JPS62162403A - Diamond cutting tool - Google Patents

Diamond cutting tool

Info

Publication number
JPS62162403A
JPS62162403A JP110986A JP110986A JPS62162403A JP S62162403 A JPS62162403 A JP S62162403A JP 110986 A JP110986 A JP 110986A JP 110986 A JP110986 A JP 110986A JP S62162403 A JPS62162403 A JP S62162403A
Authority
JP
Japan
Prior art keywords
plane
angle
respect
cutting tool
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP110986A
Other languages
Japanese (ja)
Inventor
Suguru Motonishi
本西 英
Koji Yoshida
浩二 吉田
Masao Nishihara
西原 正夫
Tomiharu Matsushita
富春 松下
Muneo Mizuno
水野 宗男
Junjiro Kawakami
川上 順次郎
Junichi Nakagawa
純一 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Shinko North Co Ltd
Original Assignee
Kobe Steel Ltd
Shinko North Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Shinko North Co Ltd filed Critical Kobe Steel Ltd
Priority to JP110986A priority Critical patent/JPS62162403A/en
Publication of JPS62162403A publication Critical patent/JPS62162403A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the yield of a diamond cutting tool whose crystal orientation is selected in its tip section to prolong the life thereof, by setting the rake face of the cutting tool to be inclined from the (110) plane to the (111) plane at a specified angle. CONSTITUTION:In a diamond cutting too, the rake face Ra is inclined at an angle of 10+ or -5 deg. or 5-15 deg. with respect to the (110) plane B so that the (111) plane C which is inclined crystallographically at an angle of about 35 deg. with respect to the (110) plane B, is inclined at an angle alpha with respect to the rake face Ra. The angle alpha is 20-30 deg.. further, the (1-1-1) plane D having a risk of cleavage in relation to cutting, simultaneously with the (111) plane C, the (1-1-1) plane D is inclined crystallographically at about 70 deg. with respect to the (111) plane C so that the inclined angle of the (1-1-1) plane D with respect to the rake face Ra is 130-140 deg.. Further, reference numeral Re in the figure denotes a flank.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分Wf】[Industrial usage Wf]

この発明は、At、Cu等の非鉄金属材料、もしくはブ
ナスチック等の非金属材料でつくられるディスク等を、
高精度に切削加工する際に用いられるダイヤモンドバイ
トに関する。
This invention provides disks etc. made of non-ferrous metal materials such as At and Cu, or non-metal materials such as Bunastick.
This article relates to a diamond cutting tool used for high-precision cutting.

【従来技術】[Prior art]

一般に、上述したような非鉄金属材料、非金属材料等の
高精度切削加工には、ダイヤモンドバイトを用いること
により、表面粗さのよいいわゆる鏡面仕上がり状態の加
工面が、比較的容易にえられることは周知の通りである
。この理由は、ダイヤモンドが高硬度であること、した
がってバイトとしての切刃稜を極めて鋭利にすることが
できることによるもので、結果としてワークには、この
鋭い切刃稜が転写されて表面粗さのよい加工面ができる
ことになる。しかしながら、いかに高硬度であるダイヤ
モンドといえども、長時間使用していれば徐々に摩耗す
る。摩耗したバイトによる切削面は、表面粗さの低下、
表面うねりの増大などを招き、所要精度のワークが得ら
れなくなる。特に、その表面に極めて高精度仕様が要求
されるワークの加工では、摩耗したバイトでは期待する
所要精度の表面仕様が得られず、大きな問題となる。 また、その場合には新しいバイトに変換する必要がある
。 上述のようなダイヤモンドバイトに関して、刃先部の結
晶方位をどのように設定するかという点に着目して工具
の長寿命化を図る先行技術が、特公昭58−37082
号の発明として知られてい
In general, by using a diamond cutting tool for high-precision cutting of non-ferrous and non-metallic materials as mentioned above, it is relatively easy to obtain a machined surface with a so-called mirror finish with good surface roughness. As is well known. The reason for this is that diamond has high hardness, and therefore the cutting edge of the cutting tool can be made extremely sharp.As a result, this sharp cutting edge is transferred to the workpiece, resulting in less surface roughness. This results in a good machined surface. However, no matter how hard diamond is, it will gradually wear out if used for a long time. The surface roughness of the cut surface caused by a worn cutting tool decreases,
This results in increased surface waviness, making it impossible to obtain workpieces with the required accuracy. In particular, when machining workpieces that require extremely high precision specifications on the surface, a worn tool bit cannot provide the desired surface specifications with the required precision, which poses a major problem. Also, in that case, it is necessary to convert it to a new byte. Regarding the above-mentioned diamond cutting tools, a prior art technique for prolonging the tool life by focusing on how to set the crystal orientation of the cutting edge was disclosed in Japanese Patent Publication No. 58-37082.
Known as the invention of

【発明が解決しようとする問題点】[Problems to be solved by the invention]

ところで、上記特公昭58−37082号の発明では、
刃先の一部を形成する前逃げ面の結晶方位を(110)
面と(100)面との中間もしくはほぼ中間にあるごと
く構成した6のである。 そこで、本願の発明者は、上述のごとく結晶方位を設定
したダイヤモンドバイトを多数用いて、それぞれの寿命
についてテストしてみたが、その結果にはかなりの個体
差によるバラツキがあった。 そして、その原因について検討したところによると、へ
き開面である(111)面および(111)面の結晶方
位がその寿命に大きく関与していることが予測された。 すなわち、前逃げ面について(100)面と(110)
面との関係のみで結晶方位を規定したのでは、所定の寿
命をもったバイトを歩留りよく提供することは難しく、
たとえば、切刃の切削に関与する部分において、切削合
力の作用方向に平行ないしはそれに近い角度で(111
)面または(III)面が存在すると、ダイヤモンドは
切削抵抗によってへき開し易く、切刃にチッピングや摩
耗を生じ易くなって、十分な長寿命化が達成しえなくな
るのである。 この発明は、上述のごとき問題点に鑑みこれを有効に解
決すべく創案されたちのである。 したがって、本発明の目的は、長寿命化すべく刃先部の
結晶方位が選定されるダイヤモンドバイトにおいて、そ
の歩留りを可及的に高くすることのできるダイヤモンド
バイトを提供することにある。
By the way, in the invention of the above-mentioned Japanese Patent Publication No. 58-37082,
The crystal orientation of the front flank that forms part of the cutting edge is (110)
No. 6 is constructed so that it is located between or approximately in the middle between the (100) plane and the (100) plane. Therefore, the inventor of the present application tested the lifespan of a large number of diamond cutting tools with crystal orientations set as described above, but the results showed considerable variation due to individual differences. According to an investigation into the cause, it was predicted that the (111) plane, which is a cleavage plane, and the crystal orientation of the (111) plane are greatly involved in the life span. In other words, for the front flank, (100) and (110)
If the crystal orientation is defined only in relation to the plane, it will be difficult to provide cutting tools with a specified lifespan with a high yield.
For example, in the part of the cutting edge involved in cutting, the angle (111
) or (III) planes, the diamond is likely to cleave due to cutting resistance, causing chipping and wear on the cutting edge, making it impossible to achieve a sufficiently long life. This invention has been devised in view of the above-mentioned problems and to effectively solve them. Therefore, an object of the present invention is to provide a diamond cutting tool in which the crystal orientation of the cutting edge portion is selected in order to extend the life of the cutting tool, and the yield can be made as high as possible.

【問題点を解決するための手段】[Means to solve the problem]

本発明にかかるダイヤモンドバイトは、刃先の一部を形
成する前逃げ面の結晶方位を、(110)面と(100
)面との中間に設定した上で、すくい面が(110)面
から(III)面の方向へIO°±5°傾斜した面に設
定されている。
In the diamond cutting tool according to the present invention, the crystal orientation of the front flank surface forming a part of the cutting edge is the (110) plane and the (100) plane.
) plane, and the rake face is set to be a plane inclined by IO°±5° from the (110) plane toward the (III) plane.

【作用・効果】[Action/effect]

一般に、通常のすくい面と逃げ面との交角、すなわち通
常の刃先角は、はぼ直角に近い鋭角に形成されている。 したがって、通常のすくい角はピ〜2°であり、0°に
近似して以下に述べてもさしつかえない。そこで、刃先
に作用する切削合力の作用方向を主分力と背分力との比
から求めると、すくい面に対して約38°〜50°の角
度で通常は作用することが求められる。このことから、
結晶のへき開面が、すくい面に対して約38°〜50°
ないしはそれに近い角度で交差していると、へき開の生
じ易いことがわかる。 第1図は、すくい角を0°としたときに、本発明に係る
ダイヤモンドバイトの(100)面Aおよび(110)
面Bの、並びにへき開の恐れのある(lII)而Cと(
111)面りのそれぞれの結晶方位のすくい面に対する
傾斜角α、βを模式的に示す説明図である。図示するよ
うに、本発明のダイヤモンドバイトによれば、すくい面
Raは(110)面Bに対してlO°±5°すなわち5
°〜15°傾斜されるので、(110)面Bに対して結
晶学的にほぼ35°傾斜している(111)面Cは、す
くい面Raに対して角度αだけ傾斜している。そして、
その傾斜角αは、 α=35°−(lO°±5°) で表され、20@〜30°となる。 また、(111)面Cと同時に切削に関与してへき開の
恐れを有する(l l 1)面りについては、(111
)面りが(111)面Cに対して結晶学的にほぼ70°
傾斜しているので、(Ill)面りのすくい面Raに対
する傾斜角βは、 β=180°−70°+α =1!θ°+〔35°−(10’ ±5°))で表され
、130°〜140°となる。 なお、図中Reは逃げ面を示す。 このように、切刃の切削に関与する部分に作用する切削
抵抗Fの方向が、へき開面である(111)面Cおよび
(I l l)面りの方向に対して大きく傾けられるの
で、へき開を生じる確率が大幅に低下される。 以上の説明から明らかなように、本発明のダイヤモンド
バイトによれば、長寿命化すべく刃先部の結晶方位が選
定されるダイヤモンドバイトにおいて、その歩留りを可
及的に高くすることができ
Generally, the normal intersection angle between the rake face and the flank face, that is, the normal cutting edge angle, is formed to be an acute angle that is close to a right angle. Therefore, the usual rake angle is about 2 degrees, which can be approximated to 0 degrees and described below. Therefore, when the direction of action of the cutting force acting on the cutting edge is determined from the ratio of the principal force and the thrust force, it is generally required that the force acts at an angle of about 38° to 50° with respect to the rake face. From this,
The cleavage plane of the crystal is approximately 38° to 50° to the rake plane.
It can be seen that cleavage is more likely to occur if they intersect at or at an angle close to that. Figure 1 shows (100) plane A and (110) plane of a diamond cutting tool according to the present invention when the rake angle is 0°.
of surface B, as well as (III) and C and (
111) is an explanatory diagram schematically showing the inclination angles α and β of each crystal orientation of the face with respect to the rake plane. As shown in the figure, according to the diamond cutting tool of the present invention, the rake face Ra is 10°±5°, that is, 5° with respect to the (110) plane B.
The (111) plane C, which is tilted by approximately 35 degrees crystallographically with respect to the (110) plane B, is tilted by an angle α with respect to the rake surface Ra. and,
The inclination angle α is expressed as α=35°−(lO°±5°), which is 20@~30°. In addition, regarding the (l l 1) face that is involved in cutting at the same time as the (111) face C and has the risk of cleavage, (111)
) The plane is crystallographically approximately 70° with respect to the (111) plane C.
Since it is inclined, the inclination angle β of the (Ill) face with respect to the rake surface Ra is β=180°−70°+α = 1! It is expressed as θ° + [35° - (10' ±5°)], which is 130° to 140°. Note that Re in the figure indicates a flank surface. In this way, the direction of the cutting force F acting on the part of the cutting edge involved in cutting is greatly tilted with respect to the direction of the (111) plane C and the (I l l) plane, which are the cleavage planes, so that the cleavage The probability of this occurring is greatly reduced. As is clear from the above explanation, according to the diamond cutting tool of the present invention, the yield can be made as high as possible in the diamond tooling tool in which the crystal orientation of the cutting edge is selected in order to extend the tool life.

【実施例】【Example】

種々の結晶方位をもつダイヤモンドバイトを作成し、ア
ルミ合金(AI−Mg系)を切削し、そのときの表面粗
さ0.05μmRmax以下の粗さが得られるまでの加
工数を寿命として、それぞれのダイヤモンドバイトにつ
いて寿命試験を行った。そのときの切削条件は、回転数
・・・2400 rpm、送り・0 、02 mm/ 
rev、切り込み−10μm、切削油剤・・・溶油、加
工物・・・3 、5 in円盤(アルミ合金)である。 第2図に示す試験結果によれば、すくい面が(工10)
面から(111)面の方向へ約lO°傾いたときが最も
長い寿命を示した。 なお、本データの一点は、一つのバイトで繰り返し寿命
テストをした結果の10回以上の算術平均で示している
。したがって、ダイヤモンドの寿命バラツキが結晶方位
以外にもダイヤ自体の欠陥による影響のあることを考慮
しても、操り返し寿命確認を行っていることから、本デ
ータはかなりの正確さて信頼できるものである。
Diamond cutting tools with various crystal orientations are made to cut aluminum alloy (AI-Mg type), and the lifespan is defined as the number of processes until a surface roughness of 0.05 μmRmax or less is obtained. A lifespan test was conducted on the diamond bite. The cutting conditions at that time were: rotation speed: 2400 rpm, feed: 0, 0.2 mm/
rev, depth of cut -10 μm, cutting fluid: molten oil, workpiece: 3.5 inch disc (aluminum alloy). According to the test results shown in Figure 2, the rake face was (work 10)
The longest life was obtained when the surface was tilted by about 10° from the plane toward the (111) plane. Note that each point in this data is expressed as the arithmetic average of 10 or more results of repeated life tests for one byte. Therefore, even if we take into account that diamond lifespan variations are influenced by defects in the diamond itself in addition to crystal orientation, this data is highly accurate and reliable because lifespans are repeatedly confirmed. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るダイヤモンドバイトの(100)
面Aおよび(110)面Bの、並びにへき開の恐れのあ
る(l I I)面Cと(111)面りのそれぞれの結
晶方位のすくい面に対する傾斜角を模式的に示す説明図
、第2図は本発明に係る実施例のデータを含むダイヤモ
ンドバイトの寿命試験結果を示すグラフ図である。 A・・(100)面、B・・・(+10)面、C・・・
(111)面、D・・・(l l 1)面、F・・・切
削抵抗、Ra・・すくい面、Re・・・逃げ面、α・・
・(111)面のすくい面に対する傾斜角、β・・・(
111)面のすくい面に対する傾斜角 特許出願人    株式会社神戸製鋼所(ほか1名) 代理人弁理士   青白 葆(ほか2名)々令(嬌
Figure 1 shows a (100) diamond cutting tool according to the present invention.
Explanatory diagram schematically showing the inclination angle with respect to the rake plane of each crystal orientation of plane A and (110) plane B, as well as (I I I) plane C and (111) plane that are likely to cleave, 2nd The figure is a graph showing the life test results of a diamond cutting tool, including data of an example according to the present invention. A...(100) side, B...(+10) side, C...
(111) plane, D... (l l 1) plane, F... cutting resistance, Ra... rake surface, Re... flank surface, α...
・Inclination angle of the (111) plane to the rake face, β...(
111) Angle of inclination of face with respect to rake face Patent applicant: Kobe Steel, Ltd. (and 1 other person) Representative patent attorney: Seihaku Bo (and 2 others)

Claims (1)

【特許請求の範囲】[Claims] (1)刃先の一部を形成する前逃げ面の結晶方位を、(
110)面と(100)面との中間に設定したダイヤモ
ンドバイトにおいて、 すくい面を(110)面から(111)面の方向へ10
°±5°傾斜させた面に設定したことを特徴とするダイ
ヤモンドバイト。
(1) The crystal orientation of the front flank that forms part of the cutting edge is (
In a diamond cutting tool set between the (110) plane and the (100) plane, the rake face is 10
A diamond cutting tool characterized by being set on a surface inclined at ±5°.
JP110986A 1986-01-06 1986-01-06 Diamond cutting tool Pending JPS62162403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP110986A JPS62162403A (en) 1986-01-06 1986-01-06 Diamond cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP110986A JPS62162403A (en) 1986-01-06 1986-01-06 Diamond cutting tool

Publications (1)

Publication Number Publication Date
JPS62162403A true JPS62162403A (en) 1987-07-18

Family

ID=11492300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP110986A Pending JPS62162403A (en) 1986-01-06 1986-01-06 Diamond cutting tool

Country Status (1)

Country Link
JP (1) JPS62162403A (en)

Similar Documents

Publication Publication Date Title
EP0160850A1 (en) Method of cutting
EP1332820A1 (en) Cutting tip for rotating cutting tool and rotating cutting tool using the tip, and method of machining using the tool
CA1217926A (en) Cutting insert with means for simultaneously removing a plurality of chips
US5022797A (en) Diamond tool
JPH0338050B2 (en)
JP2008528318A (en) Tool and method for machining a workpiece made of hard material
JP2005111651A (en) Tip, milling cutter, and machining method using the same
Ezugwu et al. Failure modes and wear mechanisms of M35 high-speed steel drills when machining inconel 901
JP3476951B2 (en) Cutting tool for CVD diamond
JP2533049B2 (en) Diamond tools
KR20030014141A (en) Cutting bit for milling and milling tool
CN113695652A (en) Indexable cutting insert and indexable cutting tool thereof
JP2001212703A (en) Polycrystalline hard sintered cutting tool
JPS62162403A (en) Diamond cutting tool
JPS62162402A (en) Diamond cutting tool
JPS58109204A (en) Throwaway tip
KR102316725B1 (en) End mill Having Cutting Tooth Made of Polycrystalline Diamond
Ráczi et al. Chip removal specialities in multi-directional turning
JPS6039018A (en) Reamer for finishing
JPS62271606A (en) High hardness sintered material cutting tool
CN114472944B (en) Finishing insert for reducing tool wear
RU2201846C2 (en) Cutting tip
CN116117211B (en) Cyclone milling threaded workpiece surface roughness prediction method considering cutting force influence
JPH0417303Y2 (en)
SU1285348A1 (en) Method of determining permissible value of wear of cutting tool