JPS621607B2 - - Google Patents

Info

Publication number
JPS621607B2
JPS621607B2 JP5027681A JP5027681A JPS621607B2 JP S621607 B2 JPS621607 B2 JP S621607B2 JP 5027681 A JP5027681 A JP 5027681A JP 5027681 A JP5027681 A JP 5027681A JP S621607 B2 JPS621607 B2 JP S621607B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin
epoxy
caprolactone
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5027681A
Other languages
Japanese (ja)
Other versions
JPS57164116A (en
Inventor
Masaharu Watanabe
Kyoshi Okitsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP5027681A priority Critical patent/JPS57164116A/en
Publication of JPS57164116A publication Critical patent/JPS57164116A/en
Publication of JPS621607B2 publication Critical patent/JPS621607B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Epoxy Resins (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、エポキシ樹脂の第2級水酸基にε−
カプロラクトンを開環重合させることにより得ら
れるすぐれた可撓性を有し、かつ架橋剤との反応
性のすぐれた第1級水酸基を有する変性エポキシ
樹脂の製造法に関する。 エポキシ樹脂、特にビスフエノールAとエピク
ロルヒドリンから製造されるグリシジルエーテル
型エポキシ樹脂は液状から高分子量の固体樹脂に
いたるまで種々な品種が得られ、多様な用途に用
いられている。 低分子量の液状のものは、そのエポキシ基の反
応性を利用し、ポリアミンやポリアミド樹脂と常
温で硬化させ、接着剤、FRP、床材等に用いら
れ、多塩基酸無水物と加熱硬化させることにより
注型品等、主として電気関係の用途に用いられて
いる。一方、高分子量化したものは融点が60〜
150℃のもろい固体樹脂であり、末端エポキシ基
の他に第2級の水酸基を有するため、その水酸基
の反応を利用した種々なコーテイングの分野に使
用されている。例えば、不飽和脂肪酸でエステル
化したエポキシエステルは空気乾燥、常温乾燥型
塗料としたり、メラミン樹脂を架橋剤とする焼付
塗料に、さらにはフエノール樹脂と組合せた缶用
のコーテイングに利用されている。 また粉体にして、ブロツクドイソシアネートを
混合することによりエポキシ系粉体塗料にも使わ
れている。またカチオン電着塗料等にも利用され
ている。 このように多くの用途に利用されているにもか
かわらず、かたくて、もろく、かつ水酸基が第2
級のため、水酸基と反応する架橋剤との反応性が
わるく、焼付架橋に高温を必要とすること、さら
には、耐候性が悪いという種々な欠点があつた。 本発明者等らは、かかるエポキシ樹脂の欠点を
改良し、エポキシ樹脂の可能性をさらに拡げんと
鋭意研究した結果、エポキシ樹脂の第2級水酸基
にε−カプロラクトンを開環重合させることによ
り、かたくてもろいエポキシ樹脂に適度の可撓性
が付与され、同時に反応性の悪い第2級水酸基は
ポリカプロラクトンの反応性の大きい第1級水酸
基となり、しかも、剛直なエポキシ樹脂骨格から
離れたところに第1級水酸基が存在するため、架
橋剤と反応が進みやすいことを見出し、本発明を
完成させた。 すなわち本発明は水酸基を有するエポキシ樹脂
97〜5重量部にε−カプロラクトン3〜95重量部
を100〜240℃で反応させ、エポキシ樹脂の第2級
水酸基にε−カプロラクトンを開環重合させるこ
とを特徴とするラクトン変性エポキシ樹脂の製造
法に係わる。 従来、エポキシ樹脂に可撓性を付与する手段と
して長鎖脂肪酸をエステル化することが行なわれ
ているが、架橋剤と反応する水酸基は第2級のま
まであり、かつ、エステル化によつて、水酸基の
数は減少する。 また、エポキシ樹脂の末端エポキシ基を利用
し、可撓性のあるポリエステルポリオールやポリ
カプロラクトンポリオール、ポリアミド樹脂で変
性することも行なわれているが、架橋反応に用い
られる水酸基はやはり反応性の悪い第2級水酸基
である。 それらに較べ本発明の樹脂は、エポキシ樹脂に
可撓性と第1級水酸基を同時に付与させている点
で、エポキシ樹脂の用途をさらに拡大するだけで
なく、架橋剤との硬化反応が従来より低温で進行
するための省エネルギーにも役立つものである。 本発明に用いる水酸基を有するエポキシ樹脂と
してはエピクロルヒドリンとビスフエノールAか
ら製造される次の構造を有するジグリシジルエー
テル あるいはエピクロルヒドリンとビスフエノール
Fから製造される次の構造を有するジグリシジル
エーテル あるいは多塩基酸とエピクロルヒドリンから合
成されるジグリシジルエステル等を用いることが
できる。 ε−カプロラクトンはシクロヘキサノンを過酸
でバイヤービリカー反応によつて酸化することに
より工業的に製造されている。本発明に於てはε
−カプロラクトン以外のラクトン類あるいはラク
タム類を共重合させることもできる。 本発明のラクトン変性エポキシ樹脂に占めるエ
ポキシ樹脂の割合は合計100重量部中97〜5重量
部、好ましくは95〜30重量部を用いる。その理由
は多すぎる場合は目的とする充分な可撓性を得る
ことができず、反対に少なすぎる場合は樹脂が柔
かくなりすぎるからである。 エポキシ樹脂の第2級水酸基へのε−カプロラ
クトンの開環重合は100〜240℃、好ましくは120
〜200℃で行なう。 100℃より低い場合は反応速度が小さく、また
240℃より高い場合はε−カプロラクトンが沸騰
し反応系外に逃げてしまうからである。この反応
には触媒を用いることが好ましい。触媒としては
テトラブチルチタネート、テトラプロピルチタネ
ート、テトラエチルチタネート等のチタン化合
物、オクチル酸スズ、ジブチルスズオキシド、ジ
ブチルスズラウレート等の有機スズ化合物、さら
には塩化第1スズ、臭化第1スズ、ヨウ化第1ス
ズ等を用いることができる。 特に分子量分布のせまいものを得たいときは塩
化第1スズを用いるのが好ましい。使用量は反応
温度によつて異なるが、一般には1000ppmから
0.01ppm、好ましくは500ppm〜0.2ppmを用い
る。 反応は無溶剤で行なつてもよいし、トルエン、
キシレン等の活性水素を持たない溶媒中で行なつ
てもよい。但し、エステル結合を有する溶媒は一
般に好ましくない。なぜなら、反応中にポリカプ
ロラクトンのエステル基とエステル交換反応を起
し、エポキシ樹脂に結合していないポリカプロラ
クトンが生成するおそれがあるからである。 塩化スズを触媒に用いるときは、エステル交換
反応をほとんど促進しないので、エステル系の溶
媒を用いることも可能である。しかし、チタン系
の触媒を用いるときは、エステル交換反応をも促
進するため、特にエステル系溶媒はさけるのが望
ましい。 このようにして得られたラクトン変性エポキシ
樹脂は反応性の高い第1級水酸基を有するので、
水酸基と反応する架橋剤、例えばイソシアネート
類、メラミン等のアミノ樹脂、フエノール樹脂等
を配合した架橋型のコーテイング剤として用いる
ことができる。 また、ブロツクイソシアネート等を配合した粉
体塗料にも応用できる。さらに従来のエポキシ樹
脂を使つている用途にその可撓性や反応性を改良
するために一部添加することもできる。更にこの
樹脂の両末端に残つているエポキシ基にアミン類
を反応させ、さらに酸で中和することにより、水
性樹脂にも応用できる。かかる水性樹脂に水溶性
の硬化剤として、メラミン樹脂を配合したり、ブ
ロツクイソシアネートを配合して、水性焼付塗料
や電着塗料としても応用することができる。 さらに本発明の樹脂の両末端のエポキシ基にア
クリル酸やメタクリル酸を反応させてエポキシア
クリレート樹脂を合成し、これにラジカル開始剤
や光増感剤を添加することにより光硬化性樹脂或
はラジカル硬化性樹脂としてFRPや光硬化塗
料、インキ、接着剤等に応用することができる。 本発明のラクトン変性エポキシ樹脂について以
下例を挙げて説明するが、これらによつて本発明
を限定するものではない。 例中、部は重量部を意味する。 実施例 1 窒素導入管、温度計、冷却管、撹拌装置を備え
た4ツ口フラスコにアラルダイト6097(チバ社
製、エポキシ樹脂の商品名、融点130℃)、ε−カ
プロラクトン111部、テトラブチルチタネート
0.011部を仕込み、180℃で5時間反応させること
により、融点81〜85℃、水酸基価179KOHmg/
g、エポキシ当量3070の固型樹脂を得た。 実施例 2〜5 実施例1と同じ装置を用いて種々のエポキシ樹
脂に種々の割合でε−カプロラクトンを反応さ
せ、ラクトン変性エポキシ樹脂を得た。結果を表
1に示す。
The present invention provides ε-
The present invention relates to a method for producing a modified epoxy resin having excellent flexibility obtained by ring-opening polymerization of caprolactone and having a primary hydroxyl group having excellent reactivity with a crosslinking agent. Epoxy resins, particularly glycidyl ether type epoxy resins produced from bisphenol A and epichlorohydrin, are available in various varieties ranging from liquid to high molecular weight solid resins, and are used for a variety of purposes. Low-molecular-weight liquids can be cured with polyamines and polyamide resins at room temperature by utilizing the reactivity of their epoxy groups, and used in adhesives, FRP, flooring materials, etc., and can be heated and cured with polybasic acid anhydrides. It is mainly used for electrical-related applications such as cast products. On the other hand, those with high molecular weight have a melting point of 60~
It is a brittle solid resin at 150°C, and has a secondary hydroxyl group in addition to a terminal epoxy group, so it is used in various coating fields that utilize the reaction of the hydroxyl group. For example, epoxy esters esterified with unsaturated fatty acids are used as air-drying or room-temperature-drying paints, as baking paints using melamine resin as a crosslinking agent, and in combination with phenolic resins for can coatings. It is also used in epoxy powder paints by turning it into powder and mixing it with blocked isocyanate. It is also used in cationic electrodeposition paints, etc. Despite being used for many purposes, it is hard, brittle, and has secondary hydroxyl groups.
Because of the grade, it has various disadvantages such as poor reactivity with crosslinking agents that react with hydroxyl groups, high temperature required for baking crosslinking, and poor weather resistance. The present inventors conducted extensive research to improve the drawbacks of epoxy resins and further expand the possibilities of epoxy resins. As a result, by ring-opening polymerization of ε-caprolactone to the secondary hydroxyl groups of epoxy resins, Appropriate flexibility is imparted to the hard and brittle epoxy resin, and at the same time, the less reactive secondary hydroxyl groups become the highly reactive primary hydroxyl groups of polycaprolactone, and moreover, the epoxy resin is bonded away from the rigid epoxy resin skeleton. The present invention was completed based on the discovery that the presence of primary hydroxyl groups facilitates the reaction with crosslinking agents. That is, the present invention relates to epoxy resins having hydroxyl groups.
Production of a lactone-modified epoxy resin characterized by reacting 97 to 5 parts by weight with 3 to 95 parts by weight of ε-caprolactone at 100 to 240°C to cause ring-opening polymerization of ε-caprolactone to the secondary hydroxyl group of the epoxy resin. Concerning the law. Conventionally, long-chain fatty acids have been esterified as a means of imparting flexibility to epoxy resins, but the hydroxyl groups that react with the crosslinking agent remain secondary, and , the number of hydroxyl groups decreases. In addition, the terminal epoxy groups of epoxy resins have been used to modify them with flexible polyester polyols, polycaprolactone polyols, and polyamide resins, but the hydroxyl groups used in the crosslinking reaction still have poor reactivity. It is a secondary hydroxyl group. Compared to those, the resin of the present invention not only further expands the uses of epoxy resin in that it simultaneously imparts flexibility and primary hydroxyl groups to the epoxy resin, but also has a faster curing reaction with a crosslinking agent than before. It is also useful for energy saving as it proceeds at low temperatures. The epoxy resin having a hydroxyl group used in the present invention is a diglycidyl ether manufactured from epichlorohydrin and bisphenol A and having the following structure. Or a diglycidyl ether prepared from epichlorohydrin and bisphenol F with the following structure: Alternatively, a diglycidyl ester synthesized from a polybasic acid and epichlorohydrin, etc. can be used. ε-caprolactone is produced industrially by oxidizing cyclohexanone with a peracid via the Bayer-Billiker reaction. In the present invention, ε
- Lactones or lactams other than caprolactone can also be copolymerized. The proportion of the epoxy resin in the lactone-modified epoxy resin of the present invention is 97 to 5 parts by weight, preferably 95 to 30 parts by weight out of a total of 100 parts by weight. The reason for this is that if the amount is too large, the desired sufficient flexibility cannot be obtained, and on the other hand, if the amount is too small, the resin becomes too soft. The ring-opening polymerization of ε-caprolactone to the secondary hydroxyl group of the epoxy resin is carried out at 100 to 240°C, preferably at 120°C.
Perform at ~200°C. If the temperature is lower than 100℃, the reaction rate will be low;
This is because if the temperature is higher than 240°C, ε-caprolactone will boil and escape out of the reaction system. It is preferable to use a catalyst for this reaction. Examples of catalysts include titanium compounds such as tetrabutyl titanate, tetrapropyl titanate, and tetraethyl titanate, organic tin compounds such as tin octylate, dibutyltin oxide, and dibutyltin laurate, and stannous chloride, stannous bromide, and stannous iodide. 1 tin or the like can be used. In particular, when it is desired to obtain a product with a narrow molecular weight distribution, it is preferable to use stannous chloride. The amount used varies depending on the reaction temperature, but generally starts from 1000ppm.
Use 0.01 ppm, preferably 500 ppm to 0.2 ppm. The reaction may be carried out without a solvent, or with toluene,
The reaction may be carried out in a solvent without active hydrogen such as xylene. However, solvents having ester bonds are generally not preferred. This is because, during the reaction, a transesterification reaction may occur with the ester group of polycaprolactone, resulting in the production of polycaprolactone that is not bonded to the epoxy resin. When tin chloride is used as a catalyst, it is also possible to use an ester solvent since it hardly promotes the transesterification reaction. However, when using a titanium-based catalyst, it is particularly desirable to avoid ester-based solvents because they also promote the transesterification reaction. The lactone-modified epoxy resin obtained in this way has a highly reactive primary hydroxyl group, so
It can be used as a crosslinked coating agent containing a crosslinking agent that reacts with hydroxyl groups, such as isocyanates, amino resins such as melamine, and phenolic resins. It can also be applied to powder coatings containing blocking isocyanates and the like. Furthermore, it can be added in part to applications where conventional epoxy resins are used to improve their flexibility and reactivity. Furthermore, by reacting the epoxy groups remaining at both ends of this resin with amines and further neutralizing with acid, it can also be applied to aqueous resins. By blending a melamine resin or blocking isocyanate as a water-soluble curing agent with such a water-based resin, it can be applied as a water-based baking paint or an electrodeposition paint. Furthermore, an epoxy acrylate resin is synthesized by reacting the epoxy groups at both ends of the resin of the present invention with acrylic acid or methacrylic acid, and by adding a radical initiator or a photosensitizer to this, a photocurable resin or a radical As a curable resin, it can be applied to FRP, photocurable paints, inks, adhesives, etc. The lactone-modified epoxy resin of the present invention will be explained below with reference to examples, but the present invention is not limited to these. In the examples, parts mean parts by weight. Example 1 Araldite 6097 (manufactured by Ciba, trade name of epoxy resin, melting point 130°C), 111 parts of ε-caprolactone, and tetrabutyl titanate were placed in a four-necked flask equipped with a nitrogen introduction tube, thermometer, cooling tube, and stirring device.
By charging 0.011 parts and reacting at 180℃ for 5 hours, a melting point of 81-85℃ and a hydroxyl value of 179KOHmg/
A solid resin having an epoxy equivalent of 3,070 g was obtained. Examples 2 to 5 Using the same apparatus as in Example 1, various epoxy resins were reacted with ε-caprolactone in various proportions to obtain lactone-modified epoxy resins. The results are shown in Table 1.

【表】【table】

【表】 応用例1〜8及び比較例1〜2 実施例1〜5で得たラクトン変性エポキシ樹脂
及びε−カプロラクトンで変性していないエポキ
シ樹脂をエチルモノグリコールアセテートに溶解
した後、各種架橋剤を固型分重量でエポキシ樹
脂/架橋剤=90/10の割合で配合し、厚さ0.3mm
のみがき軟鋼板に塗布した後、乾燥硬化させた。 架橋剤としては (1) HMDI(ヘキサメチレンジイソシアネート)
アダクト 旭化成工業(株)製ジユラネート 24A−100(商品名) (2) XDI(キシレンジイソシアネート)アダクト 武田薬品工業(株)製タケネート D−110N(商品名) (3) IPDI(イソホロンジイソシアネート)3量
体 ヒユルス(Huls Chem)社製 IPDI−T1890(商品名) (4) イソブチル化メラミン 三井東圧化学(株)製 ユーバン62(商品名) を用いた。 結果を表2に示す。比較例1、2で明らかなよ
うに、ε−カプロラクトンで変性していないエポ
キシ樹脂からは可撓性のないもろい塗膜しか得ら
れなかつた。しかし本発明のε−カプロラクトン
で変性した樹脂は応用例1〜8で明らかなよう
に、可撓性、密着性、耐溶剤性のすぐれた硬化塗
膜を与えた。
[Table] Application Examples 1 to 8 and Comparative Examples 1 to 2 After dissolving the lactone-modified epoxy resin obtained in Examples 1 to 5 and the epoxy resin not modified with ε-caprolactone in ethyl monoglycol acetate, various crosslinking agents were added. Mixed in a solid weight ratio of epoxy resin/crosslinking agent = 90/10, thickness 0.3mm
After applying it to a polished mild steel plate, it was dried and hardened. As a crosslinking agent (1) HMDI (hexamethylene diisocyanate)
Adduct Dyuranate 24A-100 (trade name) manufactured by Asahi Kasei Industries, Ltd. (2) XDI (xylene diisocyanate) Adduct Takenate D-110N (trade name) manufactured by Takeda Pharmaceutical Company Limited (3) IPDI (isophorone diisocyanate) trimer IPDI-T1890 (trade name) manufactured by Huls Chem (4) Isobutylated melamine Yuban 62 (trade name) manufactured by Mitsui Toatsu Chemical Co., Ltd. was used. The results are shown in Table 2. As is clear from Comparative Examples 1 and 2, only inflexible and brittle coating films were obtained from epoxy resins that were not modified with ε-caprolactone. However, as is clear from Application Examples 1 to 8, the resin modified with ε-caprolactone of the present invention provided a cured coating film with excellent flexibility, adhesion, and solvent resistance.

【表】 実施例 6 窒素導入管、温度計、冷却管、撹拌装置を備え
た4ツ口フラスコにアラルダイト6097(チバ社製
のエポキシ樹脂の商品名、融点130℃)100部、ε
−カプロラクトン900部、テトラブチルチタネー
ト0.01部を仕込み、180℃で5時間反応させるこ
とにより、融点55〜60℃、水酸基価20.0KOH
mg/g、エポキシ当量18000のラクトン変性エポ
キシ樹脂を得た。 応用例 9 このラクトン変性エポキシ樹脂22.2部とアラル
ダイト6097、77.8部を混合し、エチレングリコー
ルモノエチルエーテルアセテート(EGA)に溶
解した後、架橋剤としてヘキサメチレンジイソシ
アネートアダクト体(旭化成工業株式会社の商品
名デユラネート24A−100)をNCO/OH=1/1の
割合で配合し、厚さ0.3mmのみがき軟鋼板に塗布
した後、120℃で2時間乾燥硬化させた。 応用例1と同様に行なつた塗膜評価結果を表−
3に示す。 比較例 3 ラクトン変性エポキシ樹脂を用いず、アラルダ
イト6097を100部用いて、他の条件は応用例9同
様に塗布し、次いで塗膜評価し、その結果を表−
3に示す。
[Table] Example 6 100 parts of Araldite 6097 (trade name of epoxy resin manufactured by Ciba, melting point 130°C), ε was placed in a four-necked flask equipped with a nitrogen introduction tube, a thermometer, a cooling tube, and a stirring device.
- By charging 900 parts of caprolactone and 0.01 part of tetrabutyl titanate and reacting at 180°C for 5 hours, the melting point is 55-60°C and the hydroxyl value is 20.0KOH.
A lactone-modified epoxy resin with mg/g and epoxy equivalent of 18,000 was obtained. Application example 9 22.2 parts of this lactone-modified epoxy resin and 77.8 parts of Araldite 6097 were mixed and dissolved in ethylene glycol monoethyl ether acetate (EGA), and then a hexamethylene diisocyanate adduct (trade name of Asahi Kasei Corporation) was added as a crosslinking agent. Duranate 24A-100) was mixed at a ratio of NCO/OH = 1/1, applied to a polished mild steel plate with a thickness of 0.3 mm, and then dried and hardened at 120°C for 2 hours. The table below shows the results of coating film evaluation conducted in the same manner as in Application Example 1.
Shown in 3. Comparative Example 3 Coating was performed in the same manner as in Application Example 9 except that 100 parts of Araldite 6097 was used without using the lactone-modified epoxy resin, and the coating film was then evaluated and the results are shown in Table 1.
Shown in 3.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 水酸基を有するエポキシ樹脂97〜5重量部に
ε−カプロラクトン3〜95重量部を100〜240℃で
反応させ、エポキシ樹脂の第2級水酸基にε−カ
プロラクトンを開環重合させることを特徴とする
ラクトン変性エポキシ樹脂の製造法。
1. 97 to 5 parts by weight of an epoxy resin having a hydroxyl group is reacted with 3 to 95 parts by weight of ε-caprolactone at 100 to 240°C to cause ring-opening polymerization of ε-caprolactone to the secondary hydroxyl group of the epoxy resin. A method for producing lactone-modified epoxy resin.
JP5027681A 1981-04-03 1981-04-03 Modified epoxy resin Granted JPS57164116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5027681A JPS57164116A (en) 1981-04-03 1981-04-03 Modified epoxy resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5027681A JPS57164116A (en) 1981-04-03 1981-04-03 Modified epoxy resin

Publications (2)

Publication Number Publication Date
JPS57164116A JPS57164116A (en) 1982-10-08
JPS621607B2 true JPS621607B2 (en) 1987-01-14

Family

ID=12854411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5027681A Granted JPS57164116A (en) 1981-04-03 1981-04-03 Modified epoxy resin

Country Status (1)

Country Link
JP (1) JPS57164116A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0687697A2 (en) 1994-06-16 1995-12-20 Daicel Chemical Industries, Ltd. A carbonate group-modified epoxy resin and thermosetting compositions of resins containing hydroxyalkyl carbonate groups

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58187463A (en) * 1982-04-27 1983-11-01 Mitsui Petrochem Ind Ltd Composition for coating compound
JPS60186524A (en) * 1984-03-06 1985-09-24 Nippon Oil & Fats Co Ltd Intermediate coating composition for automobile
JPS6144915A (en) * 1984-08-10 1986-03-04 Daicel Chem Ind Ltd Epoxy resin composition
JPS61108623A (en) * 1984-11-02 1986-05-27 Daicel Chem Ind Ltd Modified epoxy (meth)acrylate resin
JPH0786137B2 (en) * 1986-04-15 1995-09-20 ダイセル化学工業株式会社 Poly ε-caprolactone resin
JP2588239B2 (en) * 1988-04-04 1997-03-05 三井石油化学工業株式会社 Method for producing polyol resin
JP2002146319A (en) * 2000-11-13 2002-05-22 Three M Innovative Properties Co Thermosetting adhesive and adhesive film using the same
JP4530195B2 (en) * 2001-08-09 2010-08-25 日本化薬株式会社 Epoxy resin composition for optical semiconductor encapsulation
WO2016017680A1 (en) * 2014-07-31 2016-02-04 株式会社ダイセル Novel graft polymer and method for producing same
CN105367753A (en) * 2015-12-15 2016-03-02 广州市白云化工实业有限公司 Caprolactone-modified epoxy resin and preparation method and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0687697A2 (en) 1994-06-16 1995-12-20 Daicel Chemical Industries, Ltd. A carbonate group-modified epoxy resin and thermosetting compositions of resins containing hydroxyalkyl carbonate groups

Also Published As

Publication number Publication date
JPS57164116A (en) 1982-10-08

Similar Documents

Publication Publication Date Title
US4522984A (en) Modified epoxy resin and composition
JPH10101769A (en) Production of amino urethane
JPS62285910A (en) Urethane group-containing polymer and its production and use
US4588783A (en) Amide-containing polyhydroxyethyl carbamates
US6884845B2 (en) Low temperature curable, two-component, waterborne film-forming composition
JPS621607B2 (en)
US4521570A (en) Modified epoxy resin and composition
EP0553702B1 (en) Carboxy-functional polyurethane and curable coating composition
JPH0464528B2 (en)
US5618893A (en) Process for the preparation of cationic binders for coatings, the binders produced, and their use
EP0317185B1 (en) Coating compositions based on polyepoxides and urethane-containing polyacid curing agents
JP2004531595A (en) Reactive non-isocyanate coating composition
US4933379A (en) Process for preparing aqueous paint composition
JPH0721039B2 (en) Amine-epoxide reaction product and coating composition containing the same
US4701502A (en) Chip resistant primer composition V'
JPH061825A (en) Modified polyalkoxy epoxy resin, its production, and water-dispersible mixture, water dispersion, and curable mixture containing same
CZ289758B6 (en) (Poly)anhydrides of dicarboxylic acids modified by polyisocyanates and use thereof
JP4033524B2 (en) Water-based polyisocyanate composition
US4714745A (en) Epoxy-polyester graft copolymers suitable for chip resistant coating composition I'
JPS6144915A (en) Epoxy resin composition
US4699955A (en) Chip resistant primer composition VI"
US4699957A (en) Chip resistant primer composition V
EP0152413B1 (en) Thermosetting coating composition useful as chip resistant primer
US4699958A (en) Chip resistant primer composition VI
JPS6236350A (en) Polyisocyanate