JPS62159792A - Control device of movable blade type fluid machine - Google Patents

Control device of movable blade type fluid machine

Info

Publication number
JPS62159792A
JPS62159792A JP139186A JP139186A JPS62159792A JP S62159792 A JPS62159792 A JP S62159792A JP 139186 A JP139186 A JP 139186A JP 139186 A JP139186 A JP 139186A JP S62159792 A JPS62159792 A JP S62159792A
Authority
JP
Japan
Prior art keywords
movable
fluid machine
voltage ratio
control device
induction motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP139186A
Other languages
Japanese (ja)
Inventor
Kazuhiko Azuma
和彦 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP139186A priority Critical patent/JPS62159792A/en
Publication of JPS62159792A publication Critical patent/JPS62159792A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make operaton at a maximum efficiency point possible by changing movable blade pitch signals according to the change in loads and changing terminal voltages according to the voltage ratios of an induction motor. CONSTITUTION:A pitch signal 6a outputted from an encoder 6 is compared with a reference signal 7a to output a required voltage ratio based on a load factor. A power source circuit is formed with an igniter circuit 11 for outputting an igniter angle signal 11a based on required voltage ratio (e) and a Triac 12 for driving an induction motor IM. This makes terminal voltages applied to the induction motor change according to the change in loads to make operation of the induction motor always at a maximum efficiency point.

Description

【発明の詳細な説明】 [産室トめ刑1田分’lrF1 この発明は、軸流送風機又は軸流ポンプなとの可動翼形
流体機械を、負荷の変動によらず常に高効率で運転する
可動翼形流体機械制御装置に関するものである。
[Detailed Description of the Invention] [Detailed Description of the Invention] [Detailed Description of the Invention] [Detailed Description of the Invention] [Detailed Description of the Invention] [Detailed Description of the Invention] [Detailed Description of the Invention] [Detailed Description of the Invention] [Detailed Description of the Invention] [Detailed Description of the Invention] [Detailed Description of the Invention] This invention relates to a movable airfoil fluid mechanical control device.

[従来の技術] 第4図は、従来の可動翼形流体機械制御装置に′より駆
動される例えば軸流送風機を示す断面図である0図にお
いて、(1)は可動翼形流体機械としての軸流送風機、
(2)は軸流送風機(1)に内蔵され、誘導電動機(I
N)によって駆動軸(3)を介して回転駆動される可動
翼である・、(4)は軸流送風機(1)の内壁に固定さ
れた静翼であり、可動翼(2)に対向配置されて可動g
(2)により吸込まれる空気を整流するための複数の扇
形羽根からなっている。これら可動翼(2)及び静翼(
4)は、図示しないが複数段の組み合わせで構成されて
いる。(5)は駆動軸(3)の一端に設けられたピッチ
制御機構であり、駆動軸(3)に同心的に配設された油
圧系統により可動g(2)の各羽根のピッチ(角度)を
変え、可動g(2)からダクト(D)に吐出される風量
を制御するようになっている。
[Prior Art] Fig. 4 is a sectional view showing, for example, an axial flow blower driven by a conventional movable vane fluid machine control device. axial blower,
(2) is built into the axial blower (1), and the induction motor (I
(4) is a stationary blade fixed to the inner wall of the axial blower (1), and is arranged opposite to the movable blade (2). movable g
(2) It consists of a plurality of fan-shaped blades for rectifying the air sucked in. These movable blades (2) and stationary blades (
Although not shown, 4) is composed of a combination of multiple stages. (5) is a pitch control mechanism provided at one end of the drive shaft (3), and the pitch (angle) of each blade of movable g (2) is controlled by a hydraulic system arranged concentrically on the drive shaft (3). The amount of air discharged from movable g (2) to duct (D) is controlled by changing the air flow rate.

従来の可動翼形流体機械制御装置は上記のように構成さ
れ、誘導電動機<IN)により可動翼(2)を回転駆動
すると、軸流送風機(1)の吸引口(1a)から吸込ま
れた空気がダクト(D)から吐出される。
The conventional movable vane type fluid mechanical control device is configured as described above, and when the movable vane (2) is rotationally driven by the induction motor <IN), the air sucked in from the suction port (1a) of the axial blower (1) is is discharged from the duct (D).

この吐出風量は、可動翼く2)と静翼(4)との組み合
わせで制御され、ピッチ制御機m(5)で可動翼(2)
のピッチ(角度)を変えることにより、軸流送風6!(
1)から吐出される風量が制御される。即ち、可動翼(
2)のピッチが最大のときは風景が100%となり、ピ
ッチを絞れば風量は減少する。
This discharge air volume is controlled by a combination of movable blades 2) and stationary blades (4), and the pitch controller m(5) controls the movable blades (2).
By changing the pitch (angle) of the 6! (
1) The amount of air discharged is controlled. That is, the movable wing (
When the pitch of 2) is maximum, the scenery becomes 100%, and when the pitch is narrowed down, the air volume decreases.

こうして、所要負”荷に応じてダクト(D)から吐出さ
れる風量が制御されるが、誘導電動1! (IN)は常
に定格電圧で運転されている。
In this way, the amount of air discharged from the duct (D) is controlled according to the required load, but the induction motor 1! (IN) is always operated at the rated voltage.

尚、可動翼形流体機械として軸流送風機(1)の代わり
に可動翼ポンプ(図示せず)を用いた場合には、ポンプ
ケーシング内のポンプインペラのピッチ(角度)を変え
ることにより、前述と同様に流体吐出量を制御する。こ
の場合、通常、軸方向は縦となり、ピッチ制御機構(5
)に対応する油圧ユニットは、駆動軸を中空としてその
頂部に取り付けられることが多い。
If a movable vane pump (not shown) is used instead of the axial blower (1) as the movable vane fluid machine, the above-mentioned effect can be achieved by changing the pitch (angle) of the pump impeller in the pump casing. Similarly, the fluid discharge amount is controlled. In this case, the axial direction is usually vertical, and the pitch control mechanism (5
Hydraulic units corresponding to ) are often mounted on the top of a hollow drive shaft.

[発明が解決しようとする問題点] 従来の可動翼形流体機械制御装置は以上のように、例え
ば軸流送風機(1)を用いた場合、負荷に応じて可動翼
(2)のピッチを小さくすれば吐出される風量が減少し
て所要動力(電力)も低下するが、誘導電動機(IN)
は常に定格電圧で駆動されるため、鉄損や励磁損が不変
であることから、効率及び力率の悪い状態で可動翼形流
体機械が運転されるという問題点があった。
[Problems to be Solved by the Invention] As described above, in the conventional movable vane type fluid mechanical control device, for example, when an axial flow blower (1) is used, the pitch of the movable vane (2) is reduced according to the load. This will reduce the amount of air discharged and the required power (electricity), but the induction motor (IN)
Since it is always driven at the rated voltage, the iron loss and excitation loss remain unchanged, so there was a problem that the movable airfoil fluid machine was operated with poor efficiency and poor power factor.

この発明は上記のような問題点を解決するためになされ
たもので、所要負荷の変動によらず、常に最高効率で誘
導電動機を制御できる可動翼形流体機械制御装置を得る
ことを目的とする。
This invention was made to solve the above-mentioned problems, and the object is to obtain a movable airfoil fluid machine control device that can always control an induction motor with maximum efficiency regardless of fluctuations in the required load. .

[問題点を解決するための手段] この発明に係る可動翼形流体機械制御装置は、負荷の変
動に応じて可動翼のピッチを変化させるピッチ制御機構
と、このピッチ制御機構のピッチ信号に応じて誘導電動
機の所要端子電圧に対応する電圧比を出力する演算部と
、この電圧比に応じて誘導電動機の端子電圧を変化させ
る電源回路とを備えたものである。
[Means for Solving the Problems] A movable vane type fluid mechanical control device according to the present invention includes a pitch control mechanism that changes the pitch of the movable vane in accordance with load fluctuations, and a pitch control mechanism that changes the pitch of the movable vane in response to a pitch signal of the pitch control mechanism. The motor is equipped with a calculation section that outputs a voltage ratio corresponding to a required terminal voltage of the induction motor, and a power supply circuit that changes the terminal voltage of the induction motor in accordance with this voltage ratio.

[作用] この発明においては、演算部がその時点の負荷に応じた
電圧比を出力し、電源回路がこの□電圧比に応じた端子
電圧を誘導電動機に印加し、誘導電動機を負荷の変動に
よらず常に最高効率(最小損失)点で運転する。
[Operation] In this invention, the calculation unit outputs a voltage ratio according to the load at that time, and the power supply circuit applies a terminal voltage according to this □ voltage ratio to the induction motor, so that the induction motor is controlled according to load fluctuations. Always operate at the highest efficiency (minimum loss) point.

[実施例] 以下、前述と同様に可動翼形流体機械として軸流送風機
を用いた場合を例にとり、この発明の一実施例を図につ
いて説明する。第1図はこの発明の実施例を一部回路図
で示すブロック図であり、(1)〜(5)及び(IN)
は前述の従来装置と同様のものである。(6)はピッチ
制御機ti(5)に収り付けられた位置センサ例えばエ
ンコーダ等であり、ピ・ソチ信号(6a)を出力するよ
うになっている。(7)は予め設定された基準信号(7
a)を出力する基準信号発生器、(8)はピッチ信号(
6a)と基準信号(7a)とを比較して可動g(2>の
ピッチに応じた負荷率lを出力する比較回路、(9)は
負荷率lがら所要電圧比eを出力する演算回路であり、
これら比較回路(8)及び演算回路(9)は演算部(1
0)を構成している。
[Embodiment] Hereinafter, an embodiment of the present invention will be described with reference to the drawings, taking as an example the case where an axial flow blower is used as the movable vane type fluid machine as described above. FIG. 1 is a block diagram showing a partial circuit diagram of an embodiment of the present invention, in which (1) to (5) and (IN)
is similar to the conventional device described above. (6) is a position sensor, such as an encoder, installed in the pitch controller ti (5), and is configured to output a pi-sochi signal (6a). (7) is a preset reference signal (7
a), a reference signal generator (8) outputs a pitch signal (
6a) and the reference signal (7a) and outputs the load factor l according to the pitch of the movable g(2>), (9) is an arithmetic circuit that outputs the required voltage ratio e according to the load factor l. can be,
These comparison circuit (8) and arithmetic circuit (9) are connected to the arithmetic unit (1
0).

(11〉は所要電圧比eに基づいて点弧角信号(lla
)を出力する点弧回路、(12)は誘導電動機(IN)
を駆動するためのトライアックであり、トライアック(
12)は点弧角信号(lla)により、端子電圧が常に
所要電圧比eに応じて変動するように制御されている。
(11> is the firing angle signal (lla
), (12) is an induction motor (IN)
It is a triac for driving a triac (
12) is controlled by the firing angle signal (lla) so that the terminal voltage always varies according to the required voltage ratio e.

これら点弧回路け1)及びトライアック(12)は誘導
電動機(IN)の電源回路を構成している。
These ignition circuit 1) and triac (12) constitute a power supply circuit for the induction motor (IN).

次に、第2図及び第3図の各特性図を参照しながら、第
1図に示したこの発明の実施例の動作について説明する
。負荷率1−1、即ち負荷が最大の場合は風量が100
%であり、軸流送風機(1)内の可動翼(2)は誘導電
動機(IN)により定格電圧で駆動され、可動翼(2〉
のピッチは全開即ち角度が最大くこの場合、60°前後
)の状態であり、そのときの所要動力はほぼ100%で
ある(第2図参照)。
Next, the operation of the embodiment of the invention shown in FIG. 1 will be explained with reference to the characteristic diagrams shown in FIGS. 2 and 3. Load factor 1-1, that is, when the load is maximum, the air volume is 100
%, the movable blade (2) in the axial blower (1) is driven by an induction motor (IN) at the rated voltage, and the movable blade (2)
The pitch is fully open, that is, the angle is maximum (in this case, around 60 degrees), and the required power at that time is approximately 100% (see Figure 2).

負荷率pく1、即ち負荷が減少した場合は、負荷に応じ
てピッチ制御機構(5)が作動し、可動翼(2)のピッ
チが絞られてダクト(D)に吐出される風量が制限され
る。このとき、位置センナ(6)により現在のピッチ信
号(6a)が比較回路(8)の一方の入力端子に送られ
る。比較回路(8)の他方の入力端子には予め設定され
た基準信号(7a)(例えば、ピッチ最大に対応する信
号)が入力されているので、ピッチ信号(6a)は基準
信号(7a)と比較演算され、ピッチ信号(6a)に応
じた負荷率1(0<ffi<1)となって出力される。
When the load factor p1, that is, the load decreases, the pitch control mechanism (5) operates according to the load, and the pitch of the movable blade (2) is narrowed to limit the amount of air discharged into the duct (D). be done. At this time, the position sensor (6) sends the current pitch signal (6a) to one input terminal of the comparator circuit (8). Since a preset reference signal (7a) (for example, a signal corresponding to the maximum pitch) is input to the other input terminal of the comparison circuit (8), the pitch signal (6a) is different from the reference signal (7a). A comparison calculation is performed, and a load factor of 1 (0<ffi<1) corresponding to the pitch signal (6a) is output.

第2図は基準信号(7a)の基となる風量と所要動力の
関係を示す特性図である。通常、誘導電動機(IN)の
定格出力は軸流送風機(1)の所要動力に対し10〜2
0%の余裕を持っているので、第2図の特性曲線にその
余裕率を乗じて予め定格出力を求めておけば、ピッチ信
号(6a)から容易に現在の負荷率lが求まることにな
る。
FIG. 2 is a characteristic diagram showing the relationship between the air volume and required power, which is the basis of the reference signal (7a). Normally, the rated output of the induction motor (IN) is 10 to 2 times the required power of the axial blower (1).
Since it has a margin of 0%, if you calculate the rated output in advance by multiplying the characteristic curve in Figure 2 by the margin, you can easily find the current load factor l from the pitch signal (6a). .

演算回路(9)は、定格負荷(l=1>において最小入
力となる電圧を求めて基準電圧(電圧比e=1)を決め
ておき、現在の負荷率Iに基づいて所要端子電圧比eを
出力する。一般に、基準電圧を1として表わした電圧比
をe、全負荷(最大負荷)を1として表わした負荷率を
rとすると、誘導電動機(IN)の損失WTは、 Wy=W+ao + Wco −e 2+  3r+ 
 (Izo) 2e−21’+3r+(I削o)2e2
+3rz(Izo)2e−212・・・■但し、 W m o :基準電圧(電圧比e=1)における機械
損Wco:基準電圧における鉄損 ■2゜:基準電圧における二次電流 Imo:定格負荷(負荷率:1= 1)における励磁電
流r1ニー次巻線の抵抗値 rz:二次巻線の抵抗値 て表わせる。■式において、第1項は機械損、第2項は
鉄損、第3項及び第4項は一次銅損、第5項は二次銅損
である。■式は電圧比eに対して下に凸の関数曲線であ
るから、■式を電圧比eで微分すれば極小点、即ち損失
WTが最小となる点が求まる。
The arithmetic circuit (9) determines the reference voltage (voltage ratio e=1) by determining the minimum input voltage at the rated load (l=1>), and calculates the required terminal voltage ratio e based on the current load factor I. In general, if the voltage ratio expressed with the reference voltage as 1 is e, and the load factor expressed as the full load (maximum load) is 1, then the loss WT of the induction motor (IN) is as follows: Wy=W+ao+ Wco -e 2+ 3r+
(Izo) 2e-21'+3r+(I cut o) 2e2
+3rz(Izo)2e-212... ■However, W m o : Mechanical loss at reference voltage (voltage ratio e=1) Wco: Iron loss at reference voltage ■2゜: Secondary current at reference voltage Imo: Rated load Excitation current r1 at (load factor: 1=1) resistance value of the secondary winding rz: resistance value of the secondary winding. In equation (2), the first term is mechanical loss, the second term is iron loss, the third and fourth terms are primary copper loss, and the fifth term is secondary copper loss. Since the equation (2) is a downwardly convex function curve with respect to the voltage ratio e, by differentiating the equation (2) with respect to the voltage ratio e, the minimum point, that is, the point where the loss WT is minimized, can be found.

従って、 θWr/θe=2eWco−6r1(12o)”e−J
!2+6r+(Imo)2e+6r2(12o)2e−
12−2e[Wco+ 3r+ (Imo>23(r、
 + rz>・(12o)2e−’12]  ”’■か
らaWT/θe=oとなる条件を求める。いま、定格負
荷(l=1)において、入力電流が最小、即ち損失WT
が最小となる電圧が求まったとして、この電圧を基準(
e=1>とおく。基準電圧(電圧比e−1)を求めるに
は、例えば、誘導電動機(IM)を軸流送風機(1)に
接続して定格負荷(1=1)となるように駆動し、この
状態を保ちながら電圧を変幻ヒさせて入力電流が最小と
なる電圧を検出すればよい。この点においてθWT/θ
e辷Oが成立するためには、■式から、 Wco+3r、(Imo)”#3(rl+r2)・(1
2o)2−■となり、0式は負荷率rに関係しないこと
が分がる。
Therefore, θWr/θe=2eWco-6r1(12o)"e-J
! 2+6r+(Imo)2e+6r2(12o)2e-
12-2e[Wco+ 3r+ (Imo>23(r,
+ rz>・(12o)2e−'12] Find the condition that aWT/θe=o from ``'■.Now, at the rated load (l=1), the input current is minimum, that is, the loss WT
Assuming that the voltage at which is the minimum is found, use this voltage as the reference (
Let e=1>. To find the reference voltage (voltage ratio e-1), for example, connect an induction motor (IM) to an axial blower (1), drive it to the rated load (1 = 1), and maintain this state. The voltage at which the input current is minimum can be detected by varying the voltage. At this point θWT/θ
In order for e辷O to hold true, from formula ■, Wco+3r, (Imo)”#3(rl+r2)・(1
2o) 2-■, and it can be seen that equation 0 is not related to the load factor r.

又、定格負荷以下(1< 1 >に対しても0式が成立
するためには、 e−’12= 1 、’、e−”1=1  ・・・ ■ となる。0式から、端子電圧比eを負荷率lの平方□1
1 根に比例して変化させれば、誘導電動機(IN)はどの
負荷率lにおいても常に最高効率点で運転されることが
分かる。
In addition, in order for the 0 formula to hold even for a load below the rated load (1 < 1 >), e-'12=1,',e-'1=1...■.From the 0 formula, the terminal The voltage ratio e is the square of the load factor l □1
1. It can be seen that by changing it in proportion to the root, the induction motor (IN) is always operated at the maximum efficiency point at any load factor l.

こうして、演算回路(9)はe=ZO,Sの関係から所
要端子電圧比eを求め、点弧回路り11)に出力する。
In this way, the arithmetic circuit (9) determines the required terminal voltage ratio e from the relationship e=ZO, S, and outputs it to the ignition circuit 11).

点弧回路(11)は点弧角信号(l1m)を生成し、誘
導電動機(IN)の端子電圧が所要電圧比eとなるよう
にトライアック(12)の点弧角制御を行う。
The ignition circuit (11) generates a ignition angle signal (l1m) and controls the ignition angle of the triac (12) so that the terminal voltage of the induction motor (IN) becomes a required voltage ratio e.

第3図は、例えば3.3KV、60 II zの電源で
、500KW、4P(4極)の誘導電動機(IN)を用
いた場合の負荷率lと損失WTとの関係を示した特性図
であり、曲線Aは従来の定格電圧による駆動の場合、曲
線Bはこの発明に従い電圧比eを変えて駆動した場合を
それぞれ示している。一般に、市販の誘導電動機は定格
電圧駆動であっても定格負荷(1=1)に対して損失が
最小とはなっていないが、上述のように定格負荷におい
て入力が最小となる端子電圧比eを求めて補正すること
により(曲線B)j!=1においても損失W7を最小に
することができる。更に、負荷率aの減少に伴って電圧
比eを減少させることにより、負荷率lの減少と共に効
率及び力率が低下する従来の運転(曲線A)に比べ、特
に軽負荷領域で顕著に損失WTを改善することができる
Figure 3 is a characteristic diagram showing the relationship between load factor l and loss WT when using a 500KW, 4P (4 pole) induction motor (IN) with a 3.3KV, 60IIz power supply, for example. Curve A shows the case of driving at the conventional rated voltage, and curve B shows the case of driving by changing the voltage ratio e according to the present invention. In general, commercially available induction motors do not have the minimum loss for the rated load (1 = 1) even when driven at the rated voltage, but as mentioned above, the terminal voltage ratio e at which the input is minimum at the rated load By determining and correcting (curve B) j! Even when =1, the loss W7 can be minimized. Furthermore, by decreasing the voltage ratio e as the load factor a decreases, the loss is significantly reduced, especially in the light load region, compared to conventional operation (curve A) where the efficiency and power factor decrease as the load factor l decreases. WT can be improved.

以上述べたこの発明による可動翼形流体機械制御装置の
構成は、従来装置に対し、演算部(10)と、点弧回路
(11)及びトライアック(12)からなる電源回路と
を付加したのみであるから、既存の設備に追加すること
で容易に実施することが可能である。
The configuration of the movable airfoil fluid machine control device according to the present invention described above is different from the conventional device by adding only a calculation section (10) and a power supply circuit consisting of an ignition circuit (11) and a triac (12). Therefore, it can be easily implemented by adding it to existing equipment.

尚、上記実施例では、可動翼形流体機械として軸流送風
fi(1)を例にとった場合について説明したが、他の
可動翼形流体機械例えば可動翼ポンプに用いても、可動
31E(2)のピッチ信号(6a)をインペラのピッチ
信号に置き換えるのみで主な構成及び原理は同様である
In the above embodiment, the axial flow blower fi(1) is used as an example of the movable vane type fluid machine, but the movable vane type fluid machine 31E ( The main structure and principle are the same except that the pitch signal (6a) in 2) is replaced with the pitch signal of the impeller.

又、誘導電動機(114)の電源回路の素子としてトラ
イアック(12)を用いたが、他の素子例えばサイリス
タを用いても同等の効果が得られることは言うまでもな
い。
Further, although the triac (12) is used as the element of the power supply circuit of the induction motor (114), it goes without saying that the same effect can be obtained by using other elements such as a thyristor.

[発明の効果] 以上のようにこの発明によれば、負荷の変動に応じて可
動翼のピッチを変化させるピッチ制御機構と、このピッ
チ制御機構のピッチ信号に応じて誘導電動機の所要端子
電圧に対応する電圧比を出力する演算部と、この電圧比
に応じて誘導電動機の端子電圧を変化させるための電源
回路とを設け、負荷の変動に応じて誘導電動機に印加さ
れる端子電圧を変化させたので、常に最高効率(最小損
失)点で誘導電動機を運転でき、又、定格点とほぼ同じ
力率が維持できるため、省エネルギに貢献すると共に、
軽負荷時の入力KV^(見かけ上の入力電力)を下げる
ことのできる可動翼形流体機械制御装置が得られる効果
がある。
[Effects of the Invention] As described above, according to the present invention, there is provided a pitch control mechanism that changes the pitch of the movable blades in accordance with load fluctuations, and a pitch control mechanism that changes the required terminal voltage of the induction motor in accordance with the pitch signal of this pitch control mechanism. A calculation unit that outputs a corresponding voltage ratio and a power supply circuit that changes the terminal voltage of the induction motor according to this voltage ratio are provided, and the terminal voltage applied to the induction motor is changed according to load fluctuations. Therefore, the induction motor can always be operated at the highest efficiency (minimum loss) point, and the power factor can be maintained almost the same as the rated point, contributing to energy savings and
This has the effect of providing a movable airfoil fluid mechanical control device that can lower the input KV^ (apparent input power) during light loads.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を一部回路図で示すブロッ
ク図、第2図は風量と所要動力との関係を示す特性図、
第3図は負荷率と誘導電動機損失との関係を示す特性図
、第4図は従来の可動翼形流体機械としての軸流送風機
を示す断面図である。 (1)・・・軸流送風If!   (IN)・・・誘導
電動機(2)・・・可動翼    (6a)・・・ピッ
チ信号(7a)・・・基準信号   (8)・・・比較
回路(9)・・・演算回路   (10)・・・演算部
(11)・・・点弧回路   (lla)・・・点弧角
信号(12)・・・トライアック  l・・・負荷率e
・・・電圧比 尚、図中、同一符号は同−又は相当部分を示す。 −ξl(1+a7p ?
FIG. 1 is a block diagram showing a partial circuit diagram of an embodiment of the present invention, FIG. 2 is a characteristic diagram showing the relationship between air volume and required power,
FIG. 3 is a characteristic diagram showing the relationship between load factor and induction motor loss, and FIG. 4 is a sectional view showing an axial flow blower as a conventional movable vane type fluid machine. (1)... Axial flow If! (IN)...Induction motor (2)...Movable blade (6a)...Pitch signal (7a)...Reference signal (8)...Comparison circuit (9)...Arithmetic circuit (10 )...Arithmetic unit (11)...Ignition circuit (lla)...Ignition angle signal (12)...Triac l...Load factor e
. . . Voltage ratio. In the figures, the same reference numerals indicate the same or equivalent parts. −ξl(1+a7p?

Claims (7)

【特許請求の範囲】[Claims] (1)可動翼形流体機械の可動翼を回転駆動する誘導電
動機と、負荷の変動に応じて前記可動翼のピッチを変化
させるピッチ制御機構と、このピッチ制御機構のピッチ
信号に応じて前記誘導電動機の所要端子電圧に対応する
電圧比を出力する演算部と、前記電圧比に応じて前記誘
導電動機の端子電圧を変化させるための電源回路とを備
えたことを特徴とする可動翼形流体機械制御装置。
(1) An induction motor that rotationally drives a movable blade of a movable vane type fluid machine, a pitch control mechanism that changes the pitch of the movable blade according to load fluctuations, and an induction motor that changes the pitch of the movable blade according to a change in load, and A movable airfoil fluid machine comprising: a calculation unit that outputs a voltage ratio corresponding to a required terminal voltage of an electric motor; and a power supply circuit that changes the terminal voltage of the induction motor according to the voltage ratio. Control device.
(2)可動翼形流体機械が軸流送風機であることを特徴
とする特許請求の範囲第1項記載の可動翼形流体機械制
御装置。
(2) The movable vane fluid machine control device according to claim 1, wherein the movable vane fluid machine is an axial blower.
(3)可動翼形流体機械が可動翼ポンプであることを特
徴とする特許請求の範囲第1項記載の可動翼形流体機械
制御装置。
(3) The movable vane fluid machine control device according to claim 1, wherein the movable vane fluid machine is a movable vane pump.
(4)演算部が、基準信号とピッチ信号とを比較して負
荷率を出力する比較回路と、前記負荷率から電圧比を算
出する演算回路とからなることを特徴とする特許請求の
範囲第1項乃至第3項のいずれかに記載の可動翼形流体
機械制御装置。
(4) The arithmetic unit comprises a comparison circuit that compares a reference signal and a pitch signal and outputs a load factor, and an arithmetic circuit that calculates a voltage ratio from the load factor. The movable airfoil fluid mechanical control device according to any one of items 1 to 3.
(5)演算回路が、負荷率の平方根に比例した電圧比を
出力することを特徴とする特許請求の範囲第4項記載の
可動翼形流体機械制御装置。
(5) The movable airfoil fluid machine control device according to claim 4, wherein the arithmetic circuit outputs a voltage ratio proportional to the square root of the load factor.
(6)電源回路が、電圧比に応じて点弧角信号を出力す
る点弧回路と、前記点弧角信号により端子電圧が前記電
圧比に対応する値となるように制御されるトライアック
とからなることを特徴とする特許請求の範囲第1項乃至
第5項のいずれかに記載の可動翼形流体機械制御装置。
(6) The power supply circuit includes an ignition circuit that outputs a ignition angle signal according to the voltage ratio, and a triac that is controlled by the ignition angle signal so that the terminal voltage becomes a value corresponding to the voltage ratio. A movable airfoil fluid machine control device according to any one of claims 1 to 5.
(7)電源回路が、電圧比に応じて点弧角信号を出力す
る点弧回路と、前記点弧角信号により端子電圧が前記電
圧比に対応する値となるように制御されるサイリスタと
からなることを特徴とする特許請求の範囲第1項乃至第
5項のいずれかに記載の可動翼形流体機械制御装置。
(7) The power supply circuit includes a firing circuit that outputs a firing angle signal according to the voltage ratio, and a thyristor that is controlled by the firing angle signal so that the terminal voltage becomes a value corresponding to the voltage ratio. A movable airfoil fluid machine control device according to any one of claims 1 to 5.
JP139186A 1986-01-09 1986-01-09 Control device of movable blade type fluid machine Pending JPS62159792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP139186A JPS62159792A (en) 1986-01-09 1986-01-09 Control device of movable blade type fluid machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP139186A JPS62159792A (en) 1986-01-09 1986-01-09 Control device of movable blade type fluid machine

Publications (1)

Publication Number Publication Date
JPS62159792A true JPS62159792A (en) 1987-07-15

Family

ID=11500190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP139186A Pending JPS62159792A (en) 1986-01-09 1986-01-09 Control device of movable blade type fluid machine

Country Status (1)

Country Link
JP (1) JPS62159792A (en)

Similar Documents

Publication Publication Date Title
US6208113B1 (en) System for controlling the rotation of AC motors
US5537015A (en) Semiconductor circuit for a DC motor
US8264176B2 (en) Fan arrangement
JP6255576B2 (en) Ventilation equipment
US10277149B2 (en) Air blower equipped with brushless DC motor
US10041496B2 (en) Ventilation device
JPS62159792A (en) Control device of movable blade type fluid machine
JPS58185991A (en) Circulating pump for heating facility
JP6569089B2 (en) Ceiling fan
RU2577515C1 (en) Device for controlling dual-speed motor of blower fan
JP6225326B2 (en) Ventilation equipment
KR20070065440A (en) Vsd control
JP6040066B2 (en) Fan motor drive control device
JPH10174276A (en) Motor protection device
JPS62159793A (en) Control device of fluid machine
KR200380870Y1 (en) Fan driving circuit for positive pressure-to-output characteristic
JP6255573B2 (en) Ventilation equipment
JPH09168299A (en) Induction motor
JP6221057B2 (en) Ventilation equipment
JPS6122557B2 (en)
JP6182736B2 (en) Ventilation equipment
WO2021039753A1 (en) Ventilation device
JP2015047000A (en) Ventilation device
JP2004263949A (en) Ventilator
Kozlova et al. Simulation of Air Cooling Apparatus