JPS62161478A - Welding control method - Google Patents

Welding control method

Info

Publication number
JPS62161478A
JPS62161478A JP312586A JP312586A JPS62161478A JP S62161478 A JPS62161478 A JP S62161478A JP 312586 A JP312586 A JP 312586A JP 312586 A JP312586 A JP 312586A JP S62161478 A JPS62161478 A JP S62161478A
Authority
JP
Japan
Prior art keywords
welding
control signal
shows
value
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP312586A
Other languages
Japanese (ja)
Inventor
Kazuhiko Wakamatsu
若松 一彦
Hiroshi Shimoyama
博司 下山
Takashi Ishide
孝 石出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP312586A priority Critical patent/JPS62161478A/en
Publication of JPS62161478A publication Critical patent/JPS62161478A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arc Welding Control (AREA)

Abstract

PURPOSE:To enable the automatic correction for the variation in welding current by keeping the variation in the control signal I by the input of the welding current corresponding to the variation in the control signal E by the input of the impressing voltage of a wire feeding motor in about a fixed quantity by a differential control signal. CONSTITUTION:The figure (d) shows the instantaneous value example of the differential control signal ID in case of the welding arc being changed in wavy shape and the height of a welding torch 2a varying. The figure (e) shows A.ID<-1> that the reference amplifying degrees A are divided by a signal ID and the figure (f) shows the relation of the peak holding value A. (ID<-1>) of A.ID<-1> of the figure (a) to the reference threshold value S for discriminating by comparing therewith. The figure (g) shows the discriminating result example [A.(ID<-1>)'-S] discriminated by performing the substraction of A.(ID<-1>)' by the figure (f) from the threshold value S by a substraction means 8B. And said discriminating result of the figure (g) becomes the value corresponding to the dissociation in the height of the torch 2 and the set reference value. The servo mechanism 8F in Z axial direction can therefore be driven by driving a servomotor 8E by passing it through a dead zone width operating means 8C and servo amplifier 8D.

Description

【発明の詳細な説明】 〔産業上の利用分野] この発明は、アーク溶接ロボットあるいは自動アーク溶
接装置に適用される溶接制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a welding control method applied to an arc welding robot or an automatic arc welding device.

〔従来の技術] 第7図は従来の溶接用アークセンサ弁別装置の構成例を
示す。この第7図において、被溶接材1(母材)と溶接
トーチ2間に溶接電源5から直流電圧を印加するように
しており、また、溶接ワイヤ3はローラ4aによシ挾持
され、ローラ4aはワイヤ送給モータ4で駆動されるよ
うになっている。
[Prior Art] FIG. 7 shows an example of the configuration of a conventional welding arc sensor discriminator. In FIG. 7, a DC voltage is applied from a welding power source 5 between the workpiece 1 (base metal) and the welding torch 2, and the welding wire 3 is held between rollers 4a and is driven by a wire feeding motor 4.

この第7図に示すように、溶接電流■に係る入力信号を
増幅器A1で適当なレベルまで増幅し、これを制御器B
1に導入して弁別しきい値Sにより弁別して結果を出力
する機能を基本とする。
As shown in FIG. 7, the input signal related to the welding current
1, performs discrimination using a discrimination threshold value S, and outputs the results.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第8図は前記第7図の機能構成により作動させる場合の
ワイヤ送給モータ印加電圧EM、ワイヤ送り速さWy1
ワイヤ突出長さExの変化による溶接アークの電気的特
性曲線例を模式的に示す。
FIG. 8 shows the wire feeding motor applied voltage EM and wire feeding speed Wy1 when operated according to the functional configuration shown in FIG. 7.
An example of an electrical characteristic curve of a welding arc due to a change in wire protrusion length Ex is schematically shown.

この第2図かられかるように、当初動作点Po  (ア
ーク特性Ao N 1!流Io )で安定していた溶接
アークが、同一電源特性上で動作点P1 (アーク特性
A1、電流It )へ移行した場合、その原因としては
、 (1+  ワイヤ送給モータ印加電圧がEMOからEM
lへ変化(すなわちワイヤ送シ速さW、QがWrlへ変
化)したことによる。
As can be seen from Fig. 2, the welding arc, which was initially stable at the operating point Po (arc characteristics Ao N 1! flow Io), changes to the operating point P1 (arc characteristics A1, current It) on the same power source characteristics. If the voltage shifts from EMO to EM, the cause is (1+)
This is because the wire feeding speeds W and Q have changed to Wrl.

(2)  ワイヤ突出長さがEXOからEXlへ変化し
たことによる。
(2) This is due to the wire protrusion length changing from EXO to EXl.

の二つがあり得る。There are two possibilities.

同様の論理により、動作点P、からP2へ移行する場合
も二つの原因があシ得る。しかるに、アークセンサ機能
としては前記(2)項記載のExの変化による溶接電流
工の変化のみが有効な情報源であって、他の原因による
溶接電流工の変化は雑音源となシ、センスシステムとし
ての安定度、精度ならびに操作性を阻害していた。
According to similar logic, there are two possible causes for the transition from operating point P to P2. However, for the arc sensor function, only the change in welding current due to the change in Ex described in item (2) above is an effective information source, and changes in welding current due to other causes are noise sources. This hindered the stability, accuracy, and operability of the system.

前記第8図の説明でわかるように、アークセンサとして
必要な情報はワイヤ突出長さExの変化による溶接電流
Iの変化のみであって、ワイヤ送給モータ4の印加電圧
Eu (すなわちワイヤ送り速さWr )の変化による
溶接電流工の変化分は不要なので、これを排除しなけれ
ばならない。
As can be seen from the explanation of FIG. 8, the only information necessary for the arc sensor is the change in the welding current I due to the change in the wire protrusion length Ex, and the information on the applied voltage Eu of the wire feed motor 4 (i.e., the wire feed speed). The change in welding current due to the change in Wr) is unnecessary and must be eliminated.

この発明は、前記従来の欠点を除去するためになされた
もので、溶接電流変化に対する自動補正が可能でかつ優
れた操作性を期することができるとともに、既存アーク
溶接−ゴツトあるいは自動アーク溶接装置に容易に装備
でさる溶接制御方法を提供することを目的とする。
The present invention has been made to eliminate the above-mentioned drawbacks of the conventional art, and is capable of automatically correcting changes in welding current and ensuring excellent operability. The purpose of this invention is to provide a welding control method that can be easily installed.

〔問題点を解決するための手段〕[Means for solving problems]

この発明の溶接制御方法は、溶接電流I入力による制御
信号Iと、ワイヤ送給モータの印加電圧2M入力による
制御信号EMとを設定し、この制御信号E、の変化によ
る制御信号1の変化を制御信号EMによシ相殺してこの
制御信号E、の匝とは無関係にほぼ一定値の差動制御信
号IDを算出し、この差動制御信号IDをアークセンサ
用制御信号源とするようにし次ものである。
The welding control method of the present invention sets a control signal I by inputting a welding current I and a control signal EM by inputting an applied voltage of 2M to the wire feeding motor, and changes the control signal 1 due to a change in the control signal E. A differential control signal ID having a substantially constant value is calculated by canceling the control signal EM, regardless of the value of the control signal E, and this differential control signal ID is used as a control signal source for the arc sensor. This is the next one.

〔作用〕[Effect]

この発明は、差動制御信号Inにより制御信号EMの変
化による制御信号lの変化をほぼ一定値に保ち、これに
基づき被溶接材と溶接トーチ間距離、被溶接材と溶接ト
ーチ内コンタクトチップ間距離、溶接トーチ高さのいず
れかを設定基□ 準値に対応して自動追従させる。
This invention maintains the change in the control signal l caused by the change in the control signal EM at a substantially constant value using the differential control signal In, and based on this, the distance between the welded material and the welding torch, and the distance between the welded material and the contact tip in the welding torch. Set either distance or welding torch height □ Automatically follow the standard value.

〔実施例〕〔Example〕

以下、この発明の溶接制御方法の実施例について図面に
基づき説明する。第1図はその一実施例に適用される溶
接制御装置の基本的機能構成を示す図であり、第2図は
そのうちの差動制御信号ID演演目回路具体的な構成例
を示すものである。
Embodiments of the welding control method of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing the basic functional configuration of a welding control device applied to one embodiment, and FIG. 2 shows a specific example of the configuration of the differential control signal ID program circuit. .

この第1図、第2図において、第7図と同一部分には同
一符号を付して説明する。まず、第1図は直流定電圧特
性の溶接電源5と溶接ワイヤ定速送給装置とから構成さ
れるMIG XMAG 。
In FIGS. 1 and 2, the same parts as in FIG. 7 will be described with the same reference numerals. First, FIG. 1 shows a MIG

C02アーク、インチシールドアーク、サブマージアー
クの各溶接方法で行なう突合わせ溶接ならびにすみ肉溶
接に対して、この発明における差動制御信号IDを算出
するための基本機能構成図である。
FIG. 2 is a basic functional configuration diagram for calculating a differential control signal ID in the present invention for butt welding and fillet welding performed by C02 arc, inch shield arc, and submerged arc welding methods.

この第1図において、被溶接材1(母材)と溶接ワイヤ
3間には、溶接電源5よシ溶接電圧を印加して、被溶接
材1と溶接ワイヤ3間にアークを生じさせてアーク溶接
を行なうようにしている。
In FIG. 1, a welding voltage is applied between the workpiece 1 (base metal) and the welding wire 3 by a welding power source 5 to generate an arc between the workpiece 1 and the welding wire 3. I'm trying to do some welding.

溶接ワイヤ3はローフ′4&により溶接トーチ2内に送
給されるようになっており、ローラ4aはワイヤ送給モ
ータ4によシ駆動されるようになっている。
The welding wire 3 is fed into the welding torch 2 by a loaf '4&, and the roller 4a is driven by the wire feed motor 4.

また、7はワイヤ送給モータ印加電圧EMを示し、6は
溶接電流■を示している。この溶接電流■6とワイヤ送
給モータ印加電圧EM7は差動制御信号ID演算回路8
に入力するようにしている。この差動制御信号IO演算
回路8から差動制御信号ID9を出力するようになって
いる。
Further, 7 indicates the voltage EM applied to the wire feed motor, and 6 indicates the welding current (■). This welding current 6 and the wire feed motor applied voltage EM7 are the differential control signal ID calculation circuit 8.
I am trying to input it into . This differential control signal IO calculation circuit 8 outputs a differential control signal ID9.

次に、第2図により差動制御信号1.演算回路の具体的
構成例について説明する。この第2因において、入力端
子tl、t2とコモン端子00M間には、それぞれ可変
抵抗VRJ、VR2が接続されている。
Next, according to FIG. 2, the differential control signal 1. A specific example of the configuration of the arithmetic circuit will be explained. In this second factor, variable resistors VRJ and VR2 are connected between the input terminals tl and t2 and the common terminal 00M, respectively.

入力端子tノには、溶接電流I6が入力され、入力端子
t2には、ワイヤ送給モータ印加電圧EM7が印加され
るようになっている。
A welding current I6 is input to the input terminal t, and a wire feeding motor applied voltage EM7 is applied to the input terminal t2.

可変抵抗VRIの可動端子は演算増幅器OPIの(イ)
入力端に接続され、演算増幅器OPIの←)入力端は抵
抗R1t−介してコモン端子COMに接続され、との←
)入力端と出力端間には抵抗R3が接続されている。
The movable terminal of the variable resistor VRI is the (a) of the operational amplifier OPI.
The ←) input terminal of the operational amplifier OPI is connected to the common terminal COM through the resistor R1t-, and the ←
) A resistor R3 is connected between the input terminal and the output terminal.

この演算増幅器OPIの出力端より、溶接電流工人力に
よる制御信号(it圧)」が抵抗R4を介して演算増幅
器OP3の(ト)入力端に加えるようにしている。この
演算増幅器OP、9の(ト)入力端は抵抗R5を介して
コモン端子COM K接続されている。
From the output terminal of the operational amplifier OPI, a control signal (IT pressure) caused by the welding current is applied to the (g) input terminal of the operational amplifier OP3 via a resistor R4. The input terminals of the operational amplifiers OP and 9 are connected to the common terminal COM K via a resistor R5.

一方、上記可変抵抗VR2の可動端子より、ワイヤ送給
モータ印加電圧E、入力による制御信号(電圧)5Mが
減算器Dノに印加するようになっている。
On the other hand, the wire feeding motor applied voltage E and the input control signal (voltage) 5M are applied to the subtracter D from the movable terminal of the variable resistor VR2.

また、電源VCCとコモン端子00M間には、可変抵抗
VRJが接続されておシ、この可変抵抗VRJの可動端
子には、バイアス電圧E、が発生するようにしており、
バイアス電圧Eaを減算器DJに加えるようにしている
Further, a variable resistor VRJ is connected between the power supply VCC and the common terminal 00M, and a bias voltage E is generated at the movable terminal of the variable resistor VRJ.
A bias voltage Ea is applied to the subtracter DJ.

減算器DJは制御信号EMからバイアス電圧E3の減算
を行なって、その減算結果を演算増幅器OP2の←)入
力端に加えるようにしている。
The subtracter DJ subtracts the bias voltage E3 from the control signal EM, and applies the subtraction result to the ←) input terminal of the operational amplifier OP2.

演算増幅器OP2の←)入力端は抵抗R2を介してコモ
ン端子COMに接続されている。
The ←) input terminal of the operational amplifier OP2 is connected to the common terminal COM via the resistor R2.

演算増幅器OP2のH入力端と出力端間には、帰還回路
Kが接続されている。この演算増幅器OP2の出力端よ
シ、制御電圧ΔEM t”抵抗R6を介して演算増幅器
OP3の日入刃端に加えるようにしている。
A feedback circuit K is connected between the H input terminal and the output terminal of the operational amplifier OP2. From the output terminal of the operational amplifier OP2, a control voltage ΔEMt'' is applied to the input terminal of the operational amplifier OP3 via a resistor R6.

この制御電圧ΔEMはK(EM−EB)により算出され
た制御電圧(KはεM−EMに係る増幅度で、非線形)
を示す。
This control voltage ΔEM is the control voltage calculated by K(EM-EB) (K is the amplification degree related to εM-EM, which is nonlinear)
shows.

演算増幅器OP3の←)入力端と出力端間には抵抗R7
が接続されている。この演算増幅器OP3の出力はロー
ノ母スフィルタLPFを通して、出力信号JD−1−i
E、を出力するようにしている。
There is a resistor R7 between the input terminal and output terminal of the operational amplifier OP3.
is connected. The output of this operational amplifier OP3 is passed through a Lono bus filter LPF to produce an output signal JD-1-i.
I am trying to output E.

次に、上記差動制御信号lDにもとすく溶接トーチ高さ
ずれ検出および高さ設定値自動追従のための溶接制御装
置(アークセンサ)の具体的構成例を第3図に示す。第
3図(、)は突合せ継手#接における継手付近の構成を
示し、第3図(b)はすみ内継手溶接における継手付近
の構成を示し、第3図(elは溶接制御装置の構成、W
Ja図(d)〜第3図(g)は第3図(、)の制御袋T
itKよる演算過程の制御信号をそれぞれ示す。
Next, FIG. 3 shows a specific configuration example of a welding control device (arc sensor) for detecting a welding torch height deviation and automatically following the height setting value based on the differential control signal LD. Figure 3 (,) shows the configuration near the joint in butt joint # welding, Figure 3 (b) shows the configuration around the joint in corner joint welding, Figure 3 (el is the configuration of the welding control device, W
Fig. 3 (d) to Fig. 3 (g) are the control bag T in Fig. 3 (,).
Each of the control signals for the calculation process by itK is shown.

次に、この発明の溶接制御方法について説明する。第4
図はワイヤ送給モータ印加電圧8M1ワイヤ送シ速さW
、の変化による溶接電流■の変化の例を示す。この第4
図かられかるように、ワイヤ送給モータ印加電圧EM 
(すなわちワイヤ送シ速さW、 )と等接直流Iとはほ
ぼ比例関係にあり、溶接電流Iの変化量のうち、ワイヤ
送給モータ印加゛ト在圧EMの変化に起因する部分につ
いては、ワイヤ送給モータ印加電圧EMの変化から演算
して求めることができることを示す。
Next, the welding control method of the present invention will be explained. Fourth
The figure shows wire feed motor applied voltage 8M1 wire feed speed W
An example of a change in welding current (■) due to a change in is shown. This fourth
As can be seen from the figure, the wire feeding motor applied voltage EM
(i.e., the wire feed speed W, ) and the equitangent DC I are almost proportional to each other, and the part of the change in the welding current I that is due to the change in the pressure EM applied to the wire feed motor is , which can be calculated and determined from changes in the voltage EM applied to the wire feed motor.

第5図は前記第2図の具体的構成例にもとずく差動制御
信号In (アークセンサ用制御信号源)の検出原理、
第6図は第5図の作動原理利用による差動制御信号ID
検出機能をそれぞれ示す。
FIG. 5 shows the detection principle of the differential control signal In (arc sensor control signal source) based on the specific configuration example shown in FIG.
Figure 6 shows the differential control signal ID using the operating principle shown in Figure 5.
The detection functions are shown respectively.

これら両図かられかるように、基本的には差動制御信号
IDは溶接電流■入力による制御信号室とワイヤ送給モ
ータ印加電圧EM入力による制御信号E、とによシ、 io=冨−K(EM−El) ただし、Emはバイアス電圧、Kは係数(非線形)で与
えられる量であって、これを溶接制御のための入力信号
として利用する。
As can be seen from these figures, the differential control signal ID basically consists of a control signal chamber due to the welding current ■ input and a control signal E due to the wire feed motor applied voltage EM input, io=Ten. K (EM-El) where Em is a bias voltage and K is a quantity given by a coefficient (nonlinear), which is used as an input signal for welding control.

次に、前記第3図の構成例にもとすく作用について説明
する。第3図(d)は溶接アークのウィービングで波状
に変化しかつ溶接トーチ2a高さが変動する場合の差動
制御信号IDの瞬時値例であり、第3図(、)は基準増
幅度Aを第3図(d)の差動制御信号IDで除したA・
ID−1を示し、第3図(f)は第3図(、)のA・l
o−1のピークホールド値A ・(Jo−’)’ならび
にA、 (lo−1)′の比較弁別用基準しきい値Sと
の関係を示し、第3図(g)は第3図(f)によるA・
(LD−’ )’と比較弁別用基準しきい値Sとの減算
を減算手段8Bで行なって弁別した弁別結果例〔A・(
In−’)’  S )をそれぞれ示す。
Next, the operation of the configuration example shown in FIG. 3 will be explained. Fig. 3(d) shows an example of the instantaneous value of the differential control signal ID when the welding arc changes in a wave-like manner and the height of the welding torch 2a fluctuates, and Fig. 3(,) shows the reference amplification degree A. is divided by the differential control signal ID in FIG. 3(d).
ID-1 is shown, and Fig. 3(f) shows A/l in Fig. 3(,).
Fig. 3(g) shows the relationship between the peak hold value A ・(Jo-')' of o-1 and the standard threshold value S for comparison discrimination of A, (lo-1)'. f) A.
Example of discrimination result [A・(
In-')'S) are shown respectively.

この第3図(g)の弁別結果〔A・(LD−’)’−8
〕は溶接トーチ2の高さと設定基準値との乗離に対応し
た値となるので、これを不感帯幅演算手段8C,サーボ
アンプ8Dを通してサーボモータ8Ef!:駆動するこ
とにより、z軸方向サーボ機構8Fを駆動する。
The discrimination result in FIG. 3(g) [A・(LD-')'-8
] is a value corresponding to the difference between the height of the welding torch 2 and the set reference value, so this is passed through the dead band width calculating means 8C and the servo amplifier 8D to the servo motor 8Ef! : By driving, the z-axis direction servo mechanism 8F is driven.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明の溶接制御方法によれば、溶接
電流入力による制御信号とワイヤ送給モータ印加電圧入
力による制御信号とを設定し、後者の制御信号の変化に
よる前者の制御信号の変化を後者の制御信号によシ相殺
して、はぼ一定値の差動制御信号を算出してこれを被溶
接材と溶接トーチ間距離を設定基準値に対応して自動追
従させるようにしたので、溶接電流変化に対する自動補
正がなされ、すぐれた操作性が得られる。
As described above, according to the welding control method of the present invention, a control signal based on the welding current input and a control signal based on the wire feed motor applied voltage input are set, and a change in the former control signal is caused by a change in the latter control signal. By canceling the difference with the latter control signal, we calculated a differential control signal with a nearly constant value, and used this to automatically follow the distance between the welding material and the welding torch in accordance with the set reference value. , automatic correction is made for changes in welding current, providing excellent operability.

また、既存アーク溶接ロボットあるいは自動アーク溶接
装置に容易に装備できるとともにこれらの機能向上とコ
スト低減が可能となる。
Furthermore, it can be easily installed on existing arc welding robots or automatic arc welding equipment, and it is possible to improve these functions and reduce costs.

さらに、主要部分は簡単なアナログ回路で構成でき、低
コストで実現でき、しかも溶接関連設備の自動制御化、
ロボット化による省人化の実現に有効な手掛りとなるも
のである。
Furthermore, the main parts can be configured with simple analog circuits, making it possible to achieve low cost and automatic control of welding-related equipment.
This will provide an effective clue to realizing labor savings through robotization.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の溶接制御方法の一笑施例に適用され
る溶接制御装置の基本機能構成を示す図、第2図は第1
図の溶接?1TIJ 御装置におけΣ差動制御信号ID
演算回路の具体的構成を示すブロック図、第3図(a)
はこの発明の溶接制御方法が適用される突合わせ継手溶
接の継手付近の構成を示す図、第3図(b)は同上#接
制御方法が通用されるすみ内継手溶接における継手付近
の構成を示す図、第3図(c)は同上溶接制御装置の詳
細な構成を示すブロック図、第3図(d)ないし第3図
(g)はそれぞれ第3図(c)の溶接制御装置による演
算過程の制御信号を示す図、第4図は同上溶接制御方法
におけるワイヤ送給モータ印加電圧、ワイヤ送シ速さの
変化による溶接電流変化を示す図、第5図は同上溶接制
御方法における差動制御信号検出原理を示す図、第6図
は第5図の動作原理による差動制御信号機能を示す図、
第7図は従来の溶淡用アークセ/す弁別装置の構成を示
す図、第8図は第7図の溶接用アークセンサ弁別装置の
ワイヤ送給モータ印加電圧、ワイヤ送υ速さ、ワイヤ突
出長さの変化による溶接アークの磁気的特性曲線の模式
図である。 1・・・被溶接材、2・・・溶接トーチ、3・・・溶接
ワイヤ、4・・・ワイヤ送給モータ、4a・・・ローラ
、5・・・溶接電源、6・・・溶接電流、2・・・ワイ
ヤ送給モータ印加電圧、8・・・差動制御信号演算回路
、9・・・差動制御信号ID出力。 出願人榎代理人  弁理士 鈴 江 武 彦第7図 第8図
FIG. 1 is a diagram showing the basic functional configuration of a welding control device applied to an embodiment of the welding control method of the present invention, and FIG.
Welding diagram? 1TIJ Σ differential control signal ID in control device
Block diagram showing the specific configuration of the arithmetic circuit, FIG. 3(a)
3(b) shows the configuration near the joint in butt joint welding to which the welding control method of the present invention is applied, and FIG. 3(b) shows the configuration near the joint in corner joint welding to which the contact control method of the above is applied. Figure 3(c) is a block diagram showing the detailed configuration of the welding control device shown above, and Figures 3(d) to 3(g) are calculations by the welding control device shown in Figure 3(c), respectively. Fig. 4 is a diagram showing the welding current change due to changes in wire feed motor applied voltage and wire feed speed in the welding control method same as above, and Fig. 5 is a diagram showing the welding current change in the welding control method same as above. A diagram showing the control signal detection principle; FIG. 6 is a diagram showing the differential control signal function based on the operating principle of FIG. 5;
Fig. 7 is a diagram showing the configuration of a conventional arc sensor discriminator for melting and tanning, and Fig. 8 is a diagram showing the voltage applied to the wire feed motor, the wire feed speed, and the wire protrusion of the arc sensor discriminator for welding shown in Fig. 7. FIG. 3 is a schematic diagram of a magnetic characteristic curve of a welding arc with a change in length; DESCRIPTION OF SYMBOLS 1... Material to be welded, 2... Welding torch, 3... Welding wire, 4... Wire feeding motor, 4a... Roller, 5... Welding power source, 6... Welding current , 2... Wire feeding motor applied voltage, 8... Differential control signal calculation circuit, 9... Differential control signal ID output. Applicant Enoki Patent Attorney Takehiko Suzue Figure 7 Figure 8

Claims (1)

【特許請求の範囲】[Claims] 直流定電圧特性の溶接電源から溶接電圧を被溶接物と溶
接ワイヤ間に印加して両者間にアークを発生させ、上記
溶接電流入力による制御信号Aと上記溶接ワイヤを送給
するワイヤ送給モータに印加するワイヤ送給モータ印加
電圧による制御信号Bを設定し、この制御信号Bの変化
による制御信号Aの変化を制御信号Bにより相殺してほ
ぼ一定値の差動制御信号Cを算出し、この差動制御信号
Cを溶接制御手段の入力として上記被溶接材と溶接トー
チ間距離、被溶接材と溶接トーチ内コンタクトチップ間
距離、溶接トーチ高さのいずれかを設定基準値に対応し
て自動追従させることを特徴とする溶接制御方法。
A welding voltage is applied between the workpiece and the welding wire from a welding power source with DC constant voltage characteristics to generate an arc between the two, and a wire feeding motor that feeds the control signal A based on the welding current input and the welding wire. A control signal B is set based on the voltage applied to the wire feeding motor to be applied to the wire feed motor, and a change in the control signal A due to a change in the control signal B is offset by the control signal B to calculate a differential control signal C having a substantially constant value. This differential control signal C is input to the welding control means, and any one of the distance between the welding material and the welding torch, the distance between the welding material and the contact tip in the welding torch, and the welding torch height is set in accordance with the set reference value. A welding control method characterized by automatic tracking.
JP312586A 1986-01-10 1986-01-10 Welding control method Pending JPS62161478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP312586A JPS62161478A (en) 1986-01-10 1986-01-10 Welding control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP312586A JPS62161478A (en) 1986-01-10 1986-01-10 Welding control method

Publications (1)

Publication Number Publication Date
JPS62161478A true JPS62161478A (en) 1987-07-17

Family

ID=11548638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP312586A Pending JPS62161478A (en) 1986-01-10 1986-01-10 Welding control method

Country Status (1)

Country Link
JP (1) JPS62161478A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011167717A (en) * 2010-02-18 2011-09-01 Kobe Steel Ltd Tip-base metal distance control method for arc welding system and arc welding system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011167717A (en) * 2010-02-18 2011-09-01 Kobe Steel Ltd Tip-base metal distance control method for arc welding system and arc welding system
US9623507B2 (en) 2010-02-18 2017-04-18 Kobe Steel, Ltd. Tip-base metal distance control method for arc welding system, and arc welding system

Similar Documents

Publication Publication Date Title
US4156125A (en) Method of and means for spacing control of plasma arc cutting torch including vector velocity compensation
JPS62161478A (en) Welding control method
US4169224A (en) Apparatus for obtaining feedback signals for controlling a parameter of an arc welding machine
JPS62161475A (en) Welding control method
JPH0751854A (en) Consumable electrode type arc welding controller
JP2616146B2 (en) Electric discharge machine
JPS62161479A (en) Welding control method
JPS62161477A (en) Control method for welding
JP2712739B2 (en) Steering angle control device for automatic guided vehicles
JPS6244317A (en) Concentrated discharge detector for wire electric discharge machine
US4639573A (en) Automatic groove tracing control method for arc welding
JP2522685B2 (en) Wire cut gap voltage detector
JP3383044B2 (en) Laser processing control device
JPS6257435B2 (en)
JPS6254626A (en) Convergent discharge detector for wire electric discharge machine
JPS62161476A (en) Welding control method
JPS63150110A (en) Electric discharge machine
JPS59142021A (en) Automatic measuring system of offset value in wire cut electric discharge machine
JPH0349803Y2 (en)
JPH0233987Y2 (en)
JPH0363468B2 (en)
KR960001528Y1 (en) Checking device of a gas metal arc welding
KR0142259B1 (en) Thick plate automatic welding
JPS6068173A (en) Detection of profiling for welding
JPS58136463A (en) Thermal recorder