JPS6215752B2 - - Google Patents

Info

Publication number
JPS6215752B2
JPS6215752B2 JP53121003A JP12100378A JPS6215752B2 JP S6215752 B2 JPS6215752 B2 JP S6215752B2 JP 53121003 A JP53121003 A JP 53121003A JP 12100378 A JP12100378 A JP 12100378A JP S6215752 B2 JPS6215752 B2 JP S6215752B2
Authority
JP
Japan
Prior art keywords
ignition
engine
output voltage
switching element
semiconductor switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53121003A
Other languages
Japanese (ja)
Other versions
JPS5546082A (en
Inventor
Masayuki Ozawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP12100378A priority Critical patent/JPS5546082A/en
Priority to US06/073,136 priority patent/US4273093A/en
Publication of JPS5546082A publication Critical patent/JPS5546082A/en
Publication of JPS6215752B2 publication Critical patent/JPS6215752B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P1/00Installations having electric ignition energy generated by magneto- or dynamo- electric generators without subsequent storage
    • F02P1/08Layout of circuits
    • F02P1/086Layout of circuits for generating sparks by discharging a capacitor into a coil circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Description

【発明の詳細な説明】 この発明は機関点火時期を任意の特性に制御可
能な無接点式機関点火装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a non-contact engine ignition system that can control engine ignition timing to desired characteristics.

従来、この種の機関点火装置は機関の回転に同
期した点火時期に発生する点火信号によりサイリ
スタやトランジスタの如き開閉素子を動作させて
点火コイルの1次電流を制御することにより2次
側に点火電圧を発生させている。このものは機関
の回転に同期した信号発電コイルに発生する点火
信号電圧をそのまま点火信号として開閉素子に供
給しているため点火信号の出力波形によつて点火
時期の進角特性が決定し本来機関に必要とされる
進角特性に応じきれない欠点があつた。
Conventionally, this type of engine ignition system controls the primary current of the ignition coil by operating a switching element such as a thyristor or transistor using an ignition signal generated at the ignition timing synchronized with the rotation of the engine to ignite the secondary side. Generates voltage. In this case, the ignition signal voltage generated in the signal generator coil synchronized with the rotation of the engine is directly supplied to the switching element as an ignition signal, so the ignition timing advance characteristic is determined by the output waveform of the ignition signal. The disadvantage was that it could not meet the advance angle characteristics required for

本発明は上記欠点に鑑み、機関点火時期の進角
特性を任意に制御して機関の要求する進角特性を
満足するようにした無接点式機関点火装置を提供
するものである。
In view of the above drawbacks, the present invention provides a non-contact type engine ignition system that arbitrarily controls the advance characteristics of engine ignition timing to satisfy the advance characteristics required by the engine.

以下、第1図に示す実施例について説明する。
第1図に於て、1は図示しない機関によつて駆動
される交流磁石発電機に内蔵され、機関の回転数
に同期して交流出力電圧を発生する発電コイル、
2はこの発電コイル1の交流出力を整流するダイ
オード、3はこの整流出力により充電されるコン
デンサ、4は点火コイル、5は点火プラグ、6は
半導体開閉素子であるサイリスタで、コンデンサ
3に充電された電荷を点火コイル4の1次コイル
に放出すべく放電回路を構成している。7はコン
デンサ3に充電された電荷により、点火コイル4
に発生した起電力を側路させて点火プラグ5に直
流放電を行わせるダイオード、8は本発明の要部
を構成する進角特性制御回路である。9は機関に
よつて駆動され機関の回転に同期して設定された
ある点火角度位置に出力電圧を発生する第1信号
発電機、10はこの信号発電機9の出力を整流す
るダイオード、11はこのダイオード10の整流
出力により充電されるコンデンサ、12は点火時
期決定用半導体開閉素子であるサイリスタで、サ
イリスタ12のアノードはコンデンサ11に接続
され、カソードはサイリスタ6のゲートに接続さ
れており、サイリスタ6のゲートにコンデンサ1
1の電荷を放電する放電路を構成している。13
は機関によつて駆動され機関の回転数の増減に伴
ない値が増減する交流出力電圧を発生する第2信
号発電機で、この信号発電機13と第1信号発電
機9は上述した交流磁石発電機に付属されてい
る。14はこの第2信号発電機13の交流出力の
うち一波をサイリスタ12のゲートに点弧信号と
して与えるダイオードで、このゲート回路は他の
回路とは完全に独立した閉回路である。
The embodiment shown in FIG. 1 will be described below.
In FIG. 1, reference numeral 1 denotes a generator coil that is built in an AC magnet generator driven by an engine (not shown) and generates an AC output voltage in synchronization with the rotational speed of the engine;
2 is a diode that rectifies the alternating current output of the generator coil 1; 3 is a capacitor that is charged by this rectified output; 4 is an ignition coil; 5 is a spark plug; 6 is a thyristor that is a semiconductor switching element; A discharge circuit is configured to discharge the accumulated charge to the primary coil of the ignition coil 4. 7 is the ignition coil 4 due to the electric charge charged in the capacitor 3.
A diode 8, which bypasses the electromotive force generated in the spark plug 5 and causes the spark plug 5 to perform DC discharge, is an advance characteristic control circuit that constitutes a main part of the present invention. 9 is a first signal generator that is driven by the engine and generates an output voltage at a certain ignition angle position set in synchronization with the rotation of the engine; 10 is a diode that rectifies the output of this signal generator 9; 11 is a diode that rectifies the output of the signal generator 9; The capacitor 12 charged by the rectified output of the diode 10 is a thyristor which is a semiconductor switching element for determining ignition timing.The anode of the thyristor 12 is connected to the capacitor 11, and the cathode is connected to the gate of the thyristor 6. Capacitor 1 on the gate of 6
This constitutes a discharge path for discharging one charge. 13
is a second signal generator that is driven by the engine and generates an AC output voltage whose value increases and decreases as the engine speed increases and decreases; this signal generator 13 and the first signal generator 9 are connected to the above-mentioned AC magnet. attached to the generator. Reference numeral 14 denotes a diode that supplies one wave of the AC output of the second signal generator 13 to the gate of the thyristor 12 as an ignition signal, and this gate circuit is a closed circuit completely independent of other circuits.

次にこのように構成された装置の動作を第2図
の動作波形図及び第3図の進角特性曲線図を参照
して説明する。
Next, the operation of the device configured as described above will be explained with reference to the operational waveform diagram in FIG. 2 and the advance angle characteristic curve diagram in FIG. 3.

ここで第2図に於けるイは第1信号発電機9の
出力電圧v1を示し、ロはコンデンサ11の端子間
の充電電圧vcを示し、ハは第2信号発電機13
の出力電圧v2を示し、ニはサイリスタ12のトリ
ガ時期と導通期間を示し、ホはサイリスタ6のト
リガ電圧vgを示しvtはサイリスタ12のトリガ
レベルを示す。尚、第1信号発電機9は機関点火
時期の最大進角度に対応する角度位置に短い周期
のパルス状の出力電圧v1を発生し、第2信号発電
機13は機関点火時期の立上り進角度に対応する
ように上述の出力電圧v1の短い周期よりこの周期
を含んだ広い周期の出力電圧v2を発生するように
構成されている。
Here, in FIG. 2, A indicates the output voltage v 1 of the first signal generator 9, B indicates the charging voltage vc between the terminals of the capacitor 11, and C indicates the second signal generator 13.
D indicates the trigger timing and conduction period of the thyristor 12, E indicates the trigger voltage vg of the thyristor 6 , and vt indicates the trigger level of the thyristor 12. The first signal generator 9 generates a short period pulse-like output voltage v 1 at an angular position corresponding to the maximum advance angle of the engine ignition timing, and the second signal generator 13 generates a short period pulse-like output voltage v 1 at an angular position corresponding to the maximum advance angle of the engine ignition timing. The output voltage v 2 is configured to generate an output voltage v 2 with a wider period including this period than the short period of the above-mentioned output voltage v 1 in order to correspond to this period.

第3図に於けるは従来の進角特性図を示し、
は本発明実施例により得られる進角特性図であ
る。
Figure 3 shows the conventional advance angle characteristic diagram,
is a lead angle characteristic diagram obtained by an example of the present invention.

まず、機関の回転によつて磁石発電機が駆動さ
れ、その発電コイル1に発生した交流出力はダイ
オード2により整流されてコンデンサ3を充電す
る。一方第1信号発電機9に発生する出力電圧v1
はダイオード10により整流されてコンデンサ1
1を充電する。而して、機関点火時期となり第2
信号発電機13に発生する出力電圧v2がトリガレ
ベルvtに達するとダイオード14を介してサイリ
スタ12のゲートに供給されるためサイリスタ1
2が導通しコンデンサ11の充電電荷vcはサイ
リスタ6のゲートに供給される。するとサイリス
タ6が導通しコンデンサ3の充電電荷が点火コイ
ル4の1次コイルに放出されるため2次コイルに
は点火電圧が発生し、この点火電圧を受けて、点
火プラグ5には火花放電が行われる。
First, a magnet generator is driven by the rotation of the engine, and the AC output generated in the generator coil 1 is rectified by the diode 2 to charge the capacitor 3. On the other hand, the output voltage v 1 generated in the first signal generator 9
is rectified by diode 10 and connected to capacitor 1
Charge 1. Then, the engine ignition timing becomes the second
When the output voltage v2 generated in the signal generator 13 reaches the trigger level vt, it is supplied to the gate of the thyristor 12 via the diode 14, so that the thyristor 1
2 becomes conductive, and the charge VC of the capacitor 11 is supplied to the gate of the thyristor 6. Then, the thyristor 6 becomes conductive and the charge in the capacitor 3 is discharged to the primary coil of the ignition coil 4, so an ignition voltage is generated in the secondary coil, and in response to this ignition voltage, a spark discharge is generated in the ignition plug 5. It will be done.

ここで、進角制御回路8による進角動作を詳細
に説明するに、第1信号発電機9に発生する出力
電圧V1はダイオード10を介して整流されコン
デンサ11を充電することにより、コンデンサ1
1の充電々圧は第1信号発電機9の出力電圧V1
になるものでありまた動作説明の便宜上機関回転
数の範囲を低回転数n1と中回転数n2と高回転数n3
(n1<n2<n3)とに分けることにする。
Here, to explain in detail the advance angle operation by the advance angle control circuit 8, the output voltage V 1 generated in the first signal generator 9 is rectified via the diode 10 and charges the capacitor 11.
1 is the output voltage of the first signal generator 9 V 1
Also, for the convenience of explaining the operation, the range of engine rotation speeds is defined as low rotation speed n 1 , medium rotation speed n 2 , and high rotation speed n 3.
(n 1 < n 2 < n 3 ).

今機関の回転数nが低回転数n1から中回転数n2
までの上昇回転数範囲に於て、第2信号発電機1
3の交流出力電圧v2もその回転上昇に伴つて増加
する。而して、サイリスタ12のトリガレベルvt
が一定であるので交流出力電圧v2が増加すれば交
流出力電圧v2が、トリガレベルvtに達する角度位
置θが回転数の上昇に伴つて早く(進角)なるの
で、サイリスタ12の導通開始時期はθからθ
に進められる。従つて、サイリスタ6のゲート
へのトリガ電圧vgの供給時期はθからθ
なる。即ち、機関の回転数nが上昇するにつれて
点火時期は第3図に示す通りθからθに進角
するのである。次に機関の回転数nが中回転数n2
から更に上昇して高回転数n3になれば第2信号発
電機13の交流出力電圧v2も更に増加するためそ
れに伴つてサイリスタ12のトリガレベルvtに達
する角度位置θが早められサイリスタ12の導通
開始時期は第3図に示す通りθとなる。而し
て、機関回転数nが高回転数n3以上になればそれ
に伴つて第2信号発電機13の出力電圧v2も増加
してサイリスタ12の導通開始時期をθへと早
めようとするのであるが、このとき第1信号発電
機9の出力電圧v1は未だ発生しておらず、またコ
ンデンサ11も充電電荷vcを蓄えていないため
サイリスタ12の導通開始時期は早められること
なくθの時期となる。
The current engine speed n is from low rotation speed n 1 to medium rotation speed n 2
In the rising rotation speed range up to, the second signal generator 1
The AC output voltage v 2 of No. 3 also increases as the rotation increases. Therefore, the trigger level of thyristor 12 vt
is constant, so if the AC output voltage v 2 increases, the angular position θ at which the AC output voltage v 2 reaches the trigger level vt becomes earlier (advanced) as the rotation speed increases, so the thyristor 12 starts conducting. The period is from θ 1 to θ
You can proceed to 2 . Therefore, the timing at which the trigger voltage vg is supplied to the gate of the thyristor 6 changes from θ 1 to θ 2 . That is, as the engine speed n increases, the ignition timing advances from θ 1 to θ 2 as shown in FIG. Next, the engine speed n is medium rotation speed n 2
As the rotational speed increases further from n3 to a high rotational speed n3, the AC output voltage v2 of the second signal generator 13 also increases further, so that the angular position θ that reaches the trigger level vt of the thyristor 12 is brought forward, and the rotational speed of the thyristor 12 is accelerated. The timing at which conduction starts is θ 3 as shown in FIG. Therefore, when the engine speed n becomes higher than the high speed n3 , the output voltage v2 of the second signal generator 13 also increases, and the timing at which the thyristor 12 starts conducting is brought forward to θ4 . However, at this time, the output voltage v1 of the first signal generator 9 has not yet been generated, and the capacitor 11 has not stored the charging charge vc, so the timing at which the conduction of the thyristor 12 starts is not advanced and θ It's time for 3 .

即ち、機関回転数nが高回転数n3以上になれば
第2信号発電機13の出力電圧v2によつてサイリ
スタ12は導通可能な状態を保持しており、そう
してθの角度位置になると第1信号発電機9に
発生する出力電圧v1がサイリスタ12を通じてサ
イリスタ6のゲートにトリガ電圧vgとして与え
られサイリスタ6は導通する。従つて、機関の点
火時期は第3図に示すθを保持しそれ以上に進
角することはない。
That is, when the engine rotational speed n becomes higher than the high rotational speed n3 , the thyristor 12 maintains a conductive state by the output voltage v2 of the second signal generator 13, and the angle of θ3 When the position is reached, the output voltage v 1 generated in the first signal generator 9 is applied as a trigger voltage vg to the gate of the thyristor 6 through the thyristor 12, and the thyristor 6 becomes conductive. Therefore, the ignition timing of the engine is maintained at θ 3 shown in FIG. 3 and is not advanced any further.

以上のように、この実施例にあつては進角度θ
に対応する機関回転数n3までの回転範囲は第1
信号発電機9の出力電圧v1をコンデンサ11に一
時蓄えておき、機関回転数nの上昇に伴つて増加
する第2信号発電機13の出力電圧v2によつてサ
イリスタ12の導通開始時期を早めこのサイリス
タ12を通じてコンデンサ11の充電電荷vcを
サイリスタ6に供給して導通させることにより機
関回転数nが低回転数n1から中回転数n2を経て高
回転数n3への上昇に応動して点火時期θはθ
θ,θへの自動的に進角する。そして、機関
回転数nが高回転数n3以上になれば第2信号発電
機13の出力電圧n2が第1信号発電機9の出力電
圧v1の発生前にサイリスタ12を導通状態に保持
させているため第1信号発電機9に一定時期に発
生する出力電圧v1によりサイリスタ6を導通させ
るので進角はθまでとなり、これより進角する
ことはなく、従つて一定進角度即ち最大進角度と
なる。
As mentioned above, in this embodiment, the advance angle θ
The engine speed n corresponding to 3 is the rotation range up to 3 .
The output voltage v 1 of the signal generator 9 is temporarily stored in the capacitor 11, and the timing at which the thyristor 12 starts conducting is determined by the output voltage v 2 of the second signal generator 13, which increases as the engine speed n increases. By early supplying the charged charge vc of the capacitor 11 to the thyristor 6 through this thyristor 12 and making it conductive, the engine speed n responds to the rise from the low speed n1 to the medium speed n2 and then to the high speed n3 . Then, the ignition timing θ is θ 1 ,
The angle is automatically advanced to θ 2 and θ 3 . Then, when the engine speed n becomes higher than the high speed n3 , the output voltage n2 of the second signal generator 13 maintains the thyristor 12 in a conductive state before the output voltage v1 of the first signal generator 9 is generated. Since the thyristor 6 is made conductive by the output voltage v 1 generated in the first signal generator 9 at a certain time, the advance angle is up to θ 3 , and there is no advance beyond this point. Maximum advance angle.

尚、本実施例によつて第4図に示す進角遅角特
性曲線図を得ることも可能である。即ち、磁石発
電機を使用して発電するものにあつては電機子反
作用による影響が顕著に現われ、従つて第1図実
施例に於ける第2信号発電機13の出力電圧v2
高回転数になると出力電圧v2が第4図のに示す
通り立下る特性を示す。
Incidentally, according to this embodiment, it is also possible to obtain the advance angle/retard angle characteristic curve shown in FIG. 4. That is, in the case of generating electricity using a magnet generator, the influence of armature reaction is noticeable, and therefore the output voltage v2 of the second signal generator 13 in the embodiment of FIG. 1 also has a high rotation speed. 4, the output voltage v 2 exhibits a characteristic of falling as shown in FIG. 4.

この特性を利用すれば回転数n5に於ける最大進
角の状態から機関点火時期θを機関回転数nの上
昇に伴つて順次遅角することができる。
By utilizing this characteristic, the engine ignition timing θ can be sequentially retarded as the engine speed n increases from the maximum advance state at the engine speed n5 .

第5図は信号制御回路8の第2の発明実施例を
示すもので第6図のニに示す立上りの急峻な出力
電圧v3を発生する第3信号発電機15をダイオー
ド16を介してサイリスタ12のゲート、カソー
ド間に接続している。即ち、第2信号発電機13
に並列接続しているのである。第6図に於けるホ
は第2第3信号発電機13,15の合成出力電圧
v4を示す。
FIG. 5 shows a second embodiment of the signal control circuit 8, in which a third signal generator 15 that generates the output voltage v3 with a steep rise shown in FIG. 12 gates are connected between the cathodes. That is, the second signal generator 13
are connected in parallel. E in Fig. 6 is the combined output voltage of the second and third signal generators 13 and 15.
Indicates v 4 .

その動作を第6図の動作波形図及び第7図の進
角特性曲線図を参照して説明するに、先ず機関回
転数nが回転数n1に達するまで第2信号発電機1
3の出力電圧v2は未だトリガ電圧vtに達する電圧
値ではなく、一方第3信号発電機15の急峻な出
力電圧v4は機関始動可能な回転数に於てもトリガ
電圧vtに達している。従つて、サイリスタ12の
ゲートには第3信号発電機15の急峻な出力電圧
v3と第2信号発電機13の出力電圧v2との合成電
圧v4が印加され、その結果第3信号発電機15の
急峻な出力電圧v3によつてサイリスタ12は導通
される。この導通によりコンデンサ11の充電電
荷vcはサイリスタ12を通じてサイリスタ6に
供給されその導通開始時期はθとなり、これは
第2信号発電機13の出力電圧v2がトリガレベル
vtに達するまで継続される。即ち、機関回転数n
がn1まではサイリスタ12の導通開始時期は第3
信号発電機15の急峻な出力電圧v4によつて決定
され、しかも一定を保持し続ける。以後の動作は
第1図実施例と同様であるので省略する。この実
施例にあつても第4図に示す遅角特性を付加する
ことは可能である。
To explain the operation with reference to the operating waveform diagram in FIG. 6 and the advance angle characteristic curve diagram in FIG. 7, first , the second signal generator 1
The output voltage v2 of the third signal generator 15 has not yet reached the voltage value that reaches the trigger voltage vt, while the steep output voltage v4 of the third signal generator 15 has reached the trigger voltage vt even at a rotation speed that allows the engine to start. . Therefore, the steep output voltage of the third signal generator 15 is applied to the gate of the thyristor 12.
A composite voltage v 4 of v 3 and the output voltage v 2 of the second signal generator 13 is applied, and as a result, the thyristor 12 is made conductive by the steep output voltage v 3 of the third signal generator 15. Due to this conduction, the charge vc of the capacitor 11 is supplied to the thyristor 6 through the thyristor 12, and its conduction starts at θ 1 , which means that the output voltage v 2 of the second signal generator 13 is at the trigger level.
Continues until vt is reached. That is, engine speed n
Until n 1 , the thyristor 12 starts conducting at the third
It is determined by the steep output voltage v 4 of the signal generator 15 and continues to remain constant. The subsequent operations are the same as those in the embodiment shown in FIG. 1, and will therefore be omitted. Even in this embodiment, it is possible to add the retardation characteristic shown in FIG. 4.

尚、CDI点火に限らず、AC点火等他の点火装
置にも適用できる。また、サイリスタ12はトラ
ンジスタ等一般的なスイツチング手段でもよくま
た進角特性として零進角と進角の両特性を得るこ
とも可能である。
Note that the present invention is applicable not only to CDI ignition but also to other ignition devices such as AC ignition. Further, the thyristor 12 may be a general switching means such as a transistor, and it is also possible to obtain both zero advance angle and advance angle characteristics as advance angle characteristics.

以上の通りこの発明は第1に進角特性と最大進
角特性の両方が電気的に得られ、第2に零進角特
性と進角特性と更に最大進角特性の三者が電気的
に得られるもので機関が必要とする進角特性に応
じることができる実用上優れたものである。
As described above, in this invention, firstly, both the advance angle characteristic and the maximum advance angle characteristic can be obtained electrically, and secondly, the three advance angle characteristics, the zero advance angle characteristic, the advance angle characteristic, and the maximum advance angle characteristic can be obtained electrically. The obtained product is excellent in practical use because it can meet the advance angle characteristics required by the engine.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す電気回路
図、第2図はその動作波形図、第3図は進角特性
曲線図、第4図は他の進角特性曲線図、第5図は
第2の発明の一実施例を示す電気回路図、第6図
はその動作波形図、第7図は進角特性曲線図であ
る。 図に於て、1は発電コイル、2,7,10,1
4,16はダイオード、3,11はコンデンサ、
4は点火コイル、5は点火プラグ、6,12はサ
イリスタ、8は進角制御回路、9は第1信号発電
機、13は第2信号発電機、15は第3信号発電
機である。尚、各図中同一符号は同一部分を示
す。
Fig. 1 is an electric circuit diagram showing one embodiment of the present invention, Fig. 2 is its operating waveform diagram, Fig. 3 is a lead angle characteristic curve diagram, Fig. 4 is another lead angle characteristic curve diagram, and Fig. 5 6 is an electric circuit diagram showing an embodiment of the second invention, FIG. 6 is an operating waveform diagram thereof, and FIG. 7 is a lead angle characteristic curve diagram. In the figure, 1 is the generator coil, 2, 7, 10, 1
4 and 16 are diodes, 3 and 11 are capacitors,
4 is an ignition coil, 5 is a spark plug, 6 and 12 are thyristors, 8 is an advance control circuit, 9 is a first signal generator, 13 is a second signal generator, and 15 is a third signal generator. Note that the same reference numerals in each figure indicate the same parts.

Claims (1)

【特許請求の範囲】 1 点火コイルの1次電流を点火用半導体開閉素
子によつて制御することにより点火電圧を発生さ
せるものに於て、機関の回転に同期し上記機関の
最大進角位置で比較的狭い幅のパルス状出力電圧
を発生する第1の点火信号発生手段、上記機関の
最大進角位置に達するまでの点火位置で機関点火
を行なう際、上記第1の点火信号発生手段により
充電され、上記機関の点火時期に充電電荷を放電
するコンデンサ、このコンデンサと上記点火用半
導体開閉素子とに接続され、上記点火用半導体開
閉素子を駆動する点火時期決定用半導体開閉素
子、この点火時期決定用半導体開閉素子の制御回
路に設けられ上記機関の回転数増減に伴なつて波
高値が増減し、且つ上記第1の点火信号発生手段
によるパルス状出力電圧の発生期間を含み、該パ
ルス状出力電圧より広い波形幅をもつた出力電圧
を発生する第2の点火信号発生手段を備え、上記
機関の最大進角位置は上記第1の点火信号発生手
段により、上記最大進角位置に達するまでは上記
第2の点火信号発生手段の出力電圧によつて各々
決定するようにした無接点式機関点火装置。 2 第2の点火信号発生手段を含む点火時期決定
用半導体開閉素子の制御回路を独立した閉回路と
することを特徴とする特許請求の範囲第1項記載
の無接点式機関点火装置。 3 点火コイルの1次電流を点火用半導体開閉素
子によつて制御することにより点火電圧を発生さ
せるものに於て、機関の回転に同期し上記機関の
最大進角位置で比較的狭い幅のパルス状出力電圧
を発生する第1の点火信号発生手段、上記機関の
最大進角位置に達するまでの点火位置で機関点火
を行なう際、上記第1の点火信号発生手段により
充電され、上記機関の点火時期に充電電荷を放電
するコンデンサ、このコンデンサと上記点火用半
導体開閉素子とに接続され、上記点火用半導体開
閉素子を駆動する点火時期決定用半導体開閉素
子、この点火時期決定用半導体開閉素子の制御回
路に設けられ、上記機関の回転数増減に伴なつて
波高値が増減し、且つ上記第1の点火信号発生手
段によるパルス状出力電圧の発生期間を含み、該
パルス状出力電圧より広い波形幅をもつた出力電
圧を発生する第2の点火信号発生手段、上記第2
の信号発生手段による出力電圧の最大値付近にお
いて該出力電圧より急峻な出力電圧を発生し、上
記第2の信号発生手段による出力電圧と合成され
て上記点火時期決定用半導体開閉素子を駆動する
第3の点火信号発生手段を備えた無接点式機関点
火装置。
[Claims] 1. In a device that generates an ignition voltage by controlling the primary current of an ignition coil by an ignition semiconductor switching element, the ignition voltage is generated in synchronization with the rotation of the engine and at the maximum advance position of the engine. A first ignition signal generating means generates a pulsed output voltage with a relatively narrow width, and when the engine is ignited at an ignition position until the maximum advance position of the engine is reached, the first ignition signal generating means charges the engine. a capacitor that discharges a charged charge at the ignition timing of the engine; a semiconductor switching element for determining the ignition timing that is connected to the capacitor and the semiconductor switching element for ignition and drives the semiconductor switching element for ignition; and a semiconductor switching element for determining the ignition timing; provided in the control circuit of the semiconductor switching element for the engine, whose peak value increases and decreases as the rotational speed of the engine increases and decreases, and includes a period during which the pulse-shaped output voltage is generated by the first ignition signal generating means, and the pulse-shaped output A second ignition signal generation means generates an output voltage having a waveform width wider than the voltage, and the maximum advance position of the engine is determined by the first ignition signal generation means until the maximum advance position is reached. A non-contact type engine ignition system, each of which is determined by the output voltage of the second ignition signal generating means. 2. The contactless engine ignition system according to claim 1, wherein the control circuit for the semiconductor switching element for ignition timing determination including the second ignition signal generating means is an independent closed circuit. 3 In devices that generate ignition voltage by controlling the primary current of the ignition coil by an ignition semiconductor switching element, a relatively narrow pulse pulse is generated in synchronization with engine rotation and at the maximum advance position of the engine. When the engine is ignited at the ignition position until the maximum advance position of the engine is reached, the first ignition signal generating means generates an output voltage of A capacitor that discharges a charged charge at the timing, a semiconductor switching element for determining ignition timing that is connected to the capacitor and the semiconductor switching element for ignition, and that drives the semiconductor switching element for ignition, and control of the semiconductor switching element for determining the ignition timing. a waveform width that is provided in the circuit, whose peak value increases or decreases as the rotational speed of the engine increases or decreases, and which includes a generation period of the pulsed output voltage by the first ignition signal generating means and is wider than the pulsed output voltage; a second ignition signal generating means for generating an output voltage having an output voltage of
A second signal generating means generates an output voltage that is steeper than the output voltage near the maximum value of the output voltage, and is combined with the output voltage of the second signal generating means to drive the ignition timing determining semiconductor switching element. Non-contact type engine ignition system equipped with 3 ignition signal generation means.
JP12100378A 1978-09-29 1978-09-29 Contactless engine igniter Granted JPS5546082A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP12100378A JPS5546082A (en) 1978-09-29 1978-09-29 Contactless engine igniter
US06/073,136 US4273093A (en) 1978-09-29 1979-09-06 Non-contactor ignition system for internal combustion engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12100378A JPS5546082A (en) 1978-09-29 1978-09-29 Contactless engine igniter

Publications (2)

Publication Number Publication Date
JPS5546082A JPS5546082A (en) 1980-03-31
JPS6215752B2 true JPS6215752B2 (en) 1987-04-09

Family

ID=14800367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12100378A Granted JPS5546082A (en) 1978-09-29 1978-09-29 Contactless engine igniter

Country Status (2)

Country Link
US (1) US4273093A (en)
JP (1) JPS5546082A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3032173C2 (en) * 1979-08-27 1985-01-10 Mitsubishi Denki K.K., Tokio/Tokyo Magneto ignition device.
US4380224A (en) * 1981-07-31 1983-04-19 The Bendix Corporation Ignition system for an internal combustion engine
DE3532831A1 (en) * 1984-09-13 1986-04-17 Honda Giken Kogyo K.K., Tokio/Tokyo IGNITION DEVICE
US4577609A (en) * 1984-12-07 1986-03-25 Outboard Marine Corporation CD ignition system with spark retard in neutral
US4611570A (en) * 1985-04-30 1986-09-16 Allied Corporation Capacitive discharge magneto ignition system
SE453526B (en) * 1986-05-14 1988-02-08 Saab Scania Ab PROCEDURE FOR controlling the spark ignition of an internal combustion engine ignition system as well as an arrangement for carrying out the procedure
WO2004085836A1 (en) * 2003-03-27 2004-10-07 Vladimir Stepanovich Dubinin Ionizer
CN1998261A (en) * 2003-04-11 2007-07-11 斯特拉泰克安全公司 Ignition apparatus and method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3599615A (en) * 1969-05-29 1971-08-17 Motorola Inc Spark advance mechanism for solid state ignition systems
US3863616A (en) * 1971-09-13 1975-02-04 Outboard Marine Corp Capacitor discharge system with speed control sub-circuit
US3960129A (en) * 1972-03-10 1976-06-01 Robert Bosch G.M.B.H. Compensated semiconductor ignition system for internal combustion engines
US4034731A (en) * 1975-03-18 1977-07-12 Kokusan Denki Co., Ltd. Ignition system for an internal combustion engine
US4036201A (en) * 1975-04-29 1977-07-19 R. E. Phelon Company, Inc. Single core condenser discharge ignition system
JPS59705B2 (en) * 1976-06-09 1984-01-07 株式会社日立製作所 internal combustion engine ignition system
US4176643A (en) * 1977-07-21 1979-12-04 The Economy Engine Company Pulse generating and distributing circuits for internal combustion engines or the like
JPS5427635A (en) * 1977-07-30 1979-03-01 Nippon Denso Co Ltd Non-contact igniter of internal combustion engine

Also Published As

Publication number Publication date
JPS5546082A (en) 1980-03-31
US4273093A (en) 1981-06-16

Similar Documents

Publication Publication Date Title
US4473050A (en) Capacitor charge and discharge type ignition device
JPS6215752B2 (en)
US4478200A (en) Electronic ignition system for internal combustion engine capable of supplying electric power to auxiliary unit
US4558683A (en) Ignition system in internal combustion engine
JPH0328590B2 (en)
US4982717A (en) Ignition system for an engine with a reverse-rotation preventing function
US4763045A (en) Spark ignitor generated by capacitor discharge synchronized with alternate current power frequency
JPH0663499B2 (en) Capacitor charge / discharge ignition device
US4827891A (en) Ignition apparatus for preventing unnecessary charging in an internal combustion engine
JPS5824628B2 (en) engine ignition system
JPS5844271A (en) Capacitor charge-and-discharge type ignition system
JPS6316867Y2 (en)
JP2927128B2 (en) Ignition system for condenser discharge type multi-cylinder internal combustion engine
JPS5914970U (en) capacitive discharge igniter
JPS58135363A (en) Ignition timing controlling apparatus for internal-combustion engine
JPS6311335Y2 (en)
JPS6316868Y2 (en)
JPH066229Y2 (en) Internal combustion engine ignition device
JPS6240125Y2 (en)
JPH0722603Y2 (en) Ignition device
JP2848472B2 (en) Ignition device for internal combustion engine
JPH045737Y2 (en)
JPS6242157B2 (en)
JPS6338546B2 (en)
JPS60256564A (en) Ignitor for internal-combustion engine