JPS6216144B2 - - Google Patents

Info

Publication number
JPS6216144B2
JPS6216144B2 JP17045979A JP17045979A JPS6216144B2 JP S6216144 B2 JPS6216144 B2 JP S6216144B2 JP 17045979 A JP17045979 A JP 17045979A JP 17045979 A JP17045979 A JP 17045979A JP S6216144 B2 JPS6216144 B2 JP S6216144B2
Authority
JP
Japan
Prior art keywords
silicate
silica composite
top coat
film
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17045979A
Other languages
Japanese (ja)
Other versions
JPS5695371A (en
Inventor
Tatsuo Fukushima
Yoshiaki Myosawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Paint Co Ltd
Original Assignee
Kansai Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Paint Co Ltd filed Critical Kansai Paint Co Ltd
Priority to JP17045979A priority Critical patent/JPS5695371A/en
Publication of JPS5695371A publication Critical patent/JPS5695371A/en
Publication of JPS6216144B2 publication Critical patent/JPS6216144B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)

Description

【発明の詳細な説明】 本発明は、新規な防錆塗膜の発泡防止方法に関
し、さらに詳しくは、無機質系高濃度亜鉛末塗料
塗膜に上塗塗料を塗装する際生ずる発泡現象を防
止する方法に関するものである。 従来から、海上構築物、船舶等の鋼構造物への
長期防錆塗料として、無機質系高濃度亜鉛末塗料
がその性能が極めて優れていることから推奨され
広く使用されている。 防錆用の無機質系高濃度亜鉛末塗料はビヒクル
にアルカリ系シリケートあるいはアルキル系シリ
ケートを用い防錆顔料として、亜鉛末を高濃度に
配合してなるもので塗装乾燥膜厚70〜100μで塗
装できるように設計されている。この塗料を鋼材
に塗装する場合の塗装工程は鋼板→(シヨツブプ
ライマー塗装)→錆除去(ブラスト処理、パワー
ツール処理)→無機質系高濃度亜鉛末塗料塗装→
上塗塗装からなる工程を一般に採用している。こ
こで最終工程で行なう上塗塗装は被塗物に長期に
わたりより一層の防食性を付与したり、被塗物に
所望の色彩を付与したりするために行なわれるも
のである。しかしながら、この上塗塗装を行なう
際に発泡の現象が生じ、形成された上塗塗膜にバ
ブル、ピンホール、クレーター、肌あれ等の塗膜
欠陥が生じるという大きな難点があつた。この塗
膜欠陥は無機質系高濃度亜鉛末塗料塗膜の表面が
素穴状態で塗膜層中にボイド(void)を形成して
いるため、そのボイドの中の空気が上塗塗装時に
上塗塗膜へ移行して発泡現象を生じせしめ、その
結果上塗塗膜に上記した欠陥をもたらすものと推
察される。この欠陥を防止するための方法として
は種々の方法があるが、現在行なわれている最も
一般的な方法は溶剤で希釈した上塗塗料を無機質
系高濃度亜鉛末塗料塗膜上に何回も薄く塗り重ね
て、上塗塗料の所要膜厚(通常100〜200μ程度で
ある)を得る方法、いわゆる塗料のミストコート
方式が採用されている。しかしながら、この方法
を用いても発泡の現象は完全に防止できないこ
と、さらに上塗塗料を何回も塗り重ねる方式は手
数と日数を要するため作業性、生産性等の面でも
満足のいくものでなく、塗装工程上においても
種々の問題を生じるという欠点があつた。 そこで、本発明者らは上述した欠陥を解決する
ため、無機質系高濃度亜鉛末塗料の素穴状塗膜面
に塗布しても優れた付着性を示し、かつ緻密な皮
膜を形成してボイド中の空気の上塗塗膜への移行
を防止することができ、さらに長期にわたる防食
性をより一層向上させる被覆組成物を鋭意研究探
策を重ねた結果、有機物と無機物の反応生成物で
あるポリビニルアセタール類とアルキル、アリル
またはアリールシリケートとのシリカ複合体溶液
が上記性能を満足させることを見出し、本発明を
完成するに至つた。 すなわち本発明は無機質系高濃度亜鉛末塗料塗
膜に上塗塗料を塗装して防錆塗膜を形成する際、
該上塗塗料の塗装に先だち、ポリビニルアセター
ル類とアルキル、アリルまたはアリールシリケー
トおよび水とよりなる混合物を溶媒および酸触媒
の存在下、50℃以上該混合物の沸点以下の温度に
加熱し、反応させることにより得られるシリカ複
合体の固形分5〜30重量%溶液を塗布することを
特徴とする防錆塗膜の発泡防止方法を提供するも
のである。 本発明において無機質系高濃度亜鉛末塗料を防
錆塗料として塗装する迄の工程は、従来の塗装工
程と何等変わるところはない即ち、基材たとえば
鋼材に、ブラスト処理あるいはパワーツール処理
を施すことによつて除錆をしてから、一時防錆用
のシヨツププライマーを塗装し、さらに無機質系
高濃度亜鉛末塗料を塗装する前、再びブラスト処
理あるいはパワーツール処理で除錆するか、もし
くはシヨツププライマーを塗装せずに、除錆後無
機質系高濃度亜鉛末塗料を塗装する方法等が一般
に行なわれている。防錆塗料としての無機質系高
濃度亜鉛末塗料は、長期防食性能を保持するため
には乾燥膜厚で70〜100μ程度の塗布膜厚が要求
される。塗装方法は、エアレスプレー、エアース
プレーあるいは刷毛塗り塗装を用いることができ
る。 本発明で使用される無機質系高濃度亜鉛末塗料
は一般に公知のものであり、ビヒクルにアルキル
シリケート(例えば、エチルシリケート、プロピ
ルシリケーとなど)をアルコール系溶剤に溶解し
たもの、あるいはアルカリシリケート(例えば、
ナトリウムシリケート、カリウムシリケート、リ
チウムシリケートなど)を水に溶解したものを用
い、これに亜鉛末顔料を高濃度(塗膜中70〜95重
量%)に配合してなるものを基本組成とするもの
である。 本発明に従えば無機質系高濃度亜鉛末塗料を所
要膜厚になるように塗装し、乾燥時間を約1〜2
日間とつてから、ポリビニルアセタール類とアル
キル、アリルまたはアリールシリケートとを酸水
溶液触媒下で50℃以上該混合物の沸点以下の温度
に加熱することによつて得られる反応生成物(以
下、このものを「シリカ複合体」という)の固形
分5〜30重量%溶液を、エアレススプレー、エア
ースプレーあるいは刷毛塗り塗装により3〜40μ
程度の乾燥膜厚になるよう塗装する。ここで乾燥
膜厚が3μより薄いと、無機質系高濃度亜鉛末塗
料塗膜の素穴が完全にうまらないため、上塗塗膜
の発泡現象を完全に防止することができない。他
方、乾燥膜厚が40μより厚いと、付着性が劣るよ
うになり好ましくない。 本発明において用いるシリカ複合体は、本出願
人の特開昭53―92847号公報に記載されているも
のであり、該シリカ複合体はポリビニルアセター
ル類とアルキル、アリルまたはアリールシリケー
ト(以下「有機シリケート」と略称する)の二成
分を混合し、解離定数値(pka)が7以下の水溶
性の無機酸および有機酸水溶液の触媒下で50℃以
上沸点以下の温度で反応せしめることによつて得
られる。 該シリカ複合体の製造に用いられるポリビニル
アセタール類とは、ポリビニルエステル(たとえ
ばポリ酢酸ビニル、ポリプロピオン酸ビニルな
ど)の加水分解物をアセタール化することによつ
て得られるポリビニルホルマール、ポリビニルア
セタール、ポリビニルブチラールなどのビニル樹
脂の総称であつて、数平均重合度250〜1500のポ
リビニルエステルが用いられているものが好適で
ある。アセタール化度は55〜88モル%、ヒドロキ
シル基含有率は10〜45モル%のものが好ましく、
ビニルエステル部分が残存していても差支えな
い。これらのポリビニルアセタール類は、ジオキ
サン、塩素化炭化水素、低級アルコール類、ケト
ン類、低級エステル類等の有機溶媒もしくは、そ
れらの混合液のうち、それぞれのポリビニルアセ
タール類に対する溶解性を有するものに溶解して
溶液として用いる。 ポリビニルアセタール類と反応せしめる有機シ
リケートとは、一般式 (式中、Rは炭素数1〜8のアルキル基、アリ
ール基またはアリル基を、nは0もしくは、11以
下の整数をそれぞれ表わす)により示されるテト
ラアルキル、テトラアリールまたはテトラアリル
オルトシリケートまたはポリシリケート類であ
る。具体的には、たとえばメチルオルトシリケー
ト、エチルオルトシリケート、n―プロピルオル
トシリケート、n―ブチルオルトシリケート、n
―オクチルオルトシリケート、フエニルオルトシ
リケート、ベンジルオルトシリケートおよびフエ
ネチルオルトシリケート、アリルオルトシリケー
ト、メタアリルオルトシリケートなどがあり、さ
らにそれらのオルトシリケート類の脱水縮合によ
つて生成するポリシリケート類も用いられる。 ポリビニルアセタール類と有機シリケートとか
らシリカ複合体を製造するには、ポリビニルアセ
タール類の溶液に有機シリケートを添加し、さら
に加水分解触媒としての酸の添加により酸性状態
で加熱する。ポリビニルアセタール類に対する有
機シリケートの添加割合は、前者の100重量部に
対して後者をシリカとして11〜100重量部が適当
である。有機シリケートの使用量が11重量部未満
であると、被膜にした場合、付着性などが劣るよ
うになる。他方100重量部をこえて使用すると、
上塗塗膜の発泡現象を完全に防止することができ
なくなると同時にシリカ複合体の溶液状態での貯
蔵安定性が乏しくなるおそれがある。反応系中に
おけるポリビニルアセタール類および有機シリケ
ートの含有量はその合計が3〜30重量%が好まし
い。この含有量が3重量%より少ないと反応が緩
慢すぎるだけでなく固形分が少なすぎるため、必
要膜厚の形成が困難となり、実用性が乏しく、30
重量%をこえると反応中にゲルを生じるおそれが
ある。 有機シリケートの加水分解触媒としての酸成分
は解離定数(pka)が7以下の水溶性の無機酸お
よび有機酸が用いられる。具体的にはたとえば、
塩酸、リン酸、フツ化水素酸、硫酸、硝酸、プロ
ピオン酸、乳酸、モノクロル酢酸、シユウ酸、酒
石酸、クエン酸、L―アスパラギン酸、イミノジ
酢酸などのモノまたはポリカルボン酸、オキシカ
ルボン酸、アミノカルボン酸などをあげることが
できる。これらの酸類の添加量は通常シリカ換算
で表わされた有機シリケート100重量部に対して
1〜30重量部使用する。 ポリビニルアセタール類と有機シリケートとの
酸性条件でのシリカ複合体の形成に際しては、有
機シリケートの加水分解反応を先行させるため、
反応系中に水を存在させることが必要である。反
応条件における水の存在割合が反応速度に及ぼす
影響は一般には、特に著しいものではないが、好
ましい添加量は0.1〜20重量%である。 上記の配合物をシリカ複合体とするには、反応
系を加熱することが必要である。具体的には、反
応系を50℃以上、その沸点以下の温度に加熱する
ことによつて行なわれる。加熱温度が50℃よりも
低いと、有機シリケートの加水分解物が蓄積され
るのみで、ポリビニルアセタール類との複合体は
実質的には形成されない。そのため被膜にした場
合の耐水性が劣るようになる。シリカ複合体を形
成させるために必要な加熱継続時間は30分〜10時
間である。かくして得られたシリカ複合体溶液に
は必要に応じて塗装業界において通常用いられて
いる顔料類、添加剤等を添加してもよい。 このようにして合成されたシリカ複合体溶液を
前記したように塗布後1〜2日間乾燥させた後、
その上に従来から用いられているエポキシ系、タ
ールエポキシ系等の各種の上塗塗料が塗装されて
防錆塗膜が形成される。この上塗塗料の所要膜厚
は通常100〜200μであるが、本発明に従えばこの
必要膜厚を1回塗りで行なつても、上塗塗装時の
発泡現象は全く生じない。 上述したように、本発明は、無機質系高濃度亜
鉛末塗料を厚塗りして、その上に上塗塗料を塗装
する際に生じる上塗塗膜の発泡現象を該無機質系
高濃度亜鉛末塗料塗膜上にシリカ複合体溶液を塗
装することによつて素穴状態の該塗膜上に緻密な
皮膜を形成せしめて防止したものであり、無機質
系高濃度亜鉛末塗料塗膜が長期防錆塗膜として極
めてすぐれた性能を有することからその工業的意
義は大きい。しかも、該シリカ複合体溶液は、無
機質系高濃度亜鉛末塗料塗膜と上塗塗膜のいずれ
ともきわめて優れた付着性を有する塗膜を形成す
る。これは次の理由によるものと考えられる。 シリカ複合体中には、アルキルシリケートの加
水分解反応によつて生成したコロイダルシリカに
由来する反応性のシラノール基が存在し、このシ
ラノール基を有するシリカ成分が、無機質系高濃
度亜鉛末塗料塗膜表面に選択的に配向して、亜鉛
末塗料塗膜表面にシリカを主成分とした層を形成
し、亜鉛末塗料塗膜との間に強固な結合を作るこ
とによつて亜鉛末塗料塗膜に対して優れた付着性
を示すものと考えられる。さらに、このシリカを
主成分とした層の表面に、シリカと結合したポリ
ビニルアセタールを主成分とする緻密な皮膜が形
成し、この皮膜が上塗塗膜の発泡現象を防止する
とともに、上塗塗膜との付着性をも向上させてい
ると推察される。 以下に、実施例、及び比較例により本発明をさ
らに説明する。これらの実施例は本発明をより詳
細に説明するためのものであつて、本発明になん
ら制限を加えるものではない。なお、実施例中部
および%は重量部および重量%を示す。 シリカ複合体の合成例 1 撹拌機、還流冷却機、温度計、窒素導入管及び
滴下ロートを備えた1フラスコに、ポリビニル
ブチラール(商品名、デンカブチラール#2000L
電気化学工業(株)製品)の20%エタノール溶液880
gを仕込む。窒素置換後、撹拌下で0.1N塩酸水
溶液20gを約5分を要して滴下し、混合物を80℃
に加熱する。昇温後、滴下ロートを通じて、エチ
ルポリシリケート(商品名、エチルシリケート
40、SiO2分40%日本コルコート化学(株)製品)100
gを15分を要して滴下する。さらに80℃にて2時
間撹拌後、ブチルセロソルブ200gを添加し、固
形分約20%の透明なシリカ複合体溶液1を得た。 シリカ複合体の合成例 2 合成例1と同じ方法でポリビニルブチラール溶
液(デンカブチラール#2000L72g、エチルアル
コール300g及びエチルセロソルブ528gからな
る)900gとエチルシリケート40(シリカ複合体
の合成例1と同じ)の80gとを40%リン酸20gを
用いて、3時間反応させ、固形分約12%のシリカ
複合体溶液2を得た。 実施例 1 鋼板表面のミルスケール、赤さび等をシヨツト
ブラスト処理により除去した(処理程度はスウエ
ーデイシユスタンダードのSa21/2以上で行なつ
た)。シヨツトブラスト処理板に無機質系高濃度
亜鉛末塗料(商品名、SDジンクプライマー
ZE1500、関西ペイント(株)製品)をエアレススプ
レー塗装により乾燥膜厚75μになるよう塗装し
た。常温で1日間放置後、シリカ複合体の合成例
1で得られたシリカ複合体溶液1をエアースプレ
ー塗装により、膜厚を変えて塗装した。このもの
を常温で1日間放置後上塗りにタールエポキシ塗
料(商品名エポシール600関西ペイント(株)製品)
をエアレススプレー塗装により乾燥膜厚100μに
なるよう塗装し、各種の塗膜性能を調べた。その
試験結果を後記表―1に示す。 実施例 2 実施例1において、シリカ複合体溶液1の代り
に、シリカ複合体の合成例2で得られたシリカ複
合体溶液2を用いて、膜厚を15μとし、その他の
条件は実施例1と同じで行なつた。その試験結果
を後記表―1に示す。 比較用展剤の合成例 1 シリカ複合体の合成例1で用いたエチルポリシ
リケート50部、水5部、濃塩酸0.1部およびイソ
プロピルアルコール20部、エチルセロソルブ24.9
部の配合組成を40℃で2時間反応させ、比較用展
剤1を得た。 比較用展剤の合成例 2 比較用展剤1を100部およびシリカ複合体の合
成例1で用いたポリビニルブチラールの20%エタ
ノール溶液440部、ブチルセロソルブ60部を室温
でよく撹拌混合して比較用展剤2を得た。 比較例 1 実施例1において、シリカ複合体溶液1の代り
に、比較用展剤1を用いて、膜厚を15μとし、そ
の他の条件は実施例1と同じで行なつた。その試
験結果を後記表―1に示す。 比較例 2 実施例1において、シリカ複合体溶液1の代り
に、シリカ複合体の合成例1で用いたポリビニル
ブチラールの10%エタノール溶液を用いて膜厚を
15μとし、その他の条件は実施例1と同じで行な
つた。その試験結果を後記表―1に示す。 比較例 3 実施例1において、シリカ複合体溶液1の代り
に比較用展剤2を用いて、膜厚を15μとし、その
他の条件は実施例1と同じで行なつた。その試験
結果を後記表―1に示す。 比較例 4 実施例1において、シリカ複合体溶液を塗装せ
ずに、直ちに、タールエポキシ塗料を塗装した。
その他の条件は実施例1と同じで行なつた。その
試験結果を後記表―1に示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel method for preventing foaming of a rust-preventing coating, and more specifically, a method for preventing foaming that occurs when a top coat is applied to an inorganic high-concentration zinc dust coating. It is related to. BACKGROUND ART Conventionally, inorganic high-concentration zinc powder paints have been recommended and widely used as long-term rust-preventing paints for steel structures such as marine structures and ships because of their extremely excellent performance. Inorganic high-concentration zinc dust paints for rust prevention use alkali-based silicate or alkyl-based silicate as a vehicle and contain zinc dust in high concentration as a rust-preventing pigment, and can be painted with a dry film thickness of 70 to 100μ. It is designed to. When applying this paint to steel materials, the painting process is as follows: Steel plate → (Short primer coating) → Rust removal (blasting treatment, power tool treatment) → Inorganic high concentration zinc powder coating →
A process consisting of a top coat is generally used. The top coating carried out in the final step is carried out in order to impart further corrosion resistance to the object to be coated over a long period of time or to impart a desired color to the object to be coated. However, when this top coat is applied, a foaming phenomenon occurs, and the formed top coat has a major drawback that defects such as bubbles, pinholes, craters, and roughness occur in the top coat. This paint film defect occurs because the surface of the inorganic high-concentration zinc dust paint film is bare, forming voids in the paint film layer. It is presumed that this causes a foaming phenomenon, resulting in the above-mentioned defects in the topcoat film. There are various methods to prevent this defect, but the most common method currently in use is to apply a top coat diluted with a solvent over a layer of inorganic high-concentration zinc dust paint several times. The so-called paint mist coating method is used to obtain the required film thickness of the top coat (usually about 100 to 200 microns) by applying multiple coats. However, even if this method is used, the phenomenon of foaming cannot be completely prevented, and furthermore, the method of applying the top coat many times takes time and effort, and is not satisfactory in terms of workability and productivity. However, it also had the disadvantage of causing various problems in the painting process. Therefore, in order to solve the above-mentioned defects, the present inventors have developed an inorganic high-concentration zinc powder paint that exhibits excellent adhesion even when applied to the surface of the porous coating, and forms a dense film that eliminates voids. As a result of extensive research and exploration into a coating composition that can prevent air from moving into the top coat and further improve long-term corrosion protection, we have discovered that polyvinyl, a reaction product of organic and inorganic substances, has been developed. The present inventors have discovered that a silica composite solution of acetals and alkyl, allyl, or aryl silicate satisfies the above performance, and have completed the present invention. That is, in the present invention, when a top coat is applied to an inorganic high-concentration zinc dust paint film to form a rust-preventive film,
Prior to applying the top coat, a mixture of polyvinyl acetals, alkyl, allyl or aryl silicate, and water is heated to a temperature of 50°C or higher and lower than the boiling point of the mixture in the presence of a solvent and an acid catalyst to cause a reaction. The present invention provides a method for preventing foaming of a rust-preventing coating film, which comprises applying a solution of 5 to 30% by weight solids of a silica composite obtained by the method. In the present invention, the process of applying the inorganic high-concentration zinc dust paint as a rust-preventing paint is no different from the conventional painting process, that is, the base material, such as steel, is subjected to blasting or power tool treatment. After removing rust, apply a temporary rust-preventing shot primer, and before applying an inorganic high-concentration zinc powder paint, remove the rust again by blasting or power tool treatment, or apply a shop primer. A commonly used method is to apply an inorganic high-concentration zinc powder paint after rust removal without painting. Inorganic high-concentration zinc dust paints used as anti-corrosion paints require a dry film thickness of approximately 70 to 100 microns in order to maintain long-term anti-corrosion performance. As a coating method, airless spray, air spray, or brush coating can be used. The inorganic high-concentration zinc dust paint used in the present invention is generally known, and is a vehicle prepared by dissolving an alkyl silicate (e.g., ethyl silicate, propyl silicate, etc.) in an alcoholic solvent, or an alkali silicate (e.g., ethyl silicate, propyl silicate, etc.) dissolved in an alcoholic solvent. for example,
The basic composition is a solution of sodium silicate, potassium silicate, lithium silicate, etc.) dissolved in water, and a high concentration of zinc dust pigment (70 to 95% by weight in the coating film). be. According to the present invention, an inorganic high-concentration zinc dust paint is applied to the required film thickness, and the drying time is approximately 1 to 2 minutes.
A reaction product obtained by heating polyvinyl acetals and an alkyl, allyl or aryl silicate under an acid aqueous solution catalyst to a temperature of 50°C or higher and lower than the boiling point of the mixture (hereinafter referred to as ``reaction product'') Apply a solution of 5 to 30% by weight solids of silica composite to 3 to 40μ by airless spray, air spray, or brush painting.
Paint to a dry film thickness of approximately If the dry film thickness is less than 3 μm, the pores in the inorganic high-concentration zinc-dust paint film will not be completely filled, and the foaming phenomenon of the top coat film cannot be completely prevented. On the other hand, if the dry film thickness is greater than 40 μm, the adhesion becomes poor, which is not preferable. The silica composite used in the present invention is described in Japanese Patent Application Laid-Open No. 53-92847 by the present applicant, and the silica composite is composed of polyvinyl acetals and alkyl, allyl or aryl silicate (hereinafter referred to as "organosilicate"). (abbreviated as ")" and reacting the mixture at a temperature of 50°C or higher and lower than the boiling point under the catalyst of a water-soluble inorganic acid with a dissociation constant (pka) of 7 or less and an aqueous organic acid solution. It will be done. The polyvinyl acetals used in the production of the silica composite are polyvinyl formal, polyvinyl acetal, and polyvinyl obtained by acetalizing the hydrolyzate of polyvinyl esters (e.g., polyvinyl acetate, polyvinyl propionate, etc.). It is a general term for vinyl resins such as butyral, and polyvinyl esters having a number average degree of polymerization of 250 to 1500 are preferably used. The degree of acetalization is preferably 55 to 88 mol%, and the hydroxyl group content is preferably 10 to 45 mol%.
There is no problem even if the vinyl ester portion remains. These polyvinyl acetals can be dissolved in organic solvents such as dioxane, chlorinated hydrocarbons, lower alcohols, ketones, lower esters, or mixtures thereof that have a solubility for the respective polyvinyl acetals. and use as a solution. The organic silicate that reacts with polyvinyl acetals has the general formula (In the formula, R represents an alkyl group, aryl group, or allyl group having 1 to 8 carbon atoms, and n represents 0 or an integer of 11 or less, respectively.) Tetraalkyl, tetraaryl, tetraallyl orthosilicate, or poly It is a silicate. Specifically, for example, methyl orthosilicate, ethyl orthosilicate, n-propyl orthosilicate, n-butyl orthosilicate, n
-Octyl orthosilicate, phenyl orthosilicate, benzyl orthosilicate, phenethyl orthosilicate, allyl orthosilicate, methalyl orthosilicate, and polysilicates produced by dehydration condensation of these orthosilicates. used. In order to produce a silica composite from a polyvinyl acetal and an organic silicate, the organic silicate is added to a solution of the polyvinyl acetal and then heated in an acidic state by adding an acid as a hydrolysis catalyst. The appropriate proportion of the organic silicate to the polyvinyl acetals is 11 to 100 parts by weight of the latter as silica to 100 parts by weight of the former. If the amount of organic silicate used is less than 11 parts by weight, when formed into a film, adhesion will be poor. On the other hand, if you use more than 100 parts by weight,
There is a risk that the foaming phenomenon of the top coat cannot be completely prevented, and at the same time, the storage stability of the silica composite in a solution state may become poor. The total content of polyvinyl acetals and organic silicates in the reaction system is preferably 3 to 30% by weight. If this content is less than 3% by weight, not only will the reaction be too slow, but the solid content will be too low, making it difficult to form the required film thickness, resulting in poor practicality.
If it exceeds % by weight, gel may be formed during the reaction. As the acid component as a hydrolysis catalyst for organic silicate, water-soluble inorganic acids and organic acids having a dissociation constant (pka) of 7 or less are used. Specifically, for example,
Mono- or polycarboxylic acids such as hydrochloric acid, phosphoric acid, hydrofluoric acid, sulfuric acid, nitric acid, propionic acid, lactic acid, monochloroacetic acid, oxalic acid, tartaric acid, citric acid, L-aspartic acid, iminodiacetic acid, oxycarboxylic acid, amino Examples include carboxylic acids. The amount of these acids added is usually 1 to 30 parts by weight per 100 parts by weight of the organic silicate expressed in terms of silica. When forming a silica complex between polyvinyl acetals and organic silicates under acidic conditions, in order to precede the hydrolysis reaction of the organic silicate,
It is necessary to have water present in the reaction system. Although the effect of the proportion of water in the reaction conditions on the reaction rate is generally not particularly significant, the preferred amount added is 0.1 to 20% by weight. In order to form the above formulation into a silica composite, it is necessary to heat the reaction system. Specifically, the reaction is carried out by heating the reaction system to a temperature of 50°C or higher and lower than its boiling point. If the heating temperature is lower than 50°C, only the hydrolyzate of organic silicate is accumulated, and a complex with polyvinyl acetals is not substantially formed. Therefore, when formed into a film, the water resistance becomes poor. The duration of heating required to form the silica complex is 30 minutes to 10 hours. Pigments, additives, etc. commonly used in the coating industry may be added to the silica composite solution thus obtained, if necessary. After drying the silica composite solution synthesized in this way for 1 to 2 days after coating as described above,
Various conventionally used top coat paints such as epoxy and tar epoxy are applied thereon to form a rust-preventive coating. The required film thickness of this top coat is usually 100 to 200 microns, but according to the present invention, even if this required film thickness is applied in one coat, no foaming phenomenon occurs during the top coat. As described above, the present invention aims to reduce the foaming phenomenon of the top coat that occurs when applying a thick coat of inorganic high concentration zinc dust paint and then applying a top coat on top of the thick coating. By coating a silica composite solution on top, a dense film is formed on the paint film in the bare pore state to prevent corrosion.The inorganic high concentration zinc dust paint film is a long-term anti-rust film. It has great industrial significance as it has extremely excellent performance as a metal. Moreover, the silica composite solution forms a coating film that has excellent adhesion to both the inorganic high-concentration zinc dust coating coating and the top coating coating. This is considered to be due to the following reasons. In the silica composite, there are reactive silanol groups derived from colloidal silica produced by the hydrolysis reaction of alkyl silicate, and the silica component having these silanol groups is used to coat the inorganic high-concentration zinc powder coating. By selectively oriented on the surface to form a layer mainly composed of silica on the surface of the zinc dust paint film and creating a strong bond between the zinc dust paint film and the zinc dust paint film. It is thought that it exhibits excellent adhesion to. Furthermore, a dense film mainly composed of polyvinyl acetal bonded to silica is formed on the surface of this silica-based layer, and this film prevents the top coat from foaming, and also prevents the top coat from foaming. It is presumed that this also improves the adhesion. The present invention will be further explained below with reference to Examples and Comparative Examples. These Examples are intended to explain the present invention in more detail, and are not intended to limit the present invention in any way. Note that in the middle part of the example and % indicate parts by weight and % by weight. Example of synthesis of silica composite 1 Into a flask equipped with a stirrer, reflux condenser, thermometer, nitrogen inlet tube and dropping funnel, add polyvinyl butyral (trade name, Denka Butyral #2000L).
20% ethanol solution 880 manufactured by Denki Kagaku Kogyo Co., Ltd.
Prepare g. After nitrogen substitution, 20g of 0.1N hydrochloric acid aqueous solution was added dropwise over about 5 minutes while stirring, and the mixture was heated to 80℃.
Heat to. After raising the temperature, add ethyl polysilicate (trade name, ethyl silicate) through the dropping funnel.
40, SiO 2 min 40% Nippon Colcoat Chemical Co., Ltd. product) 100
g was added dropwise over a period of 15 minutes. After further stirring at 80° C. for 2 hours, 200 g of butyl cellosolve was added to obtain a transparent silica composite solution 1 with a solid content of about 20%. Synthesis Example 2 of Silica Complex 900 g of polyvinyl butyral solution (consisting of 72 g of Denka Butyral #2000L, 300 g of ethyl alcohol, and 528 g of ethyl cellosolve) and 40 ethyl silicate (same as in Synthesis Example 1 of Silica Complex) were prepared using the same method as in Synthesis Example 1. Using 20 g of 40% phosphoric acid, 80 g of the silica composite solution was reacted for 3 hours to obtain a silica composite solution 2 with a solid content of about 12%. Example 1 Mill scale, red rust, etc. on the surface of a steel plate were removed by shot blasting (the treatment level was at least Sa21/2 of the Swedish standard). Inorganic high concentration zinc powder paint (product name, SD Zinc Primer) on shot blasted board
ZE1500 (product of Kansai Paint Co., Ltd.) was applied using airless spray coating to a dry film thickness of 75μ. After being left at room temperature for one day, the silica composite solution 1 obtained in Synthesis Example 1 of Silica Composite was coated with varying film thickness by air spray coating. After leaving this product at room temperature for 1 day, apply tar epoxy paint (product name: Eposeal 600, manufactured by Kansai Paint Co., Ltd.) as a top coat.
was applied to a dry film thickness of 100μ by airless spray painting, and the performance of various paint films was investigated. The test results are shown in Table 1 below. Example 2 In Example 1, silica composite solution 2 obtained in Silica composite synthesis example 2 was used instead of silica composite solution 1, and the film thickness was set to 15μ, and the other conditions were as in Example 1. I did the same thing. The test results are shown in Table 1 below. Synthesis example of exfoliant for comparison 1 50 parts of ethyl polysilicate used in Synthesis example 1 of silica composite, 5 parts of water, 0.1 part of concentrated hydrochloric acid, 20 parts of isopropyl alcohol, 24.9 parts of ethyl cellosolve
Comparative Exhibitor 1 was obtained by reacting the mixture composition at 40° C. for 2 hours. Synthesis example of comparative vehicle 2 100 parts of comparative vehicle 1, 440 parts of the 20% ethanol solution of polyvinyl butyral used in silica composite synthesis example 1, and 60 parts of butyl cellosolve were mixed with thorough stirring at room temperature to prepare a comparative vehicle. Expanding agent 2 was obtained. Comparative Example 1 In Example 1, Comparative Exhibitor 1 was used instead of Silica Composite Solution 1, the film thickness was set to 15μ, and the other conditions were the same as in Example 1. The test results are shown in Table 1 below. Comparative Example 2 In Example 1, the film thickness was determined by using a 10% ethanol solution of polyvinyl butyral used in Synthesis Example 1 of Silica Composite instead of Silica Composite Solution 1.
15μ, and the other conditions were the same as in Example 1. The test results are shown in Table 1 below. Comparative Example 3 In Example 1, Comparative Exhibitor 2 was used instead of Silica Complex Solution 1, the film thickness was set to 15 μm, and the other conditions were the same as in Example 1. The test results are shown in Table 1 below. Comparative Example 4 In Example 1, the tar epoxy paint was immediately applied without applying the silica composite solution.
Other conditions were the same as in Example 1. The test results are shown in Table 1 below. 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 無機質系高濃度亜鉛末塗料塗膜に上塗塗料を
塗装して防錆塗膜を形成する際、該上塗塗料の塗
装に先だち、ポリビニルアセタール類とアルキ
ル、アリルまたはアリールシリケートおよび水と
よりなる混合物を溶媒および酸触媒存在下50℃以
上該混合物の沸点以下の温度に加熱し、反応させ
ることにより得られるシリカ複合体の固形分5〜
30重量%溶液を塗布することを特徴とする防錆塗
膜の発泡防止方法。
1. When a top coat is applied to an inorganic high-concentration zinc dust paint film to form a rust-preventing film, a mixture of polyvinyl acetals, alkyl, allyl or aryl silicate, and water is used prior to application of the top coat. The solid content of the silica composite obtained by heating and reacting in the presence of a solvent and an acid catalyst to a temperature of 50°C or higher and lower than the boiling point of the mixture
A method for preventing foaming of a rust-preventing coating film, which is characterized by applying a 30% solution by weight.
JP17045979A 1979-12-28 1979-12-28 Foaming preventing method for corrosion preventive coating Granted JPS5695371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17045979A JPS5695371A (en) 1979-12-28 1979-12-28 Foaming preventing method for corrosion preventive coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17045979A JPS5695371A (en) 1979-12-28 1979-12-28 Foaming preventing method for corrosion preventive coating

Publications (2)

Publication Number Publication Date
JPS5695371A JPS5695371A (en) 1981-08-01
JPS6216144B2 true JPS6216144B2 (en) 1987-04-10

Family

ID=15905320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17045979A Granted JPS5695371A (en) 1979-12-28 1979-12-28 Foaming preventing method for corrosion preventive coating

Country Status (1)

Country Link
JP (1) JPS5695371A (en)

Also Published As

Publication number Publication date
JPS5695371A (en) 1981-08-01

Similar Documents

Publication Publication Date Title
RU2741551C2 (en) Weld-through primer
JP2009507940A (en) Aqueous composition and pioneer system and application system thereof
US3392130A (en) Coating compositions comprising polyvinyl butyral-hydrolyzed alkyl silicate reactionproduct and zinc dust
US3910797A (en) Anticorrosive coating system
EP0796300B1 (en) Composition for surface treatment
CN109777290A (en) A kind of process for treating surface of the ultralight corrosion-resistant aviation aluminum alloy material of high-performance
CN116162366B (en) Water-based inorganic zinc silicate paint and preparation method thereof
JPS59136363A (en) Alumina containing organic silicon resin
JPS6150660B2 (en)
JPH0220656B2 (en)
KR100225990B1 (en) Composition for surface treatment
KR102634697B1 (en) Solid, dehydrated coating compositions, methods for producing the same, and methods for rehydrating the same.
JPS60179180A (en) Anticorrosive coating method
JPS6216144B2 (en)
NO790033L (en) ZINC-CONTAINING ANTI-CORROSION PRIMER AND PROCEDURE FOR PREPARING IT
KR20200031672A (en) Aqueous primer
US4254009A (en) Binding agent for coating compositions having a long shelf life
KR0184619B1 (en) Binder for storable coating compositions
EP2333021A1 (en) Method for corrosion protection of metal surfaces
KR100405652B1 (en) Heat resistant and corrosion resistant inorganic coating composition
JPS6216145B2 (en)
JPS5964671A (en) Formation of inorganic coating film
JPS6383175A (en) Coating composition having excellent alkali resistance
CN109321075A (en) A kind of water-based anticorrosive paint and preparation method thereof
JPS60118715A (en) Production of organic silicon condensation product