JPS62159031A - Measuring device for fine structure of extended x-ray absorption edge - Google Patents

Measuring device for fine structure of extended x-ray absorption edge

Info

Publication number
JPS62159031A
JPS62159031A JP61000233A JP23386A JPS62159031A JP S62159031 A JPS62159031 A JP S62159031A JP 61000233 A JP61000233 A JP 61000233A JP 23386 A JP23386 A JP 23386A JP S62159031 A JPS62159031 A JP S62159031A
Authority
JP
Japan
Prior art keywords
ray
sample
rays
incident
total reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61000233A
Other languages
Japanese (ja)
Other versions
JPH0692943B2 (en
Inventor
Asao Nakano
朝雄 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61000233A priority Critical patent/JPH0692943B2/en
Publication of JPS62159031A publication Critical patent/JPS62159031A/en
Publication of JPH0692943B2 publication Critical patent/JPH0692943B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
    • G01N23/085X-ray absorption fine structure [XAFS], e.g. extended XAFS [EXAFS]

Landscapes

  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To execute a measurement with a high accuracy by controlling a rotational angle of an X-ray reflecting mirror, and a sample position so that incident X-rays and an X-ray irradiating position to the reflecting mirror and the sample conform with a condition of a total reflection. CONSTITUTION:A rack base 13 is supported so as to be turnable through a yoke 13' by a revolving shaft which has been provided on a blanket 17, the rack base 13 is loaded with an X-ray slit 7, an incident X-ray detector 8, a sample chamber 9, and a sample transmission X-ray detector 12, and the rack base 13 is connected to an actuator 15 of a rack base 14. In this state, by turning the rack base 13 by the actuator 15, and controlling incident X-rays 2, and an X-ray irradiating position of an X-ray total reflecting mirror 6 and a sample 10 so as to conform with a condition of a total reflection, even if an energy of a fundamental wave of the X-rays 2 is below a prescribed value, its higher harmonics can be eliminated, and also scattered X-rays of a high energy and a fluorescent X-ray intensity can also be attenuated. Also, even if a fundamental wave energy of the X-rays 2 is varied by making the reflecting mirror 6 coincide with the revolving shaft of the rack base 13, the X-ray irradiating position on the sample 10 is not varied, therefore, the measurement can be executed with a high accuracy.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、拡張X線吸収端微細構造(以下。[Detailed description of the invention] [Field of application of the invention] The present invention relates to an extended X-ray absorption edge fine structure (hereinafter referred to as "extended X-ray absorption edge fine structure").

rEXAFs」という)測定装置に係り、特にEXAF
Sを高精度で測定でき、構造解析研究用設備に好適なE
XAFS測定装置に関する。
rEXAFs) measurement equipment, especially EXAF
E can measure S with high precision and is suitable for structural analysis research equipment.
This invention relates to an XAFS measurement device.

〔発明の背景〕[Background of the invention]

従来のEXAFS測定装置は「真空第26巻第3号(1
983)大柳宏之・太田俊明J著によるrE XA F
 Sおよび表面EXAFSにおける放射光の利用」と題
する文献や米国スタンフォード大学のシンクロトロン放
射光研究所技術報告、S S RL 、 Tech、 
Rep、Na 75103におけるB。
The conventional EXAFS measuring device is
983) rE XA F by Hiroyuki Oyanagi and Toshiaki Ota J
Utilization of synchrotron radiation in S and surface EXAFS” and a technical report from the Synchrotron Synchrotron Radiation Laboratory at Stanford University in the United States, S S RL, Tech.
B in Rep, Na 75103.

M、 Kincaidによる報告の中で解説されている
Explained in a report by M. Kincaid.

しかし、従来技術では分光器から出射する所望のエネル
ギーの整数倍のエネルギーをもつ高調波を除去する機能
を持たないか、持っているとしてもX線収束用の固定ミ
ラーのみによっている。このため、従来技術では精度良
くデータを収集できるエネルギー範囲がおよそ4 ke
V異常に限られ、これより低エネルギー側の範囲でのデ
ータの質は充分でなかった。
However, the conventional techniques do not have a function to remove harmonics having an energy that is an integral multiple of the desired energy emitted from the spectrometer, or even if they do, they only use a fixed mirror for X-ray convergence. For this reason, with conventional technology, the energy range in which data can be collected with high accuracy is approximately 4 ke.
The quality of the data was limited to the V anomaly, and the quality of the data in the lower energy range was not sufficient.

〔発明の目的〕[Purpose of the invention]

本発明の目的は1分光器やX線収束ミラーから出射され
る高調波、特に4 keVより低エネルギーの試料入射
X線に対する高調波を除去し、かつ高エネルギーの散乱
X線およびけい光X線強度を減衰させ、高精度にE X
A F Sを測定し得るEXAFS測定装置を提供する
ことにある。
The purpose of the present invention is to remove harmonics emitted from a spectrometer or an X-ray converging mirror, especially harmonics of incident X-rays with energy lower than 4 keV, and to remove high-energy scattered X-rays and fluorescent X-rays. Attenuates strength and achieves high accuracy
An object of the present invention is to provide an EXAFS measuring device capable of measuring A FS.

〔発明の概要〕[Summary of the invention]

本発明は、物質表面での微小角入射X線の反射特性を利
用して高調波を除去するもので1反射面の物質密度とX
線の入射角により定まる全反射臨界エネルギーより小さ
なエネルギーのX線のみ全反射されるという性質を利用
している。而して。
The present invention removes harmonics by utilizing the reflection characteristics of small angle incident X-rays on the surface of a material.
It takes advantage of the property that only X-rays with energy smaller than the total reflection critical energy determined by the incident angle of the rays are totally reflected. Then.

本発明は分光器やX線収束ミラーによる入射X線エネル
ギーの走査に合わせ、入射X線と反射鏡と試料へのX線
照射位置とが全反射の条件に合うように、X線全反射鏡
の回転角度と試料位置とを制御し、全反射臨界エネルギ
ーが所望の試料照射エネルギーとその2倍高調波との中
間になるように設定することにより、全ての高調波X線
を除去するとともに、分光器やスリット等で発生する高
エネルギーの散乱X線およびけい光X線強度を減衰させ
ることが可能である。
In accordance with the scanning of incident X-ray energy by a spectroscope or an X-ray converging mirror, the present invention uses an X-ray total reflection mirror so that the incident X-rays, the reflection mirror, and the X-ray irradiation position on the sample meet the conditions for total reflection. By controlling the rotation angle and sample position, and setting the total reflection critical energy to be between the desired sample irradiation energy and its second harmonic, all harmonic X-rays are removed, and It is possible to attenuate the intensity of high-energy scattered X-rays and fluorescent X-rays generated by spectrometers, slits, etc.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面により説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明装置の一実施例を示す縦断面図、第2図
はX線全反射鏡の回転角度と試料位置の関係を示す説明
図、第3図はX線全反射鏡の特性例を示すグラフである
Fig. 1 is a longitudinal sectional view showing an embodiment of the device of the present invention, Fig. 2 is an explanatory diagram showing the relationship between the rotation angle of the total X-ray reflection mirror and the sample position, and Fig. 3 is the characteristics of the total reflection mirror of the X-ray. Figure 2 is a graph showing an example.

これらの図に示す実施例のEXAFS測定装置では、入
射X線2を通すビームパス1と、外側のミラーハウジン
グ3および内側のミラーハウジング4の組と、ミラー保
持機構5を介して内側のミラーハウジング4内に設置さ
れたX線全反射鏡6と、前記ミラー保持機構5を介して
X線全反射鏡6の回転角度を制御する制御手段(図示せ
ず)と、X線スリット7と、入射X線検出器8と、試料
チャンバ9と、これの内部に設置されたゴニオメータ1
1と、試料透過X線検出器12と、第1.第2の架台1
3.14と、前記第1の架台13の回転角度を制御する
制御手段としてのアクチュエータ15と、前記X線全反
射鏡6や第1の架台13等を支持するブラケット17と
を備えて構成されている。
The EXAFS measuring device of the embodiment shown in these figures includes a beam path 1 through which incident X-rays 2 pass, a set of an outer mirror housing 3 and an inner mirror housing 4, and a mirror holding mechanism 5 that connects the inner mirror housing 4 to the beam path 1. an X-ray total reflection mirror 6 installed inside, a control means (not shown) for controlling the rotation angle of the X-ray total reflection mirror 6 via the mirror holding mechanism 5, an X-ray slit 7, and an A line detector 8, a sample chamber 9, and a goniometer 1 installed inside this
1, a sample transmission X-ray detector 12, and a 1st. Second pedestal 1
3.14, an actuator 15 as a control means for controlling the rotation angle of the first pedestal 13, and a bracket 17 that supports the total X-ray reflection mirror 6, the first pedestal 13, etc. ing.

前記ビームパス1は、分光器またはX線収束ミラー(い
ずれも図示せず)からの放射光をX線全反射鏡6に導く
ようになっている。前記入射X線2には、不回避的に高
調波を含んでいる。
The beam path 1 is adapted to guide emitted light from a spectroscope or an X-ray convergence mirror (none of which is shown) to an X-ray total reflection mirror 6. The incident X-ray 2 inevitably contains harmonics.

前記ミラーハウジング3,4は、内外二重構造となって
おり、相対的に回転運動をしても高真空を保ち得るよう
に構成されている。
The mirror housings 3 and 4 have a double inner and outer structure, and are configured to maintain a high vacuum even if they rotate relative to each other.

前記ミラー保持機構5は、第2の架台14上に立設され
たブラケット17に設けられた回転軸(図示せず)を介
して、X線全反射11!6を回転可能に支持している。
The mirror holding mechanism 5 rotatably supports the X-ray total reflection 11!6 via a rotating shaft (not shown) provided on a bracket 17 erected on the second pedestal 14. .

前記回転軸の回りは、真空シールされている。The rotation axis is vacuum sealed.

前記X線全反射鏡6は、入射X線検出器8の入射側に設
置されており、この実施例ではX線全反射鏡6と入射X
線検出器8との間にX線スリット7が装置されている。
The X-ray total reflection mirror 6 is installed on the incident side of the incident X-ray detector 8, and in this embodiment, the X-ray total reflection mirror 6 and the incident X-ray
An X-ray slit 7 is provided between the X-ray detector 8 and the X-ray detector 8 .

前記X線全反射鏡6の鏡材には溶融石英板等が用いられ
1表面物質としてはNi膜の他にAl、Si、Cr、C
:u膜等も使用可能である。そして、このX線全反射鏡
6は、入射X線2中に不回避的に含まれている高調波を
除去し得るようになっている。
A fused silica plate or the like is used as the mirror material of the X-ray total reflection mirror 6, and the surface materials include Al, Si, Cr, and C in addition to Ni film.
:U film etc. can also be used. The X-ray total reflection mirror 6 is designed to remove harmonics unavoidably included in the incident X-rays 2.

前記X線全反射鏡6の回転角度の制御手段は、前記回転
軸の回りに前記X線全反射鏡6を回転させ、入射X線2
に対してX線全反射鏡6を設定角度に傾斜させるように
なっている。
The control means for controlling the rotation angle of the X-ray total reflection mirror 6 rotates the X-ray total reflection mirror 6 around the rotation axis, so that the incident X-ray 2
The total X-ray reflection mirror 6 is tilted at a set angle with respect to the target.

前記X線スリット7は、X線全反射鏡6で発生するけい
光X線や散乱X線を遮蔽するようになっている。
The X-ray slit 7 is designed to block fluorescent X-rays and scattered X-rays generated by the X-ray total reflection mirror 6.

前記入射X線検出器8は、入射X線強度を測定し得るよ
うになっている。
The incident X-ray detector 8 is capable of measuring incident X-ray intensity.

前記試料チャンバ9には、試料10のゴニオメータ11
が設置されており、このゴニオメータ11は入射X線2
に対する試料10の設置角度を制御するようになってい
る。
The sample chamber 9 includes a goniometer 11 for the sample 10.
is installed, and this goniometer 11 receives incident X-rays 2.
The installation angle of the sample 10 relative to the sample 10 is controlled.

前記試料透過X線検出器12は、試料10から発生する
けい光X線や2次電子、オー゛ジェ電子等の強度、およ
び試料10を透過する透過X線の強度を測定するように
なっている。
The sample transmitted X-ray detector 12 measures the intensity of fluorescent X-rays, secondary electrons, Auger electrons, etc. generated from the sample 10 and the intensity of transmitted X-rays transmitted through the sample 10. There is.

前記第1の架台13は、ブラケット17に設けられた回
転軸(図示せず)にヨーク13′を介して回動可能に支
持されている。また、第1の架台13には前記X線スリ
ット7と、入射X線検出器8と、ゴ二オメータ11を持
った試料チャンバ9と、試料透過X線検出器12とが搭
載されている。さらに、第1の架台13は第2の架台1
4に取り付けられたアクチュエータ15に連結されてい
る。
The first pedestal 13 is rotatably supported by a rotating shaft (not shown) provided on a bracket 17 via a yoke 13'. Furthermore, the first pedestal 13 is equipped with the X-ray slit 7 , an incident X-ray detector 8 , a sample chamber 9 having a goniometer 11 , and a sample-transmitting X-ray detector 12 . Furthermore, the first pedestal 13 is connected to the second pedestal 1
The actuator 15 is connected to the actuator 15 attached to the 4.

前記X線全反射鏡6の回転軸と、第1の架台13の回転
軸とは、中心が一致している。
The rotational axis of the X-ray total reflection mirror 6 and the rotational axis of the first mount 13 are centered.

前記第2の架台14は、脚16により高さおよび水平度
を調整可能に支持されている。
The second pedestal 14 is supported by legs 16 so that its height and horizontality can be adjusted.

前記アクチュエータ15は、第1の架台13を回転軸の
回りに回動させ、入射X線2に対して設定角度に傾斜さ
れたX線全反射鏡6に対して、試料10のX線照射位置
が全反射の条件に合うように制御可能に構成されている
The actuator 15 rotates the first pedestal 13 around the rotation axis, and adjusts the X-ray irradiation position of the sample 10 to the X-ray total reflection mirror 6 tilted at a set angle with respect to the incident X-rays 2. is configured to be controllable to meet the conditions of total internal reflection.

ところで、第3図はxm全反射鏡の特性例を示し、全反
射臨界X線エネルギーEcが10keVの場合のX線エ
ネルギーに対する反射率の変化を示している。
By the way, FIG. 3 shows an example of the characteristics of the xm total reflection mirror, and shows the change in reflectance with respect to the X-ray energy when the total reflection critical X-ray energy Ec is 10 keV.

7 keVのエネルギーのX線を試料10に照射する場
合、全反射臨界X線エネルギーEcを1okeVとすれ
ば、高調波の基本波(7keV)に対する強度比は0.
02以下であり、高調波の次数が高い程小さくなり、高
調波および高エネルギーの散乱X線を除去することがで
きる。
When the sample 10 is irradiated with X-rays with an energy of 7 keV, if the total reflection critical X-ray energy Ec is 1okeV, the intensity ratio of the harmonics to the fundamental wave (7keV) is 0.
02 or less, and the higher the order of harmonics, the smaller the harmonics, and it is possible to remove harmonics and high-energy scattered X-rays.

全反射臨界X線エネルギーEc(eV)、X線反射鏡6
の表面物質の密度ρ(g / al )と、X線の反射
角θ(ラジアン)は次式に示す関係となる6Ec=19
.8X7ρ/θ        −(L)いま、一つの
実施例としてX線反射鏡6の表面物質をNi膜とし、こ
の時の反射角θの最小値を6X10−3(ラジアン)と
すると、(1)式により全反射臨界X線エネルギーEC
の最大値は9 、8keVとなり、および7 keVま
での入射X線2の強度を大きく低下せずに高調波を除去
することが可能である。
Total reflection critical X-ray energy Ec (eV), X-ray reflector 6
The density ρ (g/al) of the surface substance and the X-ray reflection angle θ (radians) have the following relationship: 6Ec = 19
.. 8X7ρ/θ - (L) Now, as an example, if the surface material of the X-ray reflector 6 is a Ni film and the minimum value of the reflection angle θ is 6X10-3 (radian), then equation (1) is obtained. Total internal reflection critical X-ray energy EC
The maximum value of is 9.8 keV, and it is possible to remove harmonics without significantly reducing the intensity of incident X-rays 2 up to 7 keV.

入射X線2のエネルギーE(eV)とすると、高調波を
除去するための設定角度θ0は、X線全反射6の表面物
質がNi膜の場合、次式のようになる。
Assuming that the energy of the incident X-ray 2 is E (eV), the set angle θ0 for removing harmonics is as shown in the following equation when the surface material of the total X-ray reflection 6 is a Ni film.

θ0(ラジアン) =41.2/ E (eV)   
 ・= (2)そこで、前記X線全反射鏡6の回転角度
の制御手段により前記X線全反射!6をその回転軸の回
りに、入射X線2のエネルギーEとX線全反射鏡6の表
面物質により定まる設定角度θ0に回転させ、アクチュ
エータ15により第1の架台■3を前記X線全反射鏡6
の回転軸に一致させた回転軸の回りに回転させる。そし
て、第2図に示すように。
θ0 (radian) = 41.2/E (eV)
・= (2) Therefore, the total X-ray reflection is performed by means for controlling the rotation angle of the total X-ray reflection mirror 6! 6 is rotated around its rotation axis to a set angle θ0 determined by the energy E of the incident X-ray 2 and the surface material of the X-ray total reflection mirror 6, and the actuator 15 causes the first mount 3 to reflect the X-ray total reflection mirror 6. Mirror 6
Rotate around a rotation axis that coincides with the rotation axis of. And as shown in Figure 2.

X線全反射鏡6の設定角度がalの時は、その設定角度
OIのほぼ2倍の回転角度の位置に試料位置10aを合
わせ、X線全反射鏡6の設定角度が02の時は、その設
定角度θ2のほぼ2倍の回転角度の位置に試料位置ta
bを合わせる。
When the set angle of the X-ray total reflection mirror 6 is al, the sample position 10a is set at a position with a rotation angle approximately twice the set angle OI, and when the set angle of the X-ray total reflection mirror 6 is 02, The sample position ta is at a rotation angle approximately twice that of the set angle θ2.
Match b.

その結果、分光器やX線収束ミラーから出射されるX線
の基本波のエネルギーが4 keV以下であっても、そ
の高調波X線強度を1750以下にでき、また高エネル
ギーの散乱X線およびけい光X線強度を減衰させること
ができる。
As a result, even if the energy of the fundamental wave of X-rays emitted from a spectrometer or X-ray convergence mirror is 4 keV or less, the harmonic Fluorescent X-ray intensity can be attenuated.

しかも、X線全反射鏡6の回転軸と第1の架台13の回
転軸とを一致させているので、基本波のエネルギーを変
化させても、試料10上のX線照射位置が変化しないた
め、従来のEXAFS測定装置に比較して極めて質の高
いデータを収得することができる。
Moreover, since the rotation axis of the total X-ray reflection mirror 6 and the rotation axis of the first mount 13 are made to coincide with each other, even if the energy of the fundamental wave is changed, the X-ray irradiation position on the sample 10 does not change. , it is possible to obtain extremely high quality data compared to conventional EXAFS measurement equipment.

なお、本発明ではX線全反射鏡6の回転角度の制御手段
を第1の架台13の回転操作に連動させるようにしても
よい。
In the present invention, the control means for controlling the rotation angle of the total X-ray reflection mirror 6 may be linked to the rotation operation of the first mount 13.

〔発明の効果〕〔Effect of the invention〕

以上説明した本発明によれば、回動可能に架台を支持し
、この架台に少なくとも入射X線検出器と試料チャンバ
と試料透過X線検出器とを搭載し、前記入射X線検出器
の入射側に、回動可能にX線全反射鏡を設置し、架台の
回転軸とX線全反射鏡の回転軸とを一致させるとともに
、前記X線全反射鏡の回転角度を制御する制御手段と、
前記架台の回転角度制御手9段とを設けており、入射X
線とX線全反射鏡と試料のX線照射位置とが全反射の条
件に合うように制御できるので、入射X線の基本波のエ
ネルギーが4 keV以下であってもその高調波を除去
でき、また高エネルギーの散乱X線およびけい光X線強
度をも減衰でき、しかもX線全反射鏡の回転軸と架台の
回転軸とを一致させてぃるので、入射X線の基本波のエ
ネルギーを変化させても試料上のX線照射位置は変化し
ないため、高精度にEXAFSを測定し得る効果がある
According to the present invention described above, a pedestal is rotatably supported, at least an incident X-ray detector, a sample chamber, and a sample transmission X-ray detector are mounted on the pedestal, and the incident X-ray detector is A control means for rotatably installing an X-ray total reflection mirror on the side, aligning the rotation axis of the pedestal with the rotation axis of the X-ray total reflection mirror, and controlling the rotation angle of the X-ray total reflection mirror; ,
Nine stages of rotation angle control means for the mount are provided, and the incident X
Since the X-ray total reflection mirror and the X-ray irradiation position on the sample can be controlled to meet the conditions for total reflection, harmonics can be removed even if the fundamental wave energy of the incident X-ray is 4 keV or less. In addition, the intensity of high-energy scattered X-rays and fluorescent X-rays can be attenuated, and since the rotation axis of the total X-ray reflection mirror and the rotation axis of the mount are aligned, the energy of the fundamental wave of incident X-rays can be reduced. Since the X-ray irradiation position on the sample does not change even if the value is changed, there is an effect that EXAFS can be measured with high accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の一実施例を示す縦断面図、第2図
はx、s全反射鏡の回転角度と試料位置の関係を示す説
明図、第3図はX線全反射鏡の特性例を示すグラフであ
る。 2・・・入射X線、3,4・・・ミラーハウジング、5
・・・ミラー保持機構、6・・・X線全反射鏡、8・・
・入射X線検出器、9・・・試料チャンバ、10・・・
試料、11・・・試料用のゴニオメータ、12・・・試
料透過X線検出器。 13・・・回動可能な架台としての第1の架台、14・
・・第2の架台、15・・・第1の架台の回転角度を制
御する制御手段としてのアクチュエータ、17・・・X
線全反射鏡や第1の架台等を支持するブラケット。 代理人 弁理士   秋 本  正 実第2図
Fig. 1 is a longitudinal sectional view showing an embodiment of the device of the present invention, Fig. 2 is an explanatory diagram showing the relationship between the rotation angle of the x and s total reflection mirrors and the sample position, and Fig. 3 is an illustration of the X-ray total reflection mirror. It is a graph showing an example of characteristics. 2... Incident X-ray, 3, 4... Mirror housing, 5
...Mirror holding mechanism, 6...X-ray total reflection mirror, 8...
- Incident X-ray detector, 9...sample chamber, 10...
Sample, 11... Goniometer for sample, 12... Sample transmission X-ray detector. 13... A first pedestal as a rotatable pedestal, 14.
...Second mount, 15...Actuator as a control means for controlling the rotation angle of the first mount, 17...X
A bracket that supports the linear total reflection mirror, the first mount, etc. Agent Patent Attorney Tadashi Akimoto Figure 2

Claims (1)

【特許請求の範囲】[Claims] 回動可能に架台を支持し、この架台に少なくとも入射X
線検出器と試料チャンバと試料透過X線検出器とを搭載
し、前記入射X線検出器の入射側に、回動可能にX線全
反射鏡を設置し、架台の回転軸とX線全反射鏡の回転軸
とを一致させるとともに、前記X線全反射鏡の回転角度
を制御する制御手段と、前記架台の回転角度の制御手段
とを設けたことを特徴とする拡張X線吸収端微細構造測
定装置。
A frame is rotatably supported, and at least an incident
It is equipped with a radiation detector, a sample chamber, and a sample transmission X-ray detector, and a rotatable total X-ray reflection mirror is installed on the incident side of the incident X-ray detector, and An extended X-ray absorption edge microstructure, characterized in that it is provided with a control means for aligning the rotation axis of the reflecting mirror, and for controlling the rotation angle of the total X-ray reflection mirror, and a control means for controlling the rotation angle of the pedestal. Structure measurement device.
JP61000233A 1986-01-07 1986-01-07 Extended X-ray absorption edge fine structure measuring device Expired - Lifetime JPH0692943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61000233A JPH0692943B2 (en) 1986-01-07 1986-01-07 Extended X-ray absorption edge fine structure measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61000233A JPH0692943B2 (en) 1986-01-07 1986-01-07 Extended X-ray absorption edge fine structure measuring device

Publications (2)

Publication Number Publication Date
JPS62159031A true JPS62159031A (en) 1987-07-15
JPH0692943B2 JPH0692943B2 (en) 1994-11-16

Family

ID=11468248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61000233A Expired - Lifetime JPH0692943B2 (en) 1986-01-07 1986-01-07 Extended X-ray absorption edge fine structure measuring device

Country Status (1)

Country Link
JP (1) JPH0692943B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52126276A (en) * 1976-04-15 1977-10-22 Rigaku Denki Kogyo Kk Xxray spectrometer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52126276A (en) * 1976-04-15 1977-10-22 Rigaku Denki Kogyo Kk Xxray spectrometer

Also Published As

Publication number Publication date
JPH0692943B2 (en) 1994-11-16

Similar Documents

Publication Publication Date Title
EP0318012A2 (en) X-ray analyzer
JPS63501735A (en) Improved X-ray attenuation method and device
JP2019184610A (en) Apparatus and method for x-ray analysis with hybrid control of beam divergence
JPH0744967Y2 (en) X-ray fluorescence film thickness meter
US4535469A (en) X-Ray analysis apparatus having an adjustable stray radiation slit
US7860217B2 (en) X-ray diffraction measuring apparatus having debye-scherrer optical system therein, and an X-ray diffraction measuring method for the same
US2805341A (en) Diffractometer
US4358854A (en) Measuring devices for X-ray fluorescence analysis
JPS62159031A (en) Measuring device for fine structure of extended x-ray absorption edge
US3609370A (en) Radiation collimator for use in x-ray systems
US4580283A (en) Two-crystal X-ray spectrometer
KR100509301B1 (en) A shutter mechanism for a light irradiation apparatus
JP6352616B2 (en) X-ray measuring device
US2805343A (en) Diffractometer
US3073952A (en) X-ray diffraction apparatus
US5115460A (en) X-ray analysis apparatus comprising an adjustable slit diaphragm
JP2002031523A (en) Thin film measuring apparatus and method and thin film formation system
JP2925817B2 (en) 2-crystal X-ray monochromator
KR100429830B1 (en) X-ray electronic spectrum analyzer
JP2001141674A (en) Sample holder for measuring diffraction of obliquely emitted x-rays and apparatus and method for measuring diffraction of obliquely emitted x-rays using the same
JP2002005858A (en) Total reflection x-ray fluorescence analyzer
JPH05332958A (en) X-ray diffraction apparatus and position-sensitive gas-filled x-ray counter used for it
JP3710023B2 (en) Clack type slitting device
JP2584946Y2 (en) X-ray fluorescence analyzer
JPH04236348A (en) X-ray diffraction apparatus with wide range x-ray detector