1
0を介して支承された取付板11に試料ホルダ一部12
が設けられている。この試料ホルダ一部12は、側方に
上部キャリヤガス導入口13を備えた試料挿入筒14と
、その上部に環状キャップ15を介して連結された試料
ホルダー筒16とから構成され、取付板11を貫通する
試料挿入筒14の下端に熱分解管1の上部筒1aの上端
が管継手17を介して接続されている。なお、非熱分解
領域Z1は試料挿入筒14と上部筒1aの内部で構成さ
れる。また試料ホルダー筒16にはコイルばね18にて
上方突出側に付勢された操作具19が装填されており、
この操作具19の末広がり状テーパ外周面を有する下端
爪部19aにて試料棒20がその上端で保持されるよう
になされている。
A plurality of columns 1 are installed on the upper surface of the casing 6.
A sample holder part 12 is mounted on a mounting plate 11 supported via a
is provided. This sample holder part 12 is composed of a sample insertion cylinder 14 equipped with an upper carrier gas inlet 13 on the side, and a sample holder cylinder 16 connected to the upper part thereof via an annular cap 15. The upper end of the upper tube 1a of the pyrolysis tube 1 is connected via a pipe joint 17 to the lower end of the sample insertion tube 14 that passes through the tube. Note that the non-thermal decomposition region Z1 is constituted by the inside of the sample insertion tube 14 and the upper tube 1a. Further, the sample holder tube 16 is loaded with an operating tool 19 that is urged upwardly by a coil spring 18.
The sample rod 20 is held at the upper end of the lower end claw portion 19a of the operating tool 19, which has a tapered outer peripheral surface that widens toward the end.

そして熱分解用試料は、試料棒20の下端に設けられた
皿形容器20aに収容されている。
The sample for pyrolysis is housed in a dish-shaped container 20a provided at the lower end of the sample rod 20.

また、熱分解管1の上部筒1aの上端部ならびに各支柱
10の上端部には、それぞれ複数の放熱フィン21aを
備えた套管21が嵌装されており、熱分解管1および各
支柱10を通して加熱炉3側からホルダ一部12側へ伝
導する熱ならびに加熱炉3側からの輻射熱を外気に放散
するように構成されている。
Further, a jacket tube 21 having a plurality of radiation fins 21a is fitted to the upper end of the upper cylinder 1a of the pyrolysis tube 1 and the upper end of each support 10, and the pyrolysis tube 1 and each support 10 It is configured to dissipate heat conducted from the heating furnace 3 side to the holder part 12 side through the heating furnace 3 side and radiant heat from the heating furnace 3 side to the outside air.

一方、管継手2は側方に下部キャリヤガス導入口22を
備えており、この導入口22にはコイル状のキャリヤガ
ス導入管23が接続されている。
On the other hand, the pipe joint 2 is provided with a lower carrier gas introduction port 22 on the side, and a coiled carrier gas introduction pipe 23 is connected to this introduction port 22.

そしてこのキャリヤガス導入管23を囲包する電熱式ヒ
ーター24とその外周を覆う耐火レンガ25とからなる
キャリヤガス予熱装置26が、管継手2部分をも一体に
覆うケーシング26aに収容されて加熱炉3のケーシン
グ6上に設置されている。
A carrier gas preheating device 26 consisting of an electric heater 24 surrounding the carrier gas introduction pipe 23 and a refractory brick 25 covering the outer periphery of the carrier gas preheating device 26 is housed in a casing 26a that also integrally covers the pipe fitting 2 portion. It is installed on the casing 6 of 3.

なお、熱分解管1の上部筒1aと下部筒1b、該下部筒
1bとガス出口部材、上部筒1aと試料挿入筒14、試
料挿入筒14と試料ホルダー筒16、グ のそれぞれ連結部はパツキン27にて封止されて△ いる。
Note that the connection parts between the upper tube 1a and the lower tube 1b of the pyrolysis tube 1, the lower tube 1b and the gas outlet member, the upper tube 1a and the sample insertion tube 14, and the sample insertion tube 14 and the sample holder tube 16 are made of packing. It is sealed at 27.

上記構成の分析用熱分解装置によって熱分解用試料の熱
分解を行うには、環状キャップ15を外して試料ホルダ
ー筒16を取り出し、容器20aに分析対象の熱分解用
試料を収容した試料棒20を操作具19の下端爪部19
aに保持させ、これを試料挿入筒14に装填して環状キ
ャップ15を甥着して内部を密封した上で、上部および
下部キャリヤガス導入口13.22よりキャリヤガスを
熱分解管1内へ所定流スで流入させる。この時、ホルダ
一部12においては、放熱フィン21aの作用により加
熱炉3からの伝導熱および輻射熱が外気に放散されてい
るので、非熱分解領域Z1の温度雰囲気は該試料が全く
熱分解を生じない低温に保持されている。次に操作具1
9を押込操作すると、その下端爪部19aが試料ホルダ
ー筒16のテーパ孔16aから離脱して自らの弾性蓄力
で開放し、試料棒20が自重によって熱分解管1内を落
下してスリット板7上つまり熱分解領域Z2に皿形容器
20aが位置してこれに収容された熱分解用試料が熱分
解され、熱分解生成物はキャリヤガスとともにスリット
板7およびガラスウール8を通してガス出口部材9より
これに接続する分析機器のカラム(図示略)に送出され
る。
In order to pyrolyze a pyrolysis sample using the analytical pyrolysis apparatus configured as described above, the annular cap 15 is removed, the sample holder cylinder 16 is taken out, and the sample rod 20 containing the pyrolysis sample to be analyzed is placed in the container 20a. The lower end claw part 19 of the operating tool 19
a, load it into the sample insertion tube 14, attach the annular cap 15 to seal the inside, and then introduce the carrier gas into the pyrolysis tube 1 through the upper and lower carrier gas inlets 13.22. Let it flow at a predetermined flow rate. At this time, in the holder part 12, conductive heat and radiant heat from the heating furnace 3 are dissipated to the outside air by the action of the radiation fins 21a, so the temperature atmosphere in the non-thermal decomposition region Z1 is such that the sample does not undergo thermal decomposition at all. It is kept at a low temperature that does not occur. Next, operation tool 1
9 is pushed in, the lower end claw portion 19a separates from the tapered hole 16a of the sample holder tube 16 and opens with its own elastic force, and the sample rod 20 falls down inside the pyrolysis tube 1 due to its own weight and passes through the slit plate. A dish-shaped container 20a is located above 7, that is, in the pyrolysis zone Z2, and the sample for pyrolysis contained therein is pyrolyzed, and the pyrolysis products are passed through the slit plate 7 and the glass wool 8 together with the carrier gas to the gas outlet member 9 It is then sent to a column (not shown) of an analytical instrument connected to this.

ここで上記の熱分解は、下部キャリヤガス導入口22よ
り流入するキャリヤガスが予熱されているために熱分解
領域Z2の温度雰囲気が常時設定熱分解温度に保持され
ていることから、試料棒20の落下と同時に瞬間的に行
われる。したがって、上記熱分解生成物の各成分が分析
機器のカラム内を通過する時間は、上記試料棒の落下時
刻を基準として再現性よく検知される。
Here, the above thermal decomposition is performed because the carrier gas flowing in from the lower carrier gas inlet 22 is preheated and the temperature atmosphere in the thermal decomposition zone Z2 is always maintained at the set thermal decomposition temperature. This happens instantaneously at the same time as the drop. Therefore, the time taken for each component of the thermal decomposition product to pass through the column of the analytical instrument can be detected with good reproducibility based on the falling time of the sample rod.

第3図は上記構成の分析用熱分解装置によって1・2−
ポリブタジェン0.1■を500°Cにて熱分解した熱
分解生成物をガスクロマトグラフにて分析して得られる
ガスクロマトグラムであり、図中のピークaはメタン、
bはエタン、Cはエチレン、dはプロパン、eはプロピ
レン、「はl・2−ポリブタジェンのそれぞれ分解生成
物成分を示す。
Figure 3 shows 1.2-
This is a gas chromatogram obtained by analyzing the thermal decomposition product of polybutadiene 0.1 cm at 500°C using a gas chromatograph. Peak a in the figure is methane,
b represents ethane, C represents ethylene, d represents propane, e represents propylene, and ``respectively represents a decomposition product component of 1.2-polybutadiene.

これに対して、第4図は第1図構成における放冷フィン
21aを有する套管21の全てを取外すとともに、キャ
リヤガス予熱装置26を停止して全キャリヤガスを非加
熱状態で上部キャリヤガス導入口13より導入して同様
の分析を行った場合のガスクロマトグラムであり、キャ
リヤガスの温度が低いために熱分解領域Z2での熱分解
が遅れることによって第3図に比較して各ピークa −
fの出現時刻がずれて再現性が悪くなり、しかも試料ホ
ルダ一部での昇温によって副分解が発生し、副分解生成
物のピークgが現われることが判る。
On the other hand, in FIG. 4, all of the sleeve tube 21 having cooling fins 21a in the configuration shown in FIG. This is a gas chromatogram obtained when a similar analysis was performed by introducing the carrier gas through the port 13, and each peak a-
It can be seen that the appearance time of f is shifted and the reproducibility deteriorates, and furthermore, secondary decomposition occurs due to temperature rise in a part of the sample holder, and a peak g of secondary decomposition products appears.

なお、この発明に係る分析用熱分;膵装置では、上記構
造側以外に熱分解管が傾斜型あるいは横型であるものや
、細部構造が上記構造例とは異なるものに種々設計変更
可能であり、また非熱分解領域における冷却装置として
上記放熱フィン21a以外に空冷または水冷装置を用い
てもよいことは言うまでもない。さらに、キャリヤガス
予熱装置の熱源には加熱炉3やガスクロマトグラフなど
の分析機器の余熱を利用してもよい。
In addition, in the thermal analysis pancreatic device according to the present invention, the design can be changed in various ways such that the pyrolysis tube is inclined or horizontal in addition to the above-mentioned structure, or the detailed structure is different from the above-mentioned structure example. Furthermore, it goes without saying that an air cooling or water cooling device may be used as a cooling device in the non-thermal decomposition region in addition to the radiation fins 21a. Further, residual heat from the heating furnace 3 or an analytical instrument such as a gas chromatograph may be used as the heat source of the carrier gas preheating device.

〔発明の効果1 この発明に係る分析用熱分解装置は、非熱分解領域から
熱分解領域へ移送される熱分解用試料の温度雰囲気を熱
分解が全く生じない低温度から設定熱分解温度へ瞬時に
変化させる温度制御手段を設けているため、上記設定熱
分解温度より低温下で該試料に副分解を生じることがな
く、かつキャリヤガス量が多くなっても熱分解が瞬間的
に行われるので分析データの再現性が極めて良好となり
、従来のこの種装置に比較して分析精度および信頼性を
大きく向上させることができる。
[Effect of the invention 1 The analytical pyrolysis apparatus according to the present invention changes the temperature atmosphere of the pyrolysis sample transferred from the non-pyrolysis region to the pyrolysis region from a low temperature at which no pyrolysis occurs to a set pyrolysis temperature. Since it is equipped with a temperature control means that changes the temperature instantaneously, no side decomposition occurs in the sample at a temperature lower than the set pyrolysis temperature, and pyrolysis occurs instantaneously even if the amount of carrier gas is large. Therefore, the reproducibility of analytical data is extremely good, and analytical accuracy and reliability can be greatly improved compared to conventional devices of this type.

し実 施例] 以下、この発明の実施例を比較例と対比して具体的に説
明する。
Examples] Examples of the present invention will be specifically described below in comparison with comparative examples.

実施例 第1図で示す装置構成の分析用熱分解装置を用い、その
ガス出口部材9を水素イオン化検出器を付属するガスク
ロマトグラフ[HP(ヒユーレット・パラカード)社製
の商品名5880A]のカラムに接続し、キャリヤガス
として窒素ガスを使用し、上部キャリヤガス導入口13
から導入するキャリヤガスの温度を23°C1下部キャ
リヤガス導入口22から導入するキャリヤガスの温度を
505°Cとし、かつ両キャリヤガスの流量比を上部/
下部=115とし、設定熱分解温度500 ’Cにおい
て、市販の1・2−ポリブタジェンを熱分解用試料とし
て後記第1表および第2表記載の2種の使用量において
それぞれキャリヤガス総量が40me1分、60me1
分、80m(’/分の3種の条件で計6通りの熱分解生
成物の分析を行った。なお、ガスクロマトグラフの測定
条件は、カラム充填剤にガスクロ用ジュラパック(80
〜100メツシユ)を長さ2m、内径3關の銅カラム管
に充填し、カラム温度を30°Cの恒温として行った。
Example Using an analytical thermal decomposition apparatus having the apparatus configuration shown in FIG. Connect to the upper carrier gas inlet 13 and use nitrogen gas as the carrier gas.
The temperature of the carrier gas introduced from the lower carrier gas inlet 22 is set to 23°C, and the flow rate ratio of both carrier gases is set to 23°C.
The lower part = 115, and at a set pyrolysis temperature of 500'C, commercially available 1,2-polybutadiene was used as a pyrolysis sample, and the total amount of carrier gas was 40 me1 min at the two usage amounts listed in Tables 1 and 2 below. ,60me1
A total of six analyzes of thermal decomposition products were carried out under three conditions: 80 m ('/min) and 80 m ('/min). The gas chromatograph measurement conditions were as follows:
~100 mesh) was packed into a copper column tube with a length of 2 m and an inner diameter of 3 mm, and the column temperature was kept at a constant temperature of 30°C.

比較例1 実施例の装置構成より放熱フィン21aを有する套管2
1をすべて取り外した以外は、実施例と同様にして分析
を行った。
Comparative Example 1 A sleeve 2 having heat dissipation fins 21a based on the device configuration of the example
The analysis was conducted in the same manner as in the example except that 1 was completely removed.

比較例2 実施例の装置構成におけるキャリヤガス予熱装置26を
停止して全キャリヤガスを上部キャリヤガス導入口13
より23℃にて導入した以外は、実施例と同様にして分
析を行った。
Comparative Example 2 The carrier gas preheating device 26 in the device configuration of the example was stopped and all the carrier gas was transferred to the upper carrier gas inlet 13.
Analysis was conducted in the same manner as in the example except that the introduction was performed at 23°C.

比較例3 実施例の装置構成より放熱フィン21aを有する套管2
1をすべて取外すとともに、キャリヤガス予熱装置26
を停止して全キャリヤガスを上部キャリヤガス導入口1
3より23℃にて導入した以外は、実施例と同様にして
分析を行った。
Comparative Example 3 A sleeve 2 having heat radiation fins 21a based on the device configuration of the example
1, and remove the carrier gas preheating device 26.
to the upper carrier gas inlet port 1.
The analysis was conducted in the same manner as in Example except that the temperature was introduced at 23°C.

比較例4 分析用熱分解装置としてキューリーポイント型熱分解装
置(日本分析工業社製の商品名JHP−35)を用いた
以外は、実施例と同様にして分析を行った。
Comparative Example 4 Analysis was carried out in the same manner as in the example except that a Curie point type pyrolysis device (trade name JHP-35, manufactured by Japan Analytical Industry Co., Ltd.) was used as the pyrolysis device for analysis.

上記実施例および比較例で得られたガスクロマトグラム
について、分析データの再現性を評価し、その結果を第
1表および第2表に示す。なお、表中のmは第3図のピ
ークbとピークfに相当するピークの面積比b/fの1
0回の平均値、σはその標阜偏差を示す。また、これら
ガスクロマトグラムのうち、比較例1および比較例3の
ものには、第4図のピークgに相当する副分解ピークが
出現した。
The reproducibility of analytical data was evaluated for the gas chromatograms obtained in the above Examples and Comparative Examples, and the results are shown in Tables 1 and 2. Note that m in the table is 1 of the area ratio b/f of the peaks corresponding to peak b and peak f in Figure 3.
The average value of 0 times, σ indicates the standard deviation. Further, among these gas chromatograms, a sub-decomposition peak corresponding to peak g in FIG. 4 appeared in Comparative Example 1 and Comparative Example 3.

第   1   表 第2表 上表から明らかなように、この発明に係る分析用熱分解
装置によればキャリヤガス量および熱分解用試料の量の
増減にかかわらず分析データの再現性が極めて良好であ
る。これに対して温度制御手段を有さない同様装置(比
較例1〜3)ではキャリヤガス量および熱分解用試料の
量が多くなるほど再現性が低下し、とくにキャリヤガス
の予熱装置のない場合(比較例2,3)ではこの傾向が
顕著であることが判る。さらに従来のキューリーポイン
ト型の装置(比較例4)では熱容量が小さいことから、
再現性が著しく劣ることが判る。一方、非熱分解領域に
おける冷却装置がない場合(比較例1,3)では既述の
如く副分解が発生する。
As is clear from the upper table of Table 1 and Table 2, the analytical pyrolysis apparatus according to the present invention has extremely good reproducibility of analytical data regardless of increases or decreases in the amount of carrier gas and the amount of sample for pyrolysis. be. On the other hand, in similar devices without temperature control means (Comparative Examples 1 to 3), the reproducibility decreases as the amount of carrier gas and the amount of sample for pyrolysis increases, especially when there is no preheating device for the carrier gas ( It can be seen that this tendency is remarkable in Comparative Examples 2 and 3). Furthermore, since the conventional Curie point type device (Comparative Example 4) has a small heat capacity,
It can be seen that the reproducibility is significantly poor. On the other hand, when there is no cooling device in the non-thermal decomposition region (Comparative Examples 1 and 3), secondary decomposition occurs as described above.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係る分析用熱分解装置の構造例を示
す縦断面図、第2図は熱分解用試料の非熱分解領域から
熱分解領域への移送における温度算囲気と時間の関係図
、第3図はこの発明装置を用いたガスクロマトグラムの
一例を示す図、第4図は従来装置を用いたガスクロマト
グラムの−例を示す図である。 Zl・・・非熱分解領域、Z2・熱分解領域、T1・・
・熱分解を全く生じない低温度、T2・・設定熱分解温
度、21a・・・放冷フィン(冷却装置)、26・・キ
ャリヤガス予熱装置 特許出願人  日立マクセル株式会社 z1.#¥熱☆解/fi値
FIG. 1 is a vertical cross-sectional view showing an example of the structure of the analytical pyrolysis apparatus according to the present invention, and FIG. 2 is the relationship between temperature calculation, surrounding air, and time during the transfer of a pyrolysis sample from a non-thermal decomposition area to a pyrolysis area. FIG. 3 is a diagram showing an example of a gas chromatogram using the device of the present invention, and FIG. 4 is a diagram showing an example of a gas chromatogram using the conventional device. Zl...non-thermal decomposition area, Z2/thermal decomposition area, T1...
- Low temperature that does not cause any thermal decomposition, T2... Setting thermal decomposition temperature, 21a... Cooling fins (cooling device), 26... Carrier gas preheating device patent applicant Hitachi Maxell, Ltd. z1. #¥Heat☆Solution/fi value

Claims (2)

【特許請求の範囲】[Claims] (1)熱分解用試料を非熱分解領域から熱分解領域へ移
送して熱分解し、熱分解生成物をキヤリヤガスとともに
分析機器のカラムに送出する分析用熱分解装置において
、上記移送される熱分解用試料の雰囲気温度を熱分解が
全く生じない低温度から設定熱分解温度へ瞬時に変化さ
せるための温度制御手段を設けたことを特徴とする分析
用熱分解装置。
(1) In an analytical pyrolysis device in which a sample for pyrolysis is transferred from a non-pyrolysis region to a pyrolysis region to be pyrolyzed and the pyrolysis products are sent to a column of an analytical instrument along with a carrier gas, the transferred heat is A pyrolysis device for analysis, characterized in that it is provided with a temperature control means for instantly changing the ambient temperature of a sample for decomposition from a low temperature at which no pyrolysis occurs to a set pyrolysis temperature.
(2)温度制御手段が非熱分解領域における冷却装置と
熱分解領域直前に流入させるキヤリヤガスの予熱装置と
から構成される特許請求の範囲第(1)項記載の分析用
熱分解装置。
(2) The analytical pyrolysis apparatus according to claim 1, wherein the temperature control means comprises a cooling device in the non-pyrolysis region and a preheating device for carrier gas introduced immediately before the pyrolysis region.
JP403786A 1986-01-10 1986-01-10 Analytical pyrolysis device Expired - Lifetime JPH076972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP403786A JPH076972B2 (en) 1986-01-10 1986-01-10 Analytical pyrolysis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP403786A JPH076972B2 (en) 1986-01-10 1986-01-10 Analytical pyrolysis device

Publications (2)

Publication Number Publication Date
JPS62162960A true JPS62162960A (en) 1987-07-18
JPH076972B2 JPH076972B2 (en) 1995-01-30

Family

ID=11573761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP403786A Expired - Lifetime JPH076972B2 (en) 1986-01-10 1986-01-10 Analytical pyrolysis device

Country Status (1)

Country Link
JP (1) JPH076972B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008541097A (en) * 2005-05-12 2008-11-20 パーキンエルマー・エルエーエス・インコーポレーテッド A system for controlling flow into a chromatography column using transfer line impedance.
CN104749389A (en) * 2013-12-30 2015-07-01 同方威视技术股份有限公司 Universal type sample injector, gas chromatograph and combined spectrum instrument

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109580819B (en) * 2018-12-14 2021-10-19 绍兴市特种设备检测院 Method for measuring cracking resistance of organic heat carrier

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008541097A (en) * 2005-05-12 2008-11-20 パーキンエルマー・エルエーエス・インコーポレーテッド A system for controlling flow into a chromatography column using transfer line impedance.
JP4768810B2 (en) * 2005-05-12 2011-09-07 パーキンエルマー・ヘルス・サイエンシズ・インコーポレーテッド A system for controlling flow into a chromatography column using transfer line impedance.
CN104749389A (en) * 2013-12-30 2015-07-01 同方威视技术股份有限公司 Universal type sample injector, gas chromatograph and combined spectrum instrument

Also Published As

Publication number Publication date
JPH076972B2 (en) 1995-01-30

Similar Documents

Publication Publication Date Title
Brownlee et al. A micro-preparative gas chromatograph and a modified carbon skeleton determinator
EP0397468B1 (en) Spectroscopic plasma torch for microwave induced plasmas
CA1227949A (en) Light pipe and heater apparatus
US4422860A (en) On-column capillary gas chromatographic injector
EP3101418B1 (en) Gas analyzing apparatus comprising a temperature controlling system for the capillary sampling device
US4587835A (en) Light pipe and heater apparatus
CA1147979A (en) Sample pyrolysis oven
US5596876A (en) Miniaturized cryogenic trap apparatus
US5228514A (en) Gas trap apparatus
JPH11337541A (en) Sample introducing part device of gas chromatograph
US5246667A (en) Analytical furnace
JPS62162960A (en) Pyrolysis device for analysis
US3572084A (en) Apparatus for differential thermal analysis
US4919893A (en) Thermal extraction/pyrolysis gas chromatograph
US4842825A (en) Apparatus for determining chemical structure
US6248997B1 (en) Method of analyzing substances existing in gas
US3888107A (en) Differential thermal analysis cell assembly
US3095278A (en) Gas analysis device
JPS5917777B2 (en) Method and apparatus for determining thermal decomposition characteristics of hydrocarbon feed to a cracking furnace
CN208420815U (en) For the gas chromatograph of methyl Mercury Determination in environmental and biological samples and inductively coupled plasma mass spectrometer coupling system
US7958770B2 (en) Heated transfer line for use in high temperature microwave chromatography
US3115766A (en) Gas chromatography apparatus
Marhevka et al. Generation of perfluoroisobutylene reference sample and determination by gas chromatography with electron capture and flame ionization detection
Pankow et al. Interface for the direct coupling of a second gas chromatograph to a gas chromatograph/mass spectrometer for use with a fused silica capillary column
US3497603A (en) Furnace assembly for thermal analysis use