JPS6216228B2 - - Google Patents

Info

Publication number
JPS6216228B2
JPS6216228B2 JP15309179A JP15309179A JPS6216228B2 JP S6216228 B2 JPS6216228 B2 JP S6216228B2 JP 15309179 A JP15309179 A JP 15309179A JP 15309179 A JP15309179 A JP 15309179A JP S6216228 B2 JPS6216228 B2 JP S6216228B2
Authority
JP
Japan
Prior art keywords
parts
resin
epoxy
acid
carboxylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15309179A
Other languages
Japanese (ja)
Other versions
JPS5676471A (en
Inventor
Yoshiaki Nakamura
Yutaka Takei
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohto Kasei Co Ltd
Original Assignee
Tohto Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohto Kasei Co Ltd filed Critical Tohto Kasei Co Ltd
Priority to JP15309179A priority Critical patent/JPS5676471A/en
Publication of JPS5676471A publication Critical patent/JPS5676471A/en
Publication of JPS6216228B2 publication Critical patent/JPS6216228B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は分子内に3級カルボン酸エステル基を
含有するポリヒドロキシポリエーテルとアルキル
エーテル化メチロール化アミノ樹脂との混合物を
主要ビヒクル成分として含有することを特徴とす
る金属用被覆材に係るものであり、新規にて有効
なる組成物を提供するものである。 高分子エポキシ樹脂は金属に対する密着性、耐
蝕性などの点に於いてすぐれており広く使用され
ている。しかし近年、軽量化、塗装工程の合理化
そして省資源化などの要望から、塗装工程の省略
もしくは削減または作業性の向上などといつた傾
向が強まり次第に高性能の塗料が求められる様に
なつて来た。 一方、近年塗装方式としてコイル・コーテイン
グと称されるいわゆるプレコート・メタルの生産
が増大し、カラートタン、カラーアルミの他プレ
ハブ工法の素材として広く用いられ、大量生産方
式に寄与している。プレコート・メタルは一般に
コイル状または切板状金属素材、一般には鋼板に
前処理をし、下地塗料、上塗り塗料を塗り重ねて
製品化している。ところで、これらに用いられる
塗料、特に下地塗料に対しては、切断加工や曲げ
加工時における強い変形や衝撃に耐える加工性と
耐蝕性さらに上塗り塗料に対する密着性および焼
付時の速硬化性、経済性などがすべて兼備されて
いることが必要である。特に下地塗料は一般に3
〜10μといつた薄膜で使用されるので極めて苛酷
な条件である。 この様な下地塗料として、従来高分子エポキシ
樹脂例えばエポトートYD―019(東都化成(株))で
代表されるエポキシ当量2400〜3300g/eqの樹
脂とブチル化メラミン樹脂との混合物を主ビヒク
ルとして使用して来た。しかしこの組成では折り
曲げ加工部の耐蝕性や耐衝撃性に満足出来なかつ
た。それらの点を改良したものとしてエポキシ樹
脂の高分子タイプと見なされるフエノキシ樹脂例
えばフエノトートYD―50(東都化成(株))で代表
される粘度平均分子量35000の樹脂とブチル化メ
ラミン樹脂との混合物を主ビヒクルとして使用さ
れている。 しかし、この組成の場合、主ビヒクルのフエノ
キシ樹脂が高分子量であるため塗装時粘度を下げ
るため多くの溶剤を必要としたり、顔料沈降性を
防止するため高価な溶剤が必要であつたり、高分
子量ポリエステルを主ビヒクルとする上塗り塗料
との密着性が良くないと言う欠点を有する。 本発明はこうしたエポキシ樹脂およびフエノキ
シ樹脂の長所をそこなうことなくこれらの緒点を
改善する有効な金属用被覆材を提供するものであ
る。本発明は分子内に3級カルボン酸エステル基
を含有するポリヒドロキシポリエーテル(A)とアル
キルエーテル化メチロール化アミノ樹脂(B)のそれ
ぞれ1種または2種以上を混合させたものを主ビ
ヒクルとする被覆材を提供することにある。 本発明でいう「分子内に3級カルボン酸エステ
ル基を含有するポリヒドロキシポリエーテル(A)」
とは分子の末端に3級カルボン酸エステル基を有
するものが好ましく、例えば次のようなものがあ
げられる。一般式 R1はC3〜C14のアルキル基、R2,R3はメチルま
たはエチル基等の低級アルキル基、R4,R5は2
価アルコールまたは2価フエノール残基、nは0
〜15の整数を示す。以下同じ。 または 本発明に用いるポリヒドロキシポリエーテル化
合物を製造する方法としては、相当するエポキシ
化合物と3級カルボキシ化合物を反応させる方法
と、相当するエポキシ樹脂とビスフエノール化合
物を末端がフエノールになる様なモル比で反応さ
せ、しかる後に3級カルボン酸グリシジルエステ
ルを反応させることに依り得られる。本発明に使
用される「相当するエポキシ樹脂」とは置換また
は非置換のグリシジル基を分子内に平均1個より
多く有するエポキシ樹脂であれば良く、グリシジ
ルエーテル型、グリシジルエステル型、グリシジ
ルアミン型のいずれでも良くまた芳香族、脂肪
族、ヘテロ環含有のものでもかまわない。その他
「ハンドブツク オブ エポキシレジンズ」(ヘン
リ―・リ―、クリス・ネビル著、米国マグロ―ヒ
ル・ブツク カンパニー社出版)に記載されてい
る如き種々のエポキシ樹脂等の従来公知のエポキ
シ樹脂が使用できる。上記エポキシ樹脂のうち特
に好ましいものはエポキシ当量170〜2100g/eq
でビスフエノールAとエピクロルヒドリンより合
成されたものである。耐蝕性の観点から分子内に
芳香環の含有しているエポキシ樹脂を主成分とす
ることが好ましく、可撓性と耐蝕性のよりバラン
スのとれた樹脂系とするためには、芳香族部分の
ビスフエノールとエピクロルヒドリンから得られ
たエポキシ部分が脂肪族部分即ち脂肪族エポキシ
と脂肪族カルボン酸および該エステル部分より多
くなる様に、脂肪族ジエポキシまたは3級カルボ
ン酸エステルを含有させることが好ましい。3級
カルボン酸とエポキシ樹脂との反応は触媒の存在
下に行なわれる。好ましい触媒としてはベンジル
ジメチルアミン、トリエチルアミン、ピリジンの
様な3級アミン類、4級アンモニウム塩、ハロゲ
ン化リチウムアルキルアルコラート、硫酸、、リ
ン酸、有機スルフオン酸、尿素等がある。またビ
スフエノールとエポキシの反応も公知の触媒の存
在下に行なわれる。本発明の反応は溶剤の存在下
または非存在下で行なわれるが、比較的高沸点の
不活性溶剤を使用することに依り、系内粘度を下
げつつ反応ができまた分枝等の副反応をおさえる
意味からも溶剤を使用する方が好ましい。この様
な目的に適する溶剤としてはキシレン、ソルベン
トナフサ、シクロヘキサノン、イソフオロン等を
挙げることが出来る。 本発明に使用される3級カルボン酸および3級
カルボン酸グリシジルエステルとはネオデカノイ
ツク酸、バーサデツク酸、ペンタノイツク酸の如
き3級酸が使用でき、これらの酸から公知の方法
で相当する3級カルボン酸グリシジルエステルを
合成することができる。本発明で3級カルボン酸
またはそのグリシジルエステルに限定している理
由は一般に脂肪族1級カルボン酸エステル基は耐
アルカリ性、耐水性が悪くなり実用的ではないこ
とによる。これに反して3級カルボン酸エステル
の場合は従来のものに比較してこれらの特性の低
下はほとんどない。さらに3級カルボン酸グリシ
ジルエステルを改質剤として配合することも可能
であるが、これは分子量があまり大きくなく耐薬
品性、耐衝撃性の低下をきたす。本発明でいうア
ルキルエーテル化メチロール化アミノ樹脂(B)にお
けるアミノ樹脂とはメラミン樹脂、尿素樹脂、ベ
ンゾグアナミン樹脂のいずれでも良くまた2種以
上の共縮合樹脂でも良い。(B)成分としてはブチル
エーテル化メチロールメラミン樹脂が特に好まし
い。本発明のポリヒドロキシポリエーテルとアミ
ノ樹脂の配合比率はアミノ樹脂含有率にして5〜
40%好ましくは15〜30%が望ましい。このポリヒ
ドロキシポリエーテルとアミノ樹脂の架橋反応は
無触媒でも良いが、必要に依りリン酸、パラトル
エンスルフオン酸およびそのモルフオリン塩の様
な触媒を添加しても良い。本発明をより効果的に
するために着色顔料、防錆顔料、体質顔料その他
の副資材を配合することが好ましい。特にジンク
クロメート、ストロンチウムクロメート、縮合リ
ン酸アルミニウムの様な防錆顔料を使用すること
は耐蝕性の向上に効果的である。以下に実施例を
挙げて本発明を説明するが、本発明はこれら実施
例に限定されるものではない。尚実施例中「部」
はすべて重量部を表わす。 実施例 1 1のセパラブルフラスコに、エポキシ当量
944.2g/eq、軟化点98℃のビスフエノールAと
エピクロルヒドリンから製造されたエポキシ樹脂
377.7部、酸当量180.2g/eqのネオデカノイツク
酸70.6部、キシレン112部を加え加熱して溶解し
た。内温100℃の時触媒としてトリエチルアミン
0.3mlを加えた。反応温度138―140℃で9.5時間反
応し酸価2以下となり反応終了。セロソルブアセ
テート80gを加えて、不揮発分70%のワニスを得
た。 実施例 2 実施例1と同様に、エポキシ当量1921g/eq
のビスフエノールAとエピクロルヒドリンからの
エポキシ樹脂288.2部、酸当量180.2g/eqのネオ
デカノイツク酸26.5部、キシレン79部、トリエチ
ルアミン0.3mlを加えて145―150℃で8時間反応
を行ない酸価1.2となつたので、セロソルブアセ
テートで希釈し不揮発分60%のワニスを得た。 比較例 1 実施例1で使用したエポキシ当量944.2g/eq
のエポキシ樹脂472.1部、酸当量292g/eqの脱水
ヒマシ油脂肪酸146部、キシレン155部、トリエチ
ルアミン0.3mlを使用して実施例1と同様にワニ
スを造つた。 実施例 3 エポキシ当量187.3g/eqのビスフエノールA
とエピクロルヒドリンからの液状エポキシ樹脂
218.3部、ビスフエノールA177.1部、ソルベント
ナフサ99部、触媒として水酸化リチウム20ppm
を添加して、160℃で3時間反応させた。次にエ
ポキシ当量269.1g/eqのバーサデツク酸グリシ
ジルエステル104.6部を加え同温度で7時間反応
させ、後ソルベントナフサ/セロソルブアセテー
ト(1/1)で不揮発分60%となる様に希釈しワ
ニスを調整した。 実施例 4 実施例3と同じ液状エポキシ374.6部、ビスフ
エノールA342部、バーサデツク酸グリシジルエ
ステル269.1部を使つて実施例3と同じ条件で合
成し不揮発分60%ワニスを得た。 実施例 5 実施例3と同じ液状エポキシ136.8部、ビスフ
エノールA166.6部、バーサデツク酸グリシジル
エステル196.6部を使つて、実施例3と同じ条件
で合成し不揮発分60%ワニスを得た。 実施例 6 実施例3の液状エポキシ樹脂281部、ビスフエ
ノールA228部、2―エチル―4―メチルイミダ
ゾール200ppm、ソルベントナフサ127部を160℃
3時間反応させ、次にエポキシ当量145g/eqの
トリメチロールプロパントリグリシジルエーテル
112部を加え5時間反応させた。さらにネオデカ
ノイツク酸85.6部を追加して5時間反応させ実施
例3同様に不揮発分60%ワニスを得る。 実施例 7 実施例3で使用した液状樹脂139.1部、ビスフ
エノールA188.7部、水酸化リチウム20ppm、ソ
ルベントナフサ82部を加えて、150℃3時間反応
後エポキシ当量170g/eqのポリエチレングリコ
ールジグリシジルエーテル126.2部、ソルベント
ナフサ30部を加えて同温度で4時間反応、次いで
バーサデイツク酸グリシジルエステル45.9部を加
えて8時間反応後実施例3と同様にして不揮発分
50%のワニスを得る。 比較例 2 エポキシ当量2500g/eq、軟化点132℃のビス
フエノールAとエピクロルヒドリンから造られた
エポキシ樹脂70部、バーサデイツク酸グリシジル
エステル30部、セロソルブアセテート/キシレン
(1:1)67部を加えてワニス化した。 比較例 3 エポキシ当量2500g/eq、軟化点132℃のビス
フエノールAとエピクロルヒドリンから造られた
エポキシ樹脂50部、ソルベントナフサ25部、セロ
ソルブアセテート25部を加えてワニス化した。 次に上記実施例、比較例でえられたワニスの物
性を示す。
The present invention relates to a metal coating material characterized by containing a mixture of a polyhydroxy polyether containing a tertiary carboxylic acid ester group in the molecule and an alkyl etherified methylolated amino resin as a main vehicle component. The present invention provides a new and effective composition. Polymeric epoxy resins are widely used because of their excellent adhesion to metals and corrosion resistance. However, in recent years, due to the desire to reduce weight, rationalize the painting process, and save resources, there has been a growing trend to omit or reduce the painting process or improve workability, and the demand for high-performance paints has gradually increased. Ta. On the other hand, in recent years, the production of so-called pre-coated metal, known as coil coating, has increased, and it is widely used as a material for prefabricated construction methods, such as colored galvanized iron and colored aluminum, contributing to mass production methods. Precoated metal is generally produced by pre-treating a coiled or cut metal material, generally a steel plate, and then applying a base paint and a top coat. By the way, the paints used for these, especially the base paints, must have workability and corrosion resistance that can withstand strong deformation and impact during cutting and bending, as well as adhesion to top coat paints, fast curing during baking, and economical efficiency. It is necessary that all of the above are present. In particular, base paint is generally 3
The conditions are extremely harsh as it is used with a thin film of ~10μ. Conventionally, as the base paint, a mixture of a polymeric epoxy resin such as Epotote YD-019 (Toto Kasei Co., Ltd.) with an epoxy equivalent of 2,400 to 3,300 g/eq and a butylated melamine resin is used as the main vehicle. I came. However, with this composition, the corrosion resistance and impact resistance of the bent portion were not satisfactory. An improved version of these points is a mixture of a phenoxy resin, which is considered a polymer type of epoxy resin, and a resin with a viscosity average molecular weight of 35,000, such as Phenotote YD-50 (Toto Kasei Co., Ltd.), and a butylated melamine resin. It is used as the main vehicle. However, in the case of this composition, since the main vehicle phenoxy resin has a high molecular weight, a large amount of solvent is required to lower the viscosity during coating, an expensive solvent is required to prevent pigment sedimentation, and the high molecular weight It has the disadvantage of poor adhesion to top coats containing polyester as the main vehicle. The present invention provides an effective metal coating material that improves the disadvantages of epoxy resins and phenoxy resins without sacrificing their advantages. The present invention uses a mixture of one or more of polyhydroxy polyether (A) containing a tertiary carboxylic acid ester group in the molecule and alkyl etherified methylolated amino resin (B) as the main vehicle. The objective is to provide a covering material that "Polyhydroxypolyether (A) containing a tertiary carboxylic acid ester group in the molecule" as used in the present invention
It is preferable to have a tertiary carboxylic acid ester group at the end of the molecule, such as the following. general formula R 1 is a C 3 to C 14 alkyl group, R 2 and R 3 are lower alkyl groups such as methyl or ethyl, and R 4 and R 5 are 2
Hydrolic alcohol or dihydric phenol residue, n is 0
Indicates an integer between ~15. same as below. or Methods for producing the polyhydroxypolyether compound used in the present invention include a method of reacting a corresponding epoxy compound with a tertiary carboxy compound, and a method of reacting a corresponding epoxy resin and a bisphenol compound in a molar ratio such that the terminal end is phenol. It is obtained by reacting and then reacting tertiary carboxylic acid glycidyl ester. The "corresponding epoxy resin" used in the present invention may be any epoxy resin having an average of more than one substituted or unsubstituted glycidyl group in the molecule, and may be of the glycidyl ether type, glycidyl ester type, or glycidyl amine type. Any of these may be used, and aromatic, aliphatic, or heterocyclic ring-containing substances may also be used. In addition, conventionally known epoxy resins such as those described in "Handbook of Epoxy Resins" (written by Henry Lee and Chris Neville, published by McGraw-Hill Book Company, USA) can be used. Among the above epoxy resins, particularly preferred ones have an epoxy equivalent of 170 to 2100 g/eq.
It is synthesized from bisphenol A and epichlorohydrin. From the viewpoint of corrosion resistance, it is preferable that the main component is an epoxy resin containing an aromatic ring in the molecule. It is preferred to contain an aliphatic diepoxy or tertiary carboxylic acid ester so that the epoxy moiety obtained from bisphenol and epichlorohydrin is greater than the aliphatic moiety, that is, the aliphatic epoxy, aliphatic carboxylic acid, and the ester moiety. The reaction between the tertiary carboxylic acid and the epoxy resin is carried out in the presence of a catalyst. Preferred catalysts include tertiary amines such as benzyldimethylamine, triethylamine, and pyridine, quaternary ammonium salts, halogenated lithium alkyl alcoholates, sulfuric acid, phosphoric acid, organic sulfonic acids, and urea. The reaction between bisphenol and epoxy is also carried out in the presence of a known catalyst. The reaction of the present invention is carried out in the presence or absence of a solvent, but by using an inert solvent with a relatively high boiling point, the reaction can be carried out while lowering the viscosity within the system, and side reactions such as branching can be avoided. It is preferable to use a solvent in order to reduce the amount of heat. Solvents suitable for this purpose include xylene, solvent naphtha, cyclohexanone, isophorone, and the like. As the tertiary carboxylic acid and tertiary carboxylic acid glycidyl ester used in the present invention, tertiary acids such as neodecanoic acid, versadecic acid, and pentanoic acid can be used, and the corresponding tertiary carboxylic acid can be prepared from these acids by known methods. Glycidyl esters can be synthesized. The reason why the present invention is limited to tertiary carboxylic acids or glycidyl esters thereof is that aliphatic primary carboxylic acid ester groups generally have poor alkali resistance and water resistance, making them impractical. On the other hand, in the case of tertiary carboxylic acid esters, these properties hardly deteriorate compared to conventional ones. Furthermore, it is possible to incorporate tertiary carboxylic acid glycidyl ester as a modifier, but this does not have a very large molecular weight and causes a decrease in chemical resistance and impact resistance. The amino resin in the alkyl etherified methylolated amino resin (B) in the present invention may be any of melamine resin, urea resin, and benzoguanamine resin, or may be a co-condensation resin of two or more types. As component (B), butyl etherified methylolmelamine resin is particularly preferred. The blending ratio of the polyhydroxy polyether and amino resin of the present invention is 5 to 5 in terms of amino resin content.
40% preferably 15-30%. This crosslinking reaction between the polyhydroxypolyether and the amino resin may be carried out without a catalyst, but if necessary, a catalyst such as phosphoric acid, para-toluenesulfonic acid and its morpholine salt may be added. In order to make the present invention more effective, it is preferable to blend coloring pigments, anti-rust pigments, extender pigments and other auxiliary materials. In particular, the use of anticorrosive pigments such as zinc chromate, strontium chromate, and condensed aluminum phosphate is effective in improving corrosion resistance. The present invention will be explained below with reference to Examples, but the present invention is not limited to these Examples. In addition, "part" in the example
All numbers are parts by weight. Example 1 Into the separable flask of 1, add epoxy equivalent
Epoxy resin made from bisphenol A and epichlorohydrin with a softening point of 98°C and 944.2g/eq.
377.7 parts, 70.6 parts of neodecanoic acid having an acid equivalent of 180.2 g/eq, and 112 parts of xylene were added and dissolved by heating. Triethylamine as a catalyst when the internal temperature is 100℃
Added 0.3ml. After reacting for 9.5 hours at a reaction temperature of 138-140°C, the acid value reached 2 or less and the reaction was completed. 80 g of cellosolve acetate was added to obtain a varnish with a non-volatile content of 70%. Example 2 Same as Example 1, epoxy equivalent 1921g/eq
288.2 parts of epoxy resin made from bisphenol A and epichlorohydrin, 26.5 parts of neodecanoic acid with an acid equivalent of 180.2 g/eq, 79 parts of xylene, and 0.3 ml of triethylamine were added and reacted at 145-150°C for 8 hours to give an acid value of 1.2. Therefore, it was diluted with cellosolve acetate to obtain a varnish with a non-volatile content of 60%. Comparative Example 1 Epoxy equivalent used in Example 1 944.2g/eq
A varnish was prepared in the same manner as in Example 1 using 472.1 parts of epoxy resin, 146 parts of dehydrated castor oil fatty acid having an acid equivalent of 292 g/eq, 155 parts of xylene, and 0.3 ml of triethylamine. Example 3 Bisphenol A with epoxy equivalent weight 187.3 g/eq
and liquid epoxy resin from epichlorohydrin
218.3 parts, bisphenol A 177.1 parts, solvent naphtha 99 parts, lithium hydroxide 20ppm as catalyst
was added and reacted at 160°C for 3 hours. Next, 104.6 parts of versadectic acid glycidyl ester with an epoxy equivalent of 269.1 g/eq was added and reacted at the same temperature for 7 hours, and then diluted with solvent naphtha/cellosolve acetate (1/1) to a nonvolatile content of 60% to prepare a varnish. did. Example 4 Using the same liquid epoxy 374.6 parts, bisphenol A 342 parts, and versadectic acid glycidyl ester 269.1 parts as in Example 3, synthesis was carried out under the same conditions as in Example 3 to obtain a varnish with a non-volatile content of 60%. Example 5 Using the same liquid epoxy (136.8 parts), bisphenol A (166.6 parts), and versadectic acid glycidyl ester (196.6 parts) as in Example 3, synthesis was carried out under the same conditions as in Example 3 to obtain a varnish with a non-volatile content of 60%. Example 6 281 parts of the liquid epoxy resin of Example 3, 228 parts of bisphenol A, 200 ppm of 2-ethyl-4-methylimidazole, and 127 parts of solvent naphtha were heated at 160°C.
React for 3 hours, then add trimethylolpropane triglycidyl ether with an epoxy equivalent of 145 g/eq.
112 parts were added and reacted for 5 hours. Further, 85.6 parts of neodecanoic acid was added and reacted for 5 hours to obtain a varnish with a non-volatile content of 60% in the same manner as in Example 3. Example 7 139.1 parts of the liquid resin used in Example 3, 188.7 parts of bisphenol A, 20 ppm of lithium hydroxide, and 82 parts of solvent naphtha were added, and after reacting at 150°C for 3 hours, polyethylene glycol diglycidyl with an epoxy equivalent of 170 g/eq was obtained. Add 126.2 parts of ether and 30 parts of solvent naphtha and react at the same temperature for 4 hours. Next, add 45.9 parts of glycidyl glycidyl ester and react for 8 hours.
Get 50% varnish. Comparative Example 2 A varnish was prepared by adding 70 parts of an epoxy resin made from bisphenol A and epichlorohydrin with an epoxy equivalent of 2500 g/eq and a softening point of 132°C, 30 parts of glycidyl versadic acid ester, and 67 parts of cellosolve acetate/xylene (1:1). It became. Comparative Example 3 50 parts of an epoxy resin made from bisphenol A and epichlorohydrin having an epoxy equivalent of 2500 g/eq and a softening point of 132°C, 25 parts of solvent naphtha, and 25 parts of cellosolve acetate were added to form a varnish. Next, the physical properties of the varnishes obtained in the above Examples and Comparative Examples will be shown.

【表】【table】

【表】 上記実施例で得られたワニスの下地塗料として
の性能を評価するために次の配合処方にて塗料化
した。 A―Jの配合 実施例、比較例の樹脂※ 85部 ブチル化メラミン樹脂※(市販品) 15〃 酸化チタン(ルチル型) 50〃 ジンククロメートZTO 50〃 ベントン#38(NLインダストリー社製) 1部 セロソルブアセテート/キシレン=1/1 適宜 K,Lの配合 実施例、比較例の樹脂※ 70部 ブチル化メラミン樹脂※ 30〃 ストロンチウムクロメート 100〃 ベントン#38 2〃 セロソルブアセテート/キシレン=1/1
135〃 ※ 固形分換算の量 固形分濃度50%〜60%で顔料分散後、塗装時適
宜希釈しバーコーターで塗布した。上塗り塗料は
市販のポリエステル系のもの(三井東圧化学(株)製
アルマテツクスP―646と同社製ユーバン
20SE60)を使用した。 塗装条件 (1) 素材:0.3mm厚のリン酸亜鉛化成処理亜鉛メ
ツキ鋼板 (2) 膜厚:プライマー/トツプコート5μ/15μ (3) 焼付:2コート2ベーク230℃×60秒(表面
温度)
[Table] In order to evaluate the performance of the varnish obtained in the above example as a base paint, it was made into a paint using the following formulation. Resin of A-J formulation examples and comparative examples * 85 parts Butylated melamine resin * (commercial product) 15〃 Titanium oxide (rutile type) 50〃 Zinc chromate ZTO 50〃 Bentone #38 (manufactured by NL Industries) 1 part Cellosolve acetate/xylene = 1/1 Combination of K and L as appropriate Resin of examples and comparative examples * 70 parts Butylated melamine resin * 30〃 Strontium chromate 100〃 Bentone #38 2〃 Cellosolve acetate/xylene = 1/1
135〃 *Amount converted to solid content After dispersing the pigment at a solid content concentration of 50% to 60%, it was diluted as appropriate during painting and applied with a bar coater. The top coat paint is a commercially available polyester-based paint (Alumatex P-646 manufactured by Mitsui Toatsu Chemical Co., Ltd. and Yuban manufactured by the same company).
20SE60) was used. Painting conditions (1) Material: 0.3mm thick zinc phosphate chemical conversion treated galvanized steel sheet (2) Film thickness: Primer/top coat 5μ/15μ (3) Baking: 2 coats 2 bakes 230℃ x 60 seconds (Surface temperature)

【表】【table】

【表】 表中の表示は◎:非常に優れている、〇:優れ
ている、△:普通、×:劣る、××:非常に劣る。
またブリスターの表示は日本塗料検査協会標準に
依る。
[Table] The indications in the table are: ◎: Very good, 〇: Excellent, △: Average, ×: Poor, XX: Very poor.
Also, blister display is based on the Japan Paint Inspection Association standards.

Claims (1)

【特許請求の範囲】[Claims] 1 分子内に3級カルボン酸エステル基を含有す
るポリヒドロキシポリエーテルとアルキルエーテ
ル化メチロール化アミノ樹脂との混合物を主要ビ
ヒクル成分として含有することを特徴とする金属
用被覆材。
1. A metal coating material comprising a mixture of a polyhydroxy polyether containing a tertiary carboxylic acid ester group in the molecule and an alkyl etherified methylolated amino resin as a main vehicle component.
JP15309179A 1979-11-26 1979-11-26 Coating material for metal Granted JPS5676471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15309179A JPS5676471A (en) 1979-11-26 1979-11-26 Coating material for metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15309179A JPS5676471A (en) 1979-11-26 1979-11-26 Coating material for metal

Publications (2)

Publication Number Publication Date
JPS5676471A JPS5676471A (en) 1981-06-24
JPS6216228B2 true JPS6216228B2 (en) 1987-04-11

Family

ID=15554765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15309179A Granted JPS5676471A (en) 1979-11-26 1979-11-26 Coating material for metal

Country Status (1)

Country Link
JP (1) JPS5676471A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3610765A1 (en) * 1986-03-29 1987-10-01 Basf Lacke & Farben METHOD FOR INCREASING THE PROPORTION OF INGREDIENTS OF NON-VOLATILE IN PROCESSING CONDITIONS IN PRIMARY COATING COMPOSITIONS CONTAINING ORGANIC SOLVENTS

Also Published As

Publication number Publication date
JPS5676471A (en) 1981-06-24

Similar Documents

Publication Publication Date Title
KR100240803B1 (en) Curing catalyst for use in epoxy resin and heat curing coating composition containing the same
US3985695A (en) Water reducible epoxy ester coating composition
US20080081883A1 (en) Polyester Polyols Derived From 2,5-Furandicarboxylic Acid, and Method
US4098735A (en) Water reducible epoxy ester using monocarboxylic acid to control molecular weight
JPH02103272A (en) Cathodic deposition paint binder and its manufacture
EP0039107B1 (en) Process for the preparation of water-dilutable resins, resins produced thereby, and their use in thermosetting surface coatings
US4405662A (en) Thermosetting resinous binder compositions and their use as coating materials
US4423167A (en) Resinous compositions curable through a transesterification curing mechanism
US4423168A (en) Resinous compositions curable through a transesterification curing mechanism
US4412056A (en) Polyglycidyl ethers, their preparation and use in curable compositions
EP0033169B1 (en) Thermosetting binders, preparation and use in lacquers
US4489182A (en) Resinous compositions curable through a transesterification curing mechanism
EP0114425B1 (en) Process for the preparation of resinous compounds, compounds produced thereby and their use in thermosetting coating compositions
JPH10251382A (en) Coating composition based on polyepoxide hardener and polyacid hardener
JPS6216228B2 (en)
JPH1171540A (en) Electrodeposition coating material
EP0043612B1 (en) Polyglycidyl ethers of diphenylol alkanes, preparation and use in curable compositions
US4511447A (en) Electrodeposition of resinous compositions curable through a transesterification curing mechanism
US4102869A (en) Fast-curing coating compositions
JPH0372579A (en) Polyester/epoxy block copolymer as binder for primer on metal
JPS625467B2 (en)
JPH04359075A (en) Thermosetting aqueous coating compound composition
WO2005123799A1 (en) Epoxy resin, method for producing same and epoxy resin composition thereof
EP0547502B1 (en) Hardenable binder and its process of manufacture
EP0261715B1 (en) Process for cationic coating compositions