JPS62162710A - Tappet valve control device for internal combustion engine - Google Patents

Tappet valve control device for internal combustion engine

Info

Publication number
JPS62162710A
JPS62162710A JP438186A JP438186A JPS62162710A JP S62162710 A JPS62162710 A JP S62162710A JP 438186 A JP438186 A JP 438186A JP 438186 A JP438186 A JP 438186A JP S62162710 A JPS62162710 A JP S62162710A
Authority
JP
Japan
Prior art keywords
cam
lever
lift
control
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP438186A
Other languages
Japanese (ja)
Inventor
Seinosuke Hara
誠之助 原
Hiromichi Bito
尾藤 博通
Yasuo Matsumoto
松本 泰郎
Manabu Kato
学 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP438186A priority Critical patent/JPS62162710A/en
Publication of JPS62162710A publication Critical patent/JPS62162710A/en
Pending legal-status Critical Current

Links

Landscapes

  • Valve Device For Special Equipments (AREA)

Abstract

PURPOSE:To improve responsiveness for control in acceleration and deceleration, by changing the angle of a lever abutting against the back of a floating type rocker arm for opening and closing suction and exhaust valves to control a rotating direction of a cam for changing an angle of a lever arbitrarily in controlling a valve opening and closing timing. CONSTITUTION:A suction and exhaust valve opened and closed by a cam through a floating type rocker arm and a lever is disposed at the back of the rocker arm, one end of which being supported by a hydraulic pivot and the other end of which being abutted against a control cam 20. The control cam has a plurality of cam surfaces. An angle of the lever is changed by rotating a shaft 23 by a step motor 26 to change the abutting point of the back of the rocker arm and the lever for controlling an opening and closing timing of a valve 12. A control unit 35 controls the drive of the step motor 26 in accordance with a throttle valve opening 33 an engine r.p.m, In acceleration and deceleration a rotating direction of the shaft 23 is is changed in order to be in direct contact with cam surface, whereby responsiveness is improved.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、機関運転条件に応じて吸・排気弁のリフト特
性を可変制御する内燃機関の動弁制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a valve train control device for an internal combustion engine that variably controls the lift characteristics of intake and exhaust valves according to engine operating conditions.

〈従来の技術〉 機関運転条件に応じて吸・排気弁のリフト特性を可変制
御する内燃機関の動弁制御装置としては、例えば第4図
〜第6図に示すようなものが、本出願人により提案され
ている(特開昭60−26109号及び特願昭59−8
1052号参照)。
<Prior Art> As a valve control device for an internal combustion engine that variably controls the lift characteristics of intake and exhaust valves according to engine operating conditions, the one shown in FIGS. 4 to 6, for example, has been developed by the present applicant. (Japanese Unexamined Patent Publication No. 60-26109 and Japanese Patent Application No. 59-8
(See No. 1052).

これについて説明すると、第4図を参照し、機関回転に
同期して回転する吸・排気弁駆動カム11と、吸・排気
弁12のステムエンドとに両端を当接させてロッカアー
ム13が設けられ、S亥ロッカアーム13の湾曲形成さ
れた背面13aを、後述する油圧ピボッ目9により一端
部にて揺動自由に支持されたレバー15に支点接触させ
である。また、レバー15はロッカアーム13の両側壁
から突出するシャフト13bを保持部材14を介して凹
溝15a内に保持しており、レバー15に形成されたス
プリングシート15bと保持部材14との間には、ロッ
カアーム13を下方向に付勢するバネ定数小のスプリン
グ16が介装されている。
To explain this, referring to FIG. 4, a rocker arm 13 is provided with both ends abutting the intake/exhaust valve drive cam 11 that rotates in synchronization with engine rotation and the stem end of the intake/exhaust valve 12. The curved back surface 13a of the S-rocker arm 13 is brought into fulcrum contact with a lever 15 which is supported at one end so as to be swingable by a hydraulic pivot 9 which will be described later. Further, the lever 15 holds a shaft 13b protruding from both side walls of the rocker arm 13 in a groove 15a via a holding member 14, and there is a space between a spring seat 15b formed on the lever 15 and the holding member 14. A spring 16 with a small spring constant is interposed to bias the rocker arm 13 downward.

油圧ピボット19は、シリンダヘッドに取付けられたブ
ラケット18に形成した取付孔18a内に摺動自由に嵌
挿された外筒19aと、該外筒19a内に嵌挿された内
筒19bとを備え、かつ、両者の間に形成された油圧室
19cにチェックバルブ19dを備えている。そして、
外筒19aの半球状の下端部にてレバー15の吸・排気
弁12ステムエンド側の一端部上面の凹陥部15cに嵌
答し、レバー15を揺動自由に支持している。そして、
ブラケット1日内部に形成された油圧供給通路18bか
ら内筒19b内部及びチェックバルブ19dを介して油
圧を油圧室19cに供給してバルブクリアランスを一定
に保つようになっている。
The hydraulic pivot 19 includes an outer cylinder 19a that is slidably inserted into a mounting hole 18a formed in a bracket 18 attached to the cylinder head, and an inner cylinder 19b that is fitted into the outer cylinder 19a. , and a check valve 19d is provided in a hydraulic chamber 19c formed between the two. and,
The hemispherical lower end of the outer cylinder 19a fits into a recess 15c on the upper surface of one end of the lever 15 on the stem end side of the intake/exhaust valve 12, supporting the lever 15 in a freely swingable manner. and,
Hydraulic pressure is supplied to the hydraulic chamber 19c from a hydraulic pressure supply passage 18b formed inside the bracket through the inside of the inner cylinder 19b and the check valve 19d to keep the valve clearance constant.

また、ブラケット18に対して後述する如く回動自在に
取付けられたリフト制御カム20がレバー15の吸・排
気弁駆動カム11側の他端部上面に係合して、レバー1
5の揺動位置を規制している。
In addition, a lift control cam 20 rotatably attached to the bracket 18 as described later engages with the upper surface of the other end of the lever 15 on the intake/exhaust valve drive cam 11 side.
The swing position of 5 is regulated.

リフト制御カム20は、5角形状で、吸・排気弁12の
リフトiを段階的に変えるように回転中心軸からの距離
が異なりそれぞれ略平らな5つのカム面20a〜20e
を有すると共に、中心部に後述する制御軸23を挿通ず
る孔20gを有している。また、リフト制御カム20の
両端から突出して形成した円筒部20hは、第5図及び
第6図に示すようにブラケット18に形成された下部円
弧418 cと、ブラケット18上にボルト21で締結
された一対のキャップ22に形成された上部円弧溝22
aとの間に回動自由に保持しである。
The lift control cam 20 has a pentagonal shape and has five substantially flat cam surfaces 20a to 20e, each having a different distance from the rotation center axis so as to change the lift i of the intake/exhaust valve 12 in stages.
It also has a hole 20g in the center through which a control shaft 23, which will be described later, is inserted. Further, the cylindrical portion 20h formed to protrude from both ends of the lift control cam 20 is fastened to a lower arc 418c formed on the bracket 18 with bolts 21 on the bracket 18, as shown in FIGS. 5 and 6. An upper arcuate groove 22 formed in a pair of caps 22
It is held freely rotatable between a and a.

そして、気筒数個設けたリフト制御カム20の中心部を
貫通して形成された孔20gに一本の制御軸23をスキ
マバメ状態で挿通し、該制御軸23の各リフト制御カム
20両側部分にそれぞれ嵌挿した弾性部材としての捩り
コイルスプリング24の一端を制御軸23外周面にねじ
込んだ止めどス23aに係止すると共に、該コイルスプ
リング24の他端をリフト制御カム20の円筒部20h
側壁に形成した孔20iに嵌挿して係止しである。
Then, one control shaft 23 is inserted into the hole 20g formed by penetrating the center of the lift control cam 20 provided in several cylinders in a loose fit state, and the control shaft 23 is inserted into both side portions of each lift control cam 20. One end of each fitted torsion coil spring 24 as an elastic member is locked to a stopper 23a screwed into the outer peripheral surface of the control shaft 23, and the other end of the coil spring 24 is connected to the cylindrical portion 20h of the lift control cam 20.
It is locked by fitting into a hole 20i formed in the side wall.

制御軸23の一端は、継手25を介してアクチュエータ
としてのステッピングモータ26の駆動軸26aに連結
しである。ステッピングモータ26は、制御回路27に
より、機関回転数、絞り弁開度等の機関運転条件に基づ
いて駆動され、制御軸23を所定の回動位置に回動する
ようになっている。
One end of the control shaft 23 is connected via a joint 25 to a drive shaft 26a of a stepping motor 26 as an actuator. The stepping motor 26 is driven by a control circuit 27 based on engine operating conditions such as engine speed and throttle valve opening, and rotates the control shaft 23 to a predetermined rotational position.

28はバルブスプリングである。28 is a valve spring.

作用を説明すると、リフト制御カム20が最もリフト量
の大きいカム面20eでレバー15に当接している状態
では、レバー15が吸・排気弁駆動カム11側に最も押
し下げられた状態となる。このため、ロッカアーム13
の背面13aに支点接触されるレバー15の下面も下が
り、支点接触点Aが吸・排気弁駆動カム11側に移動し
つつ吸・排気弁12に伝達され、第7図の曲線Xに示す
ようにリフト量が大きく、かつ開弁時期が早く閉弁時期
が遅い特性となる。
To explain the operation, when the lift control cam 20 is in contact with the lever 15 with the cam surface 20e having the largest lift amount, the lever 15 is pushed down the most toward the intake/exhaust valve drive cam 11 side. For this reason, the rocker arm 13
The lower surface of the lever 15, which is in fulcrum contact with the back surface 13a of The lift amount is large, and the valve opening timing is early and the valve closing timing is late.

一方、リフト制御カム20を回動し、例えばリフト量が
最も小さいカム面20aでレバー15に当接するように
すると、レバー15の吸・排気弁駆動カム11側の端部
は凹陥部15cを支点とした揺動によって上昇し、レバ
ー15の下面も上方に後退する。
On the other hand, when the lift control cam 20 is rotated so that, for example, the cam surface 20a with the smallest lift comes into contact with the lever 15, the end of the lever 15 on the intake/exhaust valve drive cam 11 side uses the concave portion 15c as a fulcrum. The lower surface of the lever 15 also retreats upward as a result of the swinging motion.

レバー15の下面はロッカアーム13が吸・排気弁駆動
カム11のリフトを吸・排気弁12に伝えるための支点
となるが、吸・排気弁駆動カム11がベースサークルで
ロッカアーム13に当接している状態の支点の初期位置
が、前記リフト量大のカム面20aでレバー15が当接
している時に比べて第4図で右側、即ちリフト後に支点
が移動する方向から遠ざかる側に移動する。この結果、
第7図の曲線Yに示すように、リフ1−ffiが小さく
、かつ開弁時期が遅れ閉弁時期が早まる特性となる。
The lower surface of the lever 15 serves as a fulcrum for the rocker arm 13 to transmit the lift of the intake/exhaust valve drive cam 11 to the intake/exhaust valves 12, but the intake/exhaust valve drive cam 11 is in contact with the rocker arm 13 at the base circle. The initial position of the fulcrum in this state moves to the right in FIG. 4 compared to when the lever 15 is in contact with the cam surface 20a with the large lift amount, that is, to the side away from the direction in which the fulcrum moves after the lift. As a result,
As shown by the curve Y in FIG. 7, the characteristic is that the riff 1-ffi is small and the valve opening timing is delayed and the valve closing timing is advanced.

このようにして、リフト制御カム20を回動してカム面
20a〜20eのいずれかをレバー15に当接させるこ
とにより、吸・排気弁12のリフト特性を段階的に変化
させることができる。
In this way, by rotating the lift control cam 20 and bringing any of the cam surfaces 20a to 20e into contact with the lever 15, the lift characteristics of the intake/exhaust valves 12 can be changed in stages.

ここで、前記リフト制御カム20の回動は、ステラビン
グモータ26の駆動により制御軸23及び捩りコイルス
プリング24を介して行われる。即ち、前記制御回路2
7は、機関運転状態に応じた信号に基づいて設定した駆
動パルスをステッピングモータ26に出力する。この駆
動パルスは、ステ、7ピングモータ26の駆動軸26a
を予め設定した角度だけ回動させ、継手25を介して制
御軸23も回動する。
Here, the lift control cam 20 is rotated via a control shaft 23 and a torsion coil spring 24 by driving a steering motor 26 . That is, the control circuit 2
7 outputs a drive pulse set based on a signal according to the engine operating state to the stepping motor 26. This drive pulse is applied to the drive shaft 26a of the 7-pin motor 26.
is rotated by a preset angle, and the control shaft 23 is also rotated via the joint 25.

今、制御軸23が回動するタイミングで、吸・排気弁1
2がリフト中にある気筒においては、ロッカアーム13
とレバー15との接触支点が吸・排気弁駆動カム11側
に移動していて、バルブスプリング28の大きな反力が
ロッカアーム13.レバー15を介してリフト制御カム
20に作用する。このため、リフト制御カム20は固定
されたままその両側の捩りコイルスプリング24を捩り
つつ、制御軸23のみが回動する。次いで、吸・排気弁
駆動カム11が回転して吸・排気弁12が閉じた後は、
口・ツカアーム13とレバー15との接触支点が、略吸
・排気弁12の上方近くに位置すると共に、バルブスプ
リング28の反力が消失するため、リフト制御カム20
に作用する力は、ロッカアーム13とレバー15との間
に取付けられたスプリング16の弱い力のみとなる。し
たがって、吸・排気弁12のリフト中に撲リコイルスプ
リング24に貯えられたトルクが前記スプリング16の
弱い力に打ち勝って、リフト制御カム20を回動させる
ことができる。従って、ステッピングモータ26に要求
される出力は捩りコイルスプリング24を隣接するカム
面の回動周分だけ捩るに要する小さなもので足りる。
Now, at the timing when the control shaft 23 rotates, the intake/exhaust valve 1
2 is in lift, the rocker arm 13
The contact fulcrum between the lever 15 and the lever 15 has moved toward the intake/exhaust valve drive cam 11, and the large reaction force of the valve spring 28 is applied to the rocker arm 13. It acts on the lift control cam 20 via the lever 15. Therefore, the lift control cam 20 remains fixed and only the control shaft 23 rotates while twisting the torsion coil springs 24 on both sides thereof. Next, after the intake/exhaust valve drive cam 11 rotates and the intake/exhaust valves 12 close,
The contact fulcrum between the mouth/lug arm 13 and the lever 15 is located approximately above the intake/exhaust valve 12, and the reaction force of the valve spring 28 disappears, so that the lift control cam 20
The only force acting on this is the weak force of the spring 16 attached between the rocker arm 13 and the lever 15. Therefore, the torque stored in the recoil spring 24 during the lift of the intake/exhaust valve 12 can overcome the weak force of the spring 16 and rotate the lift control cam 20. Therefore, the output required from the stepping motor 26 is small enough to twist the torsion coil spring 24 by the rotational circumference of the adjacent cam surface.

〈発明が解決しようとする問題点〉 ところで、このような先願の動弁制御装置においては、
低負荷から高負荷への加速に対しては常に弁リフトが小
から大へ段階的に増大する方向、つまり、第4図でリフ
ト制御カム20を時計回り方向に回動させている(逆に
、減速時は弁リフトが大から小へ段階的に減少するよう
に、第4図で反時計回り方向に回動するように制御して
いる)。
<Problems to be solved by the invention> By the way, in the valve control device of the prior application,
When accelerating from a low load to a high load, the valve lift always increases stepwise from small to large, that is, the lift control cam 20 is rotated clockwise in FIG. During deceleration, the valve lift is controlled to rotate counterclockwise as shown in Fig. 4 so that the valve lift decreases stepwise from large to small.

しかしながら、かかる制御方式では、急加速時に短時間
でリフト制御カム20のカム面の切換を行おうとすると
、切換に要する回動角が大きいため、回動速度を相当大
きくする必要があり、これに伴い摺動抵抗が著しく増大
するため、ステッピングモータ26等アクチュエータと
して強力な駆動トルクを備えたものが必要となり、さら
に、その駆動損失により燃費を悪化させてしまうという
問題点があった。
However, in such a control method, when attempting to switch the cam surface of the lift control cam 20 in a short time during sudden acceleration, the rotation angle required for switching is large, so the rotation speed must be considerably increased. Since the sliding resistance increases accordingly, an actuator such as the stepping motor 26 that has a strong driving torque is required, and furthermore, there is a problem in that the driving loss deteriorates fuel efficiency.

本発明は、上記の問題点に鑑み、急加速時等にはリフト
制御カム駆動用アクチュエータの駆動力を強化すること
なく、短時間で無理なくカム面の切換が行えるようにす
ることを目的とする。
In view of the above-mentioned problems, an object of the present invention is to enable the cam surface to be easily switched in a short time without increasing the driving force of the lift control cam drive actuator during sudden acceleration. do.

く問題点を解決するための手段〉 このため、本発明は、リフト制御カムに弾性部材を介し
て連結される制御軸を所定の回動位置へ回動させる、回
動方向を機関運転条件に応じて選択さす回動方向選択手
段を設けた構成とする。
Means for Solving Problems> For this reason, the present invention rotates a control shaft connected to a lift control cam via an elastic member to a predetermined rotation position, and adjusts the rotation direction to engine operating conditions. The structure is provided with rotation direction selection means for selecting the rotation direction accordingly.

く作用〉 かかる構成により、例えば急加速時に弁リフト最小のカ
ム面係合状態から弁リフト最大のカム面へ切り換えるに
際し、回動方向選択手段がカムの回転角に対して弁リフ
1−4tの変化が大きい側の回動方向を選択することに
より、カムの回動速度及び摺動量を減少できる結果、摺
動抵抗を減少でき、もってリフト制御カムの駆動力を軽
減できることにより、駆動アクチュエータの小型化を図
れ、燃費も改善できる。
With this configuration, for example, when switching from the cam surface engagement state with the minimum valve lift to the cam surface with the maximum valve lift during sudden acceleration, the rotation direction selection means adjusts the valve lift 1-4t to the rotation angle of the cam. By selecting the direction of rotation with the largest change, the rotational speed and sliding amount of the cam can be reduced, resulting in a reduction in sliding resistance, which reduces the driving force of the lift control cam, making the drive actuator more compact. and improve fuel efficiency.

(実施例〉 以下に、本考案の一実施例を第1図〜第3図を用いて説
明する。尚、第4図〜第6図の機械的な構成については
同一である。
(Embodiment) An embodiment of the present invention will be described below with reference to Figs. 1 to 3. Note that the mechanical configurations in Figs. 4 to 6 are the same.

異なるところは、第1図において、機関30の吸気通路
31に介装された絞り弁32の開度を検出するスロット
ル開度センサ33及び機関回転数を検出する回転数セン
サ34等からの信号に応じて、制御回路35が制御軸2
3の回動力向を選択する機能を有していることである。
The difference is that in FIG. 1, the signals from the throttle opening sensor 33 that detects the opening of the throttle valve 32 installed in the intake passage 31 of the engine 30, the rotation speed sensor 34 that detects the engine speed, etc. Accordingly, the control circuit 35
It has the function of selecting the direction of rotation of 3.

具体的には、絞り弁開度を機関回転数と絞り弁開度の時
間当りの変化量(開弁速度)とにより、弁リフト即ちこ
れに対応する切換カム面と、該カム面へ切り換える際の
制御軸23の回動方向を決定してステッピングモータ2
6に制御信号が出力される。
Specifically, the valve lift, that is, the corresponding switching cam surface, and when switching to the cam surface, the throttle valve opening is determined by the engine speed and the amount of change in the throttle valve opening per time (valve opening speed). The direction of rotation of the control shaft 23 of the stepping motor 2 is determined.
A control signal is output to 6.

これは、制御回路35に前記先願の機能に絞り弁開度の
変化量を検出する機能と、これに応じて制御軸23の回
動方向を選択する機能とを加えればよく、かかる機能を
もつ内部回路を追加するか或いは制御回路35がマイク
ロコンピュータを内蔵したものである場合は、プログラ
ムの変更により達成できる。
This can be done by adding to the control circuit 35 a function of detecting the amount of change in the opening of the throttle valve and a function of selecting the rotation direction of the control shaft 23 in accordance with the function of the earlier application. This can be achieved by adding an internal circuit or by changing the program if the control circuit 35 has a built-in microcomputer.

次に、かかる構成からなる動弁制御装置による弁リフト
切換制御動作を第2図及び第3図を参照して説明する。
Next, the valve lift switching control operation by the valve train control device having such a configuration will be explained with reference to FIGS. 2 and 3.

第2図に示すように、絞り弁32の開弁速度(図で傾き
に相当する)が所定値以下の緩加速時は、制御回路35
は弁リフトが徐々に増大するように、カム面を弁リフト
最小のカム面20aからカム面20b、20c、20d
を経て弁リフト最大のカム面20eに切り換えるよう制
御する。
As shown in FIG. 2, during slow acceleration when the opening speed of the throttle valve 32 (corresponding to the slope in the figure) is below a predetermined value, the control circuit 35
The cam surfaces are changed from the cam surface 20a with the minimum valve lift to the cam surfaces 20b, 20c, and 20d so that the valve lift gradually increases.
The valve is then controlled to switch to the cam surface 20e with the maximum valve lift.

かかる緩加速時は、絞り弁32の開度増大に機関回転数
が良好に追従できるため、定常時と同様絞り弁開度と機
関回転数にのみ応じて弁リフトを決定し、制御軸23は
弁リフトを徐々に増大させる回動方向(第4図で時計回
り方向)を選択することにより、滑らかで安定した運転
性能を確保できる。
During such slow acceleration, the engine speed can follow the increase in the opening of the throttle valve 32 well, so the valve lift is determined only according to the throttle valve opening and the engine speed, as in the steady state, and the control shaft 23 is By selecting a rotation direction that gradually increases the valve lift (clockwise in FIG. 4), smooth and stable operating performance can be ensured.

一方、第3図に示すように、低負荷状態から絞り弁32
を急激に開く急加速時は、制御回路35は絞り弁32の
開弁速度が所定値以上になったことを検出して、最小の
弁リフト位置から最大の弁リフト位置まで一気に増大さ
せるべく、カム面20aが係合状態にあるリフト制御カ
ム20を第4図で反時計回り方向に回動して、カム面2
0eに直接切り換えるように制御する。
On the other hand, as shown in FIG. 3, the throttle valve 32
During sudden acceleration, the control circuit 35 detects that the opening speed of the throttle valve 32 has exceeded a predetermined value, and increases the opening speed from the minimum valve lift position to the maximum valve lift position at once. The lift control cam 20 in which the cam surface 20a is engaged is rotated counterclockwise in FIG.
Control is performed to directly switch to 0e.

これにより、弁リフトは急激に増大して絞り弁32開度
の増大に伴う吸入空気量の増大に対処することができ、
応答性のよい急加速性能が得られる。
As a result, the valve lift increases rapidly to cope with an increase in the amount of intake air due to an increase in the opening degree of the throttle valve 32.
Provides quick acceleration performance with good responsiveness.

そして、この場合隣接するカム面20eに直接切り換え
るように制御したため、摺動抵抗が小となりアクチュエ
ータとしてのステンピングモータ26の小型化および燃
費改善を図れる。
In this case, since the control is performed so as to directly switch to the adjacent cam surface 20e, the sliding resistance is reduced, making it possible to downsize the stamping motor 26 as an actuator and improve fuel efficiency.

次いで、絞り弁32開度が最大に落ち着いた後は、絞り
弁開度と機関回転数とによる通常の弁リフト制御が行わ
れる。この場合、機関回転数Nは未だ小さいため、パル
プオーバラップによる吸気充填効率の低下を抑制すべく
、例えば弁リフトを中間とするカム面20cが選択され
、制御軸23を同じく図で反時計回り方向に回動させて
切換制御する。
Next, after the opening degree of the throttle valve 32 has settled down to the maximum, normal valve lift control is performed based on the throttle valve opening degree and the engine speed. In this case, since the engine speed N is still small, in order to suppress the decrease in intake air filling efficiency due to pulp overlap, the cam surface 20c with the valve lift in the middle is selected, and the control shaft 23 is rotated counterclockwise in the same figure. Switching is controlled by rotating in the direction.

以降、機関回転数Nの上昇に応じて弁リフトを徐々に増
大させるべくカム面20a、2oeが順次選択されて切
換制御される。
Thereafter, the cam surfaces 20a and 2oe are sequentially selected and controlled to change over in order to gradually increase the valve lift as the engine speed N increases.

尚、本実施例では絞り弁の開弁速度を加味して制御軸2
3の回動方向を選択する構成としたが、この他、アクセ
ル開度(アクセルペダル踏込量)や基本噴射量、吸入空
気流量等、負荷に関連する状態量を検出して回動方向を
選択する構成としてもよい。
In this embodiment, the control axis 2 is adjusted by taking into account the opening speed of the throttle valve.
In addition to this, the rotation direction is selected by detecting load-related state variables such as accelerator opening (accelerator pedal depression amount), basic injection amount, and intake air flow rate. It is also possible to have a configuration in which

また、減速時は、カム面20eあるいはカム面20dと
の保合状態から制御軸を時計回り方向に回動させて一気
にカム面20aを係合させるように切換制御することに
より、応答性のよい減速運転状態が得られる。
In addition, during deceleration, the control shaft is rotated clockwise from the state of engagement with the cam surface 20e or the cam surface 20d, and switching control is performed so that the cam surface 20a is engaged all at once, resulting in good responsiveness. A decelerated driving state can be obtained.

〈発明の効果) 以上説明したように、本発明によれば機関運転条件に応
じてリフト制御カムに連係する制御軸の回動方向を選択
すべく構成としたため、制御軸駆動用アクチュエータの
小型化及び燃費改善を図りつつ、応答性のよい加・減速
性能かえられる等各種運転性能を向上できるものである
<Effects of the Invention> As explained above, according to the present invention, since the rotation direction of the control shaft linked to the lift control cam is selected according to the engine operating conditions, the actuator for driving the control shaft can be miniaturized. It is possible to improve various driving performance such as improving responsive acceleration/deceleration performance while improving fuel efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す動弁制御装置の構成図
、第2図は同上実施例の緩加速時の各状LiIを示すタ
イムチャート、第3図は同じく急加速時の各状BMkを
示すタイムチャート、第4図は従来例を示す動弁制御装
置の縦断面図、第5図は同上の平面図、第6図はリフト
制御カムの部分の斜視図、第7図はバルブリフト特性を
示す線図である。 11・・・吸・排気弁駆動カム  12・・・吸・排気
弁13・・・ロッカアーム  15・・・レバー  2
0・・・リフト制御カム  20a〜20e・・・カム
面  23・・・制御軸24・・・tiリコイルスプリ
ング モータ  30・・・機関  33・・・スロットル開
度センサ  34・・・回転数センサ  35・・・制
御回路特許出願人  日産自動車株式会社 代理人 弁理士 笹 島  富二雄 第2図 第3図 第4図 第5図
FIG. 1 is a configuration diagram of a valve control device showing an embodiment of the present invention, FIG. 2 is a time chart showing various states of LiI during slow acceleration of the same embodiment, and FIG. 3 is a time chart showing various states of LiI during sudden acceleration. Fig. 4 is a longitudinal sectional view of a conventional valve control device, Fig. 5 is a plan view of the same as above, Fig. 6 is a perspective view of the lift control cam portion, and Fig. 7 is a time chart showing the BMk. FIG. 3 is a diagram showing valve lift characteristics. 11... Intake/exhaust valve drive cam 12... Intake/exhaust valve 13... Rocker arm 15... Lever 2
0... Lift control cam 20a-20e... Cam surface 23... Control shaft 24... Ti recoil spring motor 30... Engine 33... Throttle opening sensor 34... Rotation speed sensor 35 ... Control circuit patent applicant Fujio Sasashima Patent attorney, Nissan Motor Co., Ltd. Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 吸・排気弁駆動カムと吸・排気弁に係合するロッカアー
ムの湾曲形成された背面を、一端部にて揺動自由に支持
されたレバーに支点接触させ、このレバーの他端部に回
転中心軸からの距離が異なる複数のカム面を有する多角
形状のリフト制御カムを係合させ、このリフト制御カム
の回動位置を制御してレバーの揺動位置を変化させるこ
とにより、レバーとロッカアームとの接触する支点位置
を変化させて吸・排気弁のリフト特性を可変制御するよ
うにすると共に、前記リフト制御カムを制御軸に回動自
由に取付け、前記リフト制御カムと制御軸とを軸回りに
弾性を有した弾性部材を介して連結し、前記制御軸を機
関運転条件に応じて所定の回動位置に回動するアクチュ
エータを設けてなる内燃機関の動弁制御装置において、
機関運転条件に応じて制御軸を前記所定の回動位置へ回
動させる回動方向を選択する回動方向選択手段を設けた
ことを特徴とする内燃機関の動弁制御装置。
The curved back surface of the rocker arm that engages the intake/exhaust valve drive cam and the intake/exhaust valve is brought into fulcrum contact with a lever that is swingably supported at one end, and the center of rotation is placed at the other end of this lever. By engaging a polygonal lift control cam with multiple cam surfaces at different distances from the shaft and controlling the rotational position of this lift control cam to change the swinging position of the lever, the lever and rocker arm can be The lift characteristics of the intake/exhaust valves are variably controlled by changing the fulcrum position in contact with the lift control cam, and the lift control cam is rotatably attached to the control shaft, and the lift control cam and the control shaft are rotated about the axis. A valve train control device for an internal combustion engine, comprising an actuator that is connected to an actuator via an elastic member having elasticity and rotates the control shaft to a predetermined rotation position according to engine operating conditions,
A valve train control device for an internal combustion engine, characterized in that a rotation direction selection means is provided for selecting a rotation direction in which a control shaft is rotated to the predetermined rotation position according to engine operating conditions.
JP438186A 1986-01-14 1986-01-14 Tappet valve control device for internal combustion engine Pending JPS62162710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP438186A JPS62162710A (en) 1986-01-14 1986-01-14 Tappet valve control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP438186A JPS62162710A (en) 1986-01-14 1986-01-14 Tappet valve control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPS62162710A true JPS62162710A (en) 1987-07-18

Family

ID=11582778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP438186A Pending JPS62162710A (en) 1986-01-14 1986-01-14 Tappet valve control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS62162710A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0399843U (en) * 1990-02-01 1991-10-18
JP4655444B2 (en) * 2001-09-28 2011-03-23 日産自動車株式会社 Intake control device for internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0399843U (en) * 1990-02-01 1991-10-18
JP4655444B2 (en) * 2001-09-28 2011-03-23 日産自動車株式会社 Intake control device for internal combustion engine

Similar Documents

Publication Publication Date Title
JP2944264B2 (en) Valve train for internal combustion engine
US4714057A (en) Variable valve control system for a piston internal-combustion engine
JP3783589B2 (en) Variable valve operating device for internal combustion engine
JPS6148614B2 (en)
JPH04171230A (en) Output controller for internal combustion engine
JP4168756B2 (en) Control device for internal combustion engine
JP3982492B2 (en) Valve lift control device for internal combustion engine
JPS62162710A (en) Tappet valve control device for internal combustion engine
JPH063129B2 (en) Valve drive controller for internal combustion engine
JP4765497B2 (en) Internal combustion engine
JP2808745B2 (en) Engine Valve Actuator
JPH0587643B2 (en)
JPH029162B2 (en)
JP3386236B2 (en) Intake and exhaust valve drive control device for internal combustion engine
JPS62279216A (en) Controlling method for suction and exhaust valve lift in tappet valve controller of internal combustion engine
JPS62159709A (en) Valve operation control device for internal combustion engine
JPH0326246Y2 (en)
JP2982099B2 (en) Engine variable valve switching control device
JPH02221612A (en) Variable valve system of internal combustion engine
JPH0545762Y2 (en)
JPS62228610A (en) Valve system controller for internal combustion engine
JPS6134306A (en) Lift control device for air intake/exhaust valve of internal-combustion engine
JPH059449Y2 (en)
JPS62237018A (en) Valve system controller for internal combustion engine
JP4367317B2 (en) Variable valve operating device for internal combustion engine