JPS6216255B2 - - Google Patents

Info

Publication number
JPS6216255B2
JPS6216255B2 JP16495381A JP16495381A JPS6216255B2 JP S6216255 B2 JPS6216255 B2 JP S6216255B2 JP 16495381 A JP16495381 A JP 16495381A JP 16495381 A JP16495381 A JP 16495381A JP S6216255 B2 JPS6216255 B2 JP S6216255B2
Authority
JP
Japan
Prior art keywords
cooling
strip
temperature
water
metal plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16495381A
Other languages
Japanese (ja)
Other versions
JPS5867829A (en
Inventor
Toshiharu Oohashi
Masatoshi Furuyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP16495381A priority Critical patent/JPS5867829A/en
Publication of JPS5867829A publication Critical patent/JPS5867829A/en
Publication of JPS6216255B2 publication Critical patent/JPS6216255B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0218Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for strips, sheets, or plates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Control Of Heat Treatment Processes (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は金属板の冷却制御方法に関するもの
で、詳しくは水平方向に移動する高温金属板の冷
却温度を所望の温度に冷却制御する方法に関する
ものである。 従来から水平方向に移動する高温の金属板(以
下ストリツプと称する)を冷却する方法として
は、冷媒としてエアー又は水を使つている。 先ずエアー冷却であるが、この例として、スト
リツプの上下から急激にエアーを吹付けるガス・
ジエツト方式がある。このガス・ジエツト方式で
は、冷却能力が小さく、熱伝達係数も50〜
100Kcal/m2hr℃程度で後述する水浸漬冷却の場
合の1〜6×104Kcal/m2hr℃に比し1/200以
下であり、水を冷媒とする方法と同一冷却能力を
得るためには必然的に冷却工程は長目になり設備
上問題となる。又周知のように、連続焼鈍法によ
る冷延鋼板製造工程では、所望の機械的性質を得
るためには、メタラジー上、冷却終点温度制御が
特に重要である。しかるに前記のガス・ジエツト
方式では冷却能力不足のためストリツプの板温は
どうしても目標冷却終点温度より高目になるきら
いがあり、特に後述する冷却能力が大きく変化す
る低温域(100〜300℃)に於いて正確な温度制御
を期待できない。 一方、水を冷媒として、ストリツプを冷却する
方式は、前記したように抜熱能力も大きく有効
で、(イ)水浸漬方式や(ロ)水噴射方式が一般的であ
る。 先ず(イ)水浸漬方式であるが、これはストリツプ
を直接水に浸漬するので、確かに抜熱能力は大き
いが、ストリツプを高温から急激に冷却するた
め、形状不良を起こしたり、所望の温度に終点制
御することは不可能である。 次に、(ロ)水噴射方式は、ストリツプの上下面に
向つてスプレーノズルから水を噴射させるものが
良く使われている。この例として、ホツトコイル
製造工程におけるホツトランアウトテーブルで良
く見掛ける冷却方式がある。この水噴射方式は、
前記した水浸漬方式に比し、スプレーの水量、水
圧のみの操作だけで高温金属体の抜熱量を制御で
きるため、広く使われている。しかし、冷却すべ
き高温金属体が厚板やホツトコイルの如く、それ
自身板厚が厚く保有熱量の大きいものは、温度降
下もゆるやかに推移するため形状も劣化しない
が、冷延鋼板の如く板厚が薄く保有熱量も少ない
ものを冷却する場合は、表面に噴射された冷却水
の鋼板に与える影響は大きく、均一に散布されな
いと形状不良を引き起こす。周知のとおり水平走
行するストリツプの表面は全く水平面を保つてい
るとは限らず若干傾斜していたり、最初から局部
的に形状不良部があつたりしているため、噴射さ
れた冷却水はストリツプ表面で水滴となつて乗る
が低部にたまりながら移動して不均一冷却とな
り、これによる熱応力のため形状不良を誘発す
る。 次に終点制御の面から(ロ)水噴射方式を評価する
と、第1図の如く、冷却水による冷却能力(熱伝
達係数)は、冷却すべき鋼板の表面温度によつて
大きく変化する領域、いわゆる核膜遷移域(第1
図の領域)と核沸騰域(第1図の領域、100
〜300℃)が存在することは、広く文献等で知ら
れているところである。 すなわち、高温ストリツプが冷却水に浸される
と、瞬間的に伝熱面全面が安定な蒸気膜に覆わ
れ、その後は蒸気膜を介しての熱伝達が行なわれ
る。すなわち膜沸騰の状態となる(第1図の領
域)。伝熱面温度が次第に降下し、やがて蒸気膜
の崩壊が局部的に始まり、その生成と崩壊を繰り
返えす不安定な遷移域となるため、温度の降下は
やや早くなり、いわゆる遷移沸騰の状態となる
(第1図の領域)。 温度が更に下がると蒸気膜の崩壊は伝達面全域
まで拡がり、同時に多くの気泡が発生し全面で激
しい核沸騰状態となる。この撹乱効果のため温度
は急激に降下する(第1図の領域)。冷却能力
はこの領域に於いて最大となる。温度が飽和温度
以下になると沸騰はなくなり自然対流のみとな
る。この域では冷却速度は一段と緩慢となる(第
1図の領域)。 以上述べたように、特に冷却能力の大きく変化
する領域(100〜300℃間)で、この水噴射方式に
より所期の温度にストリツプ表面全域を均一に終
点制御することは不可能であり、結果として、ス
トリツプの巾方向で温度差を生じ、これによる熱
応力のため形状不良の原因ともなる。又、温度が
100℃以下では噴射された冷却水はストリツプ表
面に水滴となつて付着し、蒸発が遅れるため後工
程で錆の発生の恐れもあり、エアーナイフ等の設
備が必要となる。 本発明は、上述した如き不具合を解消する新た
な高温ストリツプの冷却方法を提供することを目
的とするものであつて、具体的には、水平方向に
走行する高温ストリツプを冷却するにあたつて、
従来の上下同時噴射冷却法のうちストリツプ上部
からの噴射を中止し、下部からの噴射のみでスト
リツプを冷却する片面冷却法を開発したのであ
る。 この下面噴射のみに限定した片面冷却法を使用
し、さらにストリツプ上表面には全く水が乗らな
いように考慮すれば、冷却水はストリツプ下裏面
に付着しても自然落下し、さらに100℃以上の高
温ストリツプでは、付着するや否や蒸発現象が起
こり、ストリツプに長く付着し持ち出されること
はない。したがつて、ストリツプの温度が前述し
た冷却能力急変域(100〜300℃)であつても、常
に正確な終点制御ができ、しかも形状の良好な仕
上りを得る効果大なる水平パスラインにおける薄
板の冷却制御方法である。 なお、高温金属体の温度を100℃以上に限定し
た理由は、100℃以下の低温域では下面からの噴
射と云えども金属体に付着した噴射水の蒸発が遅
れ発錆の原因となるためである。 次に本発明の冷却方法の一実施例を図面にもと
づいて詳細に説明する。 第2図は本発明の冷却制御を実施するための水
平型冷却装置の構成説明図で、第3図は第2図の
A―A断面図を示す。冷却槽1中にストリツプ2
が矢示方向に水平移動する。ストリツプの移動装
置は省略してある。ストリツプ2を冷却する噴射
水3は、ストリツプ進行方向に一列にある間隔を
もつて、ストリツプ中央部に配設された下面ノズ
ル4から噴射される。なおこの噴射水3の水圧調
整は配管5に設けられた本管弁6及び支管弁7の
開閉操作により行われる。又、噴射水3のストリ
ツプの巾方向拡がりはノズル1個でストリツプ全
巾以上に亘つて均一に冷却可能な広角スプレーノ
ズルの使用が好ましい。冷却槽1の巾が狭くスト
リツプ2の下面からの冷却噴射水3の冷却槽1の
両側壁に衝突してストリツプ上面に飛散水が乗ら
ないように反撥緩衝体8を設ける。この反撥緩衝
体8は冷却槽1の巾が広く、側壁からの飛散水が
ストリツプ上面に乗らない程度に広ければ不要で
ある。反撥緩衝体はシユロ毛を植設したものが良
いが他の多層板を下向きに設けたブラインド状の
ものでも良く、側壁からの飛散水がストリツプ上
面に乗らない緩衝体構造であれば、その形態は限
定しない。9はポンプで配管5に冷却水を供給す
るポンプである。 次に制御関係の構成を説明する。ストリツプの
速度を実測する速度計10、ストリツプの板厚計
11、ストリツプの測温計12等の情報入手装置
が冷却槽1の入側に設けられている。これ等測定
計器の種類及び個数については特に本発明では限
定しない。13は、前記情報入手装置で計測した
情報値を入力する情報入力器である。14は、ス
トリツプの最終目標終点温度に設定するための基
準レベル値である。15は、前記情報入力装置の
出力信号と基準レベル値14と比較演算を行なう
演算器で、出力制御器16を経由してポンプ9、
本管弁6、支管弁7に制御信号を送るようになつ
ている。 以上述べた如き構成から成る冷却制御装置を使
用して具体的に、ストリツプを目標の冷却終点温
度迄冷却制御する方法を説明する。 ストリツプ2が冷却槽1に入る前に、すべに冷
却槽出側での冷却終点温度になるように基準レベ
ル値14を演算器15に入力させておく。次に冷
却前の速度、サイズ、板温等が速度計10、板厚
計11、測温計12等で測定され情報入力装置1
3に入力し、直ちに前記した冷却終点温度設定値
と演算器15で比較演算され、出力制御器16に
よつてポンプ9、及び各本管弁6、支管弁7に制
御信号が送られ、各ノズル4からの流量、圧力を
調節する。ノズル4はストリツプ2の移動方向に
複数個設けられているが冷却前のストリツプ温度
と冷却終点温度との関係から第2図の如く前7基
ノズルのみ水噴射させ、後3基ノズルは水噴射閉
とする場合も又連続噴射でなく間欠噴射も可能で
ある。 以上述べたように本発明の下面のみの冷却法に
よれば、上下同時噴射方式のようにストリツプの
上面には冷却水はかからないため、ストリツプ上
に水膜や水たまりは起こらないで、ストリツプの
下面についた水滴は自然落下、蒸発し、板巾全域
に噴射された冷却水はストリツプ全巾を均一に冷
却し目標とする冷却終点温度に達する画期的な冷
却制御方法である。なお、冷却前のストリツプ温
度の上限は特に限定しないが、600℃超になると
急激に温度低下するため形状不良の恐れがあり、
好ましくは600℃以下の温度から冷却するのが良
い。 なお、以上の説明は連続金属帯(ストリツプ)
を被冷却金属体としたが、切板でも本発明の下面
冷却法は適用可能である。 以下に、更に具体的な実施例を述べ本発明の効
果を説明する。 実施例 第2図に示した冷却装置によつてSPCC―
SD0.6×1000×coilなる冷延鋼板を行ない、第1
表にその結果を示す。なお従来例1として、
The present invention relates to a method for controlling the cooling of a metal plate, and more particularly, to a method for controlling the cooling temperature of a high-temperature metal plate moving in a horizontal direction to a desired temperature. Conventionally, a method for cooling a high temperature metal plate (hereinafter referred to as a strip) that moves horizontally uses air or water as a refrigerant. First, there is air cooling, and an example of this is a gas cooling method that rapidly blows air from above and below the strip.
There is a jet method. This gas jet method has a small cooling capacity and a heat transfer coefficient of 50~
At around 100 Kcal/m 2 hr ℃, it is less than 1/200 of the 1 to 6 x 10 4 Kcal/m 2 hr ℃ in the case of water immersion cooling described later, and the same cooling capacity as the method using water as the refrigerant can be obtained. This inevitably requires a long cooling process, which poses a problem in terms of equipment. Furthermore, as is well known, in the continuous annealing process for manufacturing cold-rolled steel sheets, control of the cooling end point temperature is particularly important from a metallurgy perspective in order to obtain desired mechanical properties. However, due to the lack of cooling capacity in the gas jet method described above, the strip temperature tends to be higher than the target cooling end point temperature, especially in the low temperature range (100 to 300℃) where the cooling capacity changes greatly as described below. Therefore, accurate temperature control cannot be expected. On the other hand, the method of cooling the strip using water as a refrigerant has a large and effective heat removal capacity as described above, and the (a) water immersion method and (b) water injection method are common. First, there is the water immersion method, which immerses the strip directly in water, so it certainly has a high heat removal capacity, but because the strip is rapidly cooled from high temperature, it may cause shape defects or not reach the desired temperature. It is impossible to control the endpoint. Next, (b) Water injection methods are often used in which water is ejected from a spray nozzle toward the top and bottom surfaces of the strip. An example of this is a cooling system often seen on hot run out tables in the hot coil manufacturing process. This water injection method is
Compared to the water immersion method described above, this method is widely used because the amount of heat removed from the high-temperature metal body can be controlled simply by controlling the amount of water sprayed and the water pressure. However, if the high-temperature metal body to be cooled is thick and retains a large amount of heat, such as a thick plate or hot coil, the temperature will drop slowly and the shape will not deteriorate. When cooling a steel plate that is thin and has a small amount of heat, the cooling water sprayed onto the surface has a large effect on the steel plate, and if it is not evenly distributed, it will cause poor shape. As is well known, the surface of a strip that runs horizontally does not always maintain a horizontal plane; it may be slightly inclined, or there may be localized areas with defective shapes from the beginning, so the injected cooling water is The water drops form on the surface and move while accumulating in the lower parts, resulting in uneven cooling, and the resulting thermal stress induces shape defects. Next, evaluating the water injection method from the viewpoint of end point control (b), as shown in Figure 1, the cooling capacity (heat transfer coefficient) of the cooling water varies greatly depending on the surface temperature of the steel plate to be cooled. The so-called nuclear membrane transition zone (first
(area in figure 1) and nucleate boiling region (area in figure 1, 100
~300°C) is widely known in the literature. That is, when the high-temperature strip is immersed in cooling water, the entire heat transfer surface is instantly covered with a stable vapor film, and thereafter heat transfer occurs via the vapor film. In other words, a state of film boiling occurs (region shown in FIG. 1). The temperature of the heat transfer surface gradually decreases, and eventually the collapse of the vapor film begins locally, creating an unstable transition region where its formation and collapse are repeated, and the temperature decreases somewhat quickly, resulting in a so-called transition boiling state. (area in Figure 1). As the temperature drops further, the collapse of the vapor film spreads to the entire transmission surface, and at the same time many bubbles are generated, resulting in a state of intense nucleate boiling over the entire surface. Due to this disturbance effect, the temperature drops rapidly (region of Figure 1). Cooling capacity is maximum in this region. When the temperature falls below the saturation temperature, there is no boiling and only natural convection occurs. In this region, the cooling rate becomes even slower (region shown in Figure 1). As mentioned above, it is impossible to uniformly control the end point of the entire strip surface to the desired temperature using this water injection method, especially in areas where the cooling capacity changes significantly (between 100 and 300 degrees Celsius). As a result, a temperature difference occurs in the width direction of the strip, and the resulting thermal stress causes shape defects. Also, the temperature
At temperatures below 100°C, the injected cooling water will adhere to the strip surface as water droplets, delaying evaporation and potentially causing rust in subsequent processes, requiring equipment such as an air knife. The object of the present invention is to provide a new method for cooling a high-temperature strip that eliminates the above-mentioned problems. ,
Among the conventional simultaneous upper and lower injection cooling methods, we stopped the injection from the upper part of the strip and developed a single-sided cooling method in which the strip is cooled only by injection from the lower part. If we use this single-sided cooling method, which is limited to the bottom surface injection, and also take into consideration that no water gets on the top surface of the strip, even if the cooling water adheres to the bottom surface of the strip, it will naturally fall, and the temperature will exceed 100℃. With high-temperature strips, evaporation occurs as soon as they are deposited, and they remain attached to the strip for a long time and are not removed. Therefore, even if the temperature of the strip falls within the above-mentioned rapid cooling capacity range (100 to 300 degrees Celsius), it is possible to always accurately control the end point, and to obtain a good finished shape. This is a cooling control method. The reason why the temperature of the high-temperature metal body is limited to 100℃ or higher is because in the low temperature range below 100℃, even though the injection is from the bottom, the evaporation of the sprayed water that adheres to the metal body is delayed and can cause rust. be. Next, an embodiment of the cooling method of the present invention will be described in detail based on the drawings. FIG. 2 is an explanatory diagram of the configuration of a horizontal cooling device for carrying out the cooling control of the present invention, and FIG. 3 is a sectional view taken along the line AA in FIG. 2. Strip 2 in cooling tank 1
moves horizontally in the direction of the arrow. The strip moving device is omitted. Water jets 3 for cooling the strip 2 are jetted from lower nozzles 4 disposed in the center of the strip at regular intervals in the direction of travel of the strip. The water pressure of the water jet 3 is adjusted by opening and closing a main valve 6 and a branch valve 7 provided in the pipe 5. Furthermore, it is preferable to use a wide-angle spray nozzle that can uniformly cool the entire width of the strip with a single nozzle to spread the sprayed water 3 in the width direction of the strip. Since the width of the cooling tank 1 is narrow, a repulsion buffer member 8 is provided so that the cooling jet water 3 from the lower surface of the strip 2 does not collide with both side walls of the cooling tank 1 and splash water onto the upper surface of the strip. This repulsion buffer 8 is unnecessary if the width of the cooling tank 1 is wide enough to prevent splashed water from the side wall from riding on the top surface of the strip. The repulsion buffer should preferably be one in which hair is implanted, but it may also be a blind type with other multi-layer plates facing downwards, and as long as the structure of the buffer does not allow water splashed from the side walls to land on the top surface of the strip, the shape is acceptable. is not limited. A pump 9 supplies cooling water to the pipe 5. Next, the control-related configuration will be explained. Information obtaining devices such as a speedometer 10 for actually measuring the speed of the strip, a strip thickness gauge 11, and a strip thermometer 12 are provided on the inlet side of the cooling tank 1. The present invention does not particularly limit the type and number of these measuring instruments. Reference numeral 13 denotes an information input device for inputting information values measured by the information acquisition device. 14 is a reference level value for setting the final target end point temperature of the strip. Reference numeral 15 denotes an arithmetic unit that performs a comparison operation between the output signal of the information input device and the reference level value 14;
Control signals are sent to the main valve 6 and branch valve 7. A method for controlling the cooling of a strip to a target cooling end point temperature using the cooling control device having the configuration as described above will be specifically explained. Before the strip 2 enters the cooling tank 1, a reference level value 14 is input into the calculator 15 so that the temperature reaches the cooling end point at the exit side of the cooling tank. Next, the speed, size, plate temperature, etc. before cooling are measured using a speed meter 10, a plate thickness gauge 11, a thermometer 12, etc., and the information input device 1
3, it is immediately compared with the cooling end point temperature set value described above in the calculator 15, and a control signal is sent to the pump 9, each main valve 6, and the branch valve 7 by the output controller 16, and each Adjust the flow rate and pressure from the nozzle 4. A plurality of nozzles 4 are provided in the direction of movement of the strip 2, but due to the relationship between the strip temperature before cooling and the cooling end point temperature, only the front seven nozzles spray water, and the rear three nozzles spray water, as shown in Figure 2. Even when closed, intermittent injection is also possible instead of continuous injection. As described above, according to the method of cooling only the bottom surface of the present invention, since the cooling water is not applied to the top surface of the strip unlike the simultaneous upper and lower injection method, there is no water film or puddle on the strip, and the bottom surface of the strip is This is an innovative cooling control method in which the water droplets that adhere to the strip naturally fall and evaporate, and the cooling water sprayed over the entire width of the strip uniformly cools the entire strip width to reach the target cooling end point temperature. There is no particular upper limit to the strip temperature before cooling, but if it exceeds 600℃, the temperature will drop rapidly and there is a risk of shape defects.
Preferably, cooling is performed from a temperature of 600°C or lower. Please note that the above explanation refers to continuous metal strips.
Although the metal body to be cooled is used, the lower surface cooling method of the present invention can also be applied to a cut plate. Below, more specific examples will be given to explain the effects of the present invention. Example Using the cooling device shown in Figure 2, SPCC
A cold-rolled steel plate of SD0.6×1000×coil was made, and the first
The results are shown in the table. As conventional example 1,

【表】【table】

【表】 第2図の下面からのスプレー装置と対象位置に
上部スプレー装置を臨時に設けたもので実施し
た。又、従来例2及び3は別の冷却ラインで上記
同一サイズの冷延鋼板を使用して水槽浸漬式及び
ガス噴流式(ガス・ジエツト・クーリング)によ
る冷却をそれぞれ行なつた。 本発明による実施例のものは、目標冷却終点温
度が核沸騰域であるにもかかわらず正確な終点温
度制御ができ、さらに形状が良く、冷却温度範囲
も広く、終点冷却温度を100℃以上に保持すれば
冷却後の水切りドライヤー設備なしで表面外観良
好な冷却が可能で設備コストも安く、有益な薄板
冷却法である。
[Table] The test was carried out using a spray device from the bottom as shown in Figure 2 and a temporary top spray device installed at the target position. In addition, in Conventional Examples 2 and 3, cold-rolled steel sheets of the same size were used in separate cooling lines and cooled by immersion in a water bath and by gas jet cooling, respectively. Although the target cooling end point temperature is in the nucleate boiling range, the example according to the present invention can accurately control the end point temperature, has a good shape, has a wide cooling temperature range, and has an end point cooling temperature of 100°C or more. If maintained, cooling with a good surface appearance can be achieved without the need for a dryer to remove water after cooling, and the equipment cost is low, making it a useful thin plate cooling method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はストリツプ温度と熱伝達係数との関係
を示す特性図、第2図は本発明の冷却制御の実施
例を示す説明図、第3図は第2図の冷却槽のA―
A断面図である。 1…冷却槽、2…ストリツプ、3…噴射水、4
…ノズル、6…本管弁、7…支管弁、8…反撥緩
衝体、9…ポンプ、13…情報入力器、15…演
算器、16…出力制御器。
FIG. 1 is a characteristic diagram showing the relationship between strip temperature and heat transfer coefficient, FIG. 2 is an explanatory diagram showing an embodiment of the cooling control of the present invention, and FIG.
It is an A sectional view. 1...Cooling tank, 2...Strip, 3...Water jet, 4
... Nozzle, 6... Main valve, 7... Branch valve, 8... Repulsion buffer, 9... Pump, 13... Information input device, 15... Arithmetic unit, 16... Output controller.

Claims (1)

【特許請求の範囲】[Claims] 1 水平方向に移動する高温金属板を冷却するに
あたり、金属板の下面側に、該金属板下面全巾以
上に亘つて冷媒を噴射せしめるノズルを配置し、
該ノズルから噴射する冷媒の流量、圧力等を調整
することにより、前記高温金属板の冷却終点温度
を100℃以上の任意の温度に冷却停止制御するこ
とを特徴とする水平パスラインにおける金属板の
冷却制御方法。
1. When cooling a high-temperature metal plate moving in the horizontal direction, a nozzle is arranged on the lower surface side of the metal plate to inject a refrigerant over the entire width of the lower surface of the metal plate,
The metal plate in the horizontal pass line is characterized by controlling the cooling end point temperature of the high temperature metal plate to an arbitrary temperature of 100°C or higher by adjusting the flow rate, pressure, etc. of the refrigerant injected from the nozzle. Cooling control method.
JP16495381A 1981-10-17 1981-10-17 Cooling control of metal plate in horizontal pass line Granted JPS5867829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16495381A JPS5867829A (en) 1981-10-17 1981-10-17 Cooling control of metal plate in horizontal pass line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16495381A JPS5867829A (en) 1981-10-17 1981-10-17 Cooling control of metal plate in horizontal pass line

Publications (2)

Publication Number Publication Date
JPS5867829A JPS5867829A (en) 1983-04-22
JPS6216255B2 true JPS6216255B2 (en) 1987-04-11

Family

ID=15802995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16495381A Granted JPS5867829A (en) 1981-10-17 1981-10-17 Cooling control of metal plate in horizontal pass line

Country Status (1)

Country Link
JP (1) JPS5867829A (en)

Also Published As

Publication number Publication date
JPS5867829A (en) 1983-04-22

Similar Documents

Publication Publication Date Title
RU2676272C2 (en) Method and cooling device
US4210288A (en) Cooling apparatus
KR20080089578A (en) Method of cooling steel sheet
CN101437631A (en) Cooling device and cooling method for hot strip
CN109492317A (en) Operation method based on conticaster two-dimensional temperature field emulation mode and monitoring model
KR101879084B1 (en) Forwarded cooling apparatus coating facility including the same
US4351384A (en) Coolant control in EM casting
JPS634604B2 (en)
JPS6216255B2 (en)
JPS609834A (en) Method and device for cooling steel strip
CN202081135U (en) Strip steel cooling device
KR20190094384A (en) Method and section for rapid cooling of continuous lines for processing metal sheets
JP6086089B2 (en) Steel plate cooling method
JPS59229422A (en) Cooling method of steel strip in continuous annealing
CN102747213B (en) Cooling method for continuous heat treatment of high-strength steel
JPH07136752A (en) Secondary cooling method for slab in continuous casting and its device
JPS6261656B2 (en)
JP3867073B2 (en) Cooling apparatus and cooling method for hot rolled steel sheet
JPH0450369B2 (en)
JP3558842B2 (en) Apparatus and method for cooling thick steel plate
JPH02254141A (en) Water quenching apparatus for aluminum strip
JPH0533112A (en) Method and apparatus for producing galvannealed steel sheet
JPH02163358A (en) Production of zero spangle steel sheet
JP2991021B2 (en) H-section cooling system
JP2003277834A (en) Cooling method, and cooling equipment