JPS62157526A - Multipoint monitoring system - Google Patents

Multipoint monitoring system

Info

Publication number
JPS62157526A
JPS62157526A JP29803885A JP29803885A JPS62157526A JP S62157526 A JPS62157526 A JP S62157526A JP 29803885 A JP29803885 A JP 29803885A JP 29803885 A JP29803885 A JP 29803885A JP S62157526 A JPS62157526 A JP S62157526A
Authority
JP
Japan
Prior art keywords
light
optical fiber
optical
loss
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29803885A
Other languages
Japanese (ja)
Other versions
JPH0551089B2 (en
Inventor
Takahiro Asai
孝弘 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP29803885A priority Critical patent/JPS62157526A/en
Publication of JPS62157526A publication Critical patent/JPS62157526A/en
Publication of JPH0551089B2 publication Critical patent/JPH0551089B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To facilitate the estimation of the point to be monitored, by providing a position display unit close to a light loss changing mechanism. CONSTITUTION:Light emitted from a central unit 1 receives a Rayleigh scattering at each point of an optical fiber 5 and the return light thereof is detected with a receiver 9. Light passing through position display units 12a-12c of the optical fiber 5 suffers a specific loss and losses 21a-21c are created on the return light due to the Rayleigh scattering from a farther optical fiber 5. Light passing through a light loss changing mechanisms 7a-7c suffers a loss due to a change in the state, which causes steps 22a-22c in the return light. This condition is shown on a display unit 12 and no change in the step 22b is observed. Thus, the mechanism 7b is determined to be OFF.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、多点の状態を監視するシステムに係り、特に
1本の光ファイバで光ファイバに沿った多点の情報を収
集することができる光TDR法(時間領域反射測定法)
による多点監視システムに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a system for monitoring the status of multiple points, and in particular, a system that can collect information at multiple points along an optical fiber using one optical fiber. Optical TDR method (time domain reflectometry)
Concerning a multi-point monitoring system.

[従来の技術] 多点の情報を収集する方法の1つに光TDR法がある。[Conventional technology] One of the methods for collecting information from multiple points is the optical TDR method.

この光TDR法を用いた従来の多点監視システムの構成
図を第4図に示す。このシステムは光ファイバに適宜間
隔を隔てて、監視対象の状態に応じて光ファイバを伝送
される光の損失を増減変化させる光損失変化機構を設け
、光TDR法を用いて、光損失変化機構が設置された各
点の監視対象の状態を検出しようとするものである。す
なわち、中実装置1内の発光素子2がパルス発生器3か
らのパルス信号によりパルス光を発生し、このパルス光
は方向性結合器4を介して光ファイバ5に入射する。光
フ7イバ5には光学的な不連続点、例えば光コネクタ6
・光損失変化機構7・終端8などがあり、ここで光ファ
イバ5を伝播する光は反射され入射側へと戻る。また、
光ファイバ5の連続点からもレイリー散乱による戻り光
がある。これらの戻り光は方向性結合器4により取り出
され光受信器9へと送られて光電変換される。
FIG. 4 shows a configuration diagram of a conventional multi-point monitoring system using this optical TDR method. This system installs optical loss changing mechanisms at appropriate intervals in the optical fiber to increase or decrease the loss of light transmitted through the optical fiber depending on the condition of the monitored object, and uses the optical TDR method to create an optical loss changing mechanism. The system attempts to detect the status of the monitored object at each point where the system is installed. That is, the light emitting element 2 in the solid device 1 generates pulsed light in response to a pulse signal from the pulse generator 3, and this pulsed light enters the optical fiber 5 via the directional coupler 4. The optical fiber 5 has an optical discontinuity point, for example, an optical connector 6.
- There is an optical loss changing mechanism 7, a terminal end 8, etc., where the light propagating through the optical fiber 5 is reflected and returns to the incident side. Also,
There is also return light due to Rayleigh scattering from the continuous points of the optical fiber 5. These returned lights are extracted by the directional coupler 4, sent to the optical receiver 9, and photoelectrically converted.

第5図(イ)はパルス発生器3の出力波形、(ロ)は光
受信器9により検出された戻り光の出力波形、(ハ)は
(ロ)の戻り光の出力波形を拡大視したものであり、い
ずれも横方向に時間を、縦方向に電圧をとっである。第
5図(ハ)において、51は光ファイバ5の入射端面に
おけるフレネル反射と損失、52は光コネクタ6におけ
るフレネル反射と損失、53は光損失変化機構7におけ
る損失、54は終端8におけるフレネル反射によるレベ
ル変化を示す。発光素子2からはパルス光が周期的に入
射されるので、パルス発生器3の周期で同期をとればオ
シロスコープ10には第5図(ハ)のような静止した波
形が見られる。さらに、波形解析回路11によって入射
パルス光の入射時点と損失時点との間の時間間隔(例え
ば第5図(ハ)のT)を測定すれば、×=T/2v(v
は光ファイバ5の中の光の伝播速度、×は光ファイバ5
の入射端から光損失が発生した箇所までの距離)より、
どの位置に不連続点があるかがわかる。
Figure 5 (a) shows the output waveform of the pulse generator 3, (b) shows the output waveform of the return light detected by the optical receiver 9, and (c) shows an enlarged view of the output waveform of the return light in (b). In both cases, time is measured in the horizontal direction and voltage is measured in the vertical direction. In FIG. 5(c), 51 is Fresnel reflection and loss at the input end face of optical fiber 5, 52 is Fresnel reflection and loss at optical connector 6, 53 is loss at optical loss changing mechanism 7, and 54 is Fresnel reflection at terminal end 8. shows the level change due to Since pulsed light is periodically incident from the light emitting element 2, if synchronization is achieved with the period of the pulse generator 3, a stationary waveform as shown in FIG. 5(c) can be seen on the oscilloscope 10. Furthermore, if the waveform analysis circuit 11 measures the time interval (for example, T in FIG. 5(c)) between the point of incidence of the incident pulsed light and the point of loss,
is the propagation speed of light in the optical fiber 5, × is the propagation speed of the optical fiber 5
(distance from the incident end to the point where optical loss occurs),
You can see where the discontinuity point is.

なお、光損失変化機構7は監視する対象もしくは物理量
の状態く例えば、リレーがON #S OF Fか、或
いはおもりが落下したか否か等)によって光ファイバ5
の局所的な光損失を増減変化させるものであり、例えば
第6図に示すように光ファイバ5をループ状に束ねたも
のを2枚の受圧板61により挟持したものから構成され
る。この場合には、圧力印加の有無によって光損失が増
減される。
The optical loss changing mechanism 7 changes the optical fiber 5 depending on the state of the object or physical quantity to be monitored (for example, whether a relay is ON, whether a weight has fallen, etc.).
For example, as shown in FIG. 6, it is made up of a loop-shaped bundle of optical fibers 5 held between two pressure-receiving plates 61. In this case, optical loss is increased or decreased depending on whether or not pressure is applied.

[発明が解決しようとする問題点] 上記の多点監視システムは1本の光ファイバのみを用い
て多数の監視対象点における物理量のアナログ計測ある
いはオン/オフ計測を行なうことができるという利点を
有している。
[Problems to be Solved by the Invention] The multi-point monitoring system described above has the advantage of being able to perform analog measurement or on/off measurement of physical quantities at a large number of monitoring points using only one optical fiber. are doing.

しかしながら、監視対象点が多く且つこれらの点が不規
則に並んでいる場合には、反射波形から光損失がどの監
視対象点で生じたものかを判断するのに手間がかかると
共に判断の正確さが低下するという問題があった。
However, when there are many monitoring points and these points are arranged irregularly, it is time-consuming to determine from the reflected waveform which monitoring point the optical loss has occurred, and the accuracy of the judgment is difficult. There was a problem that the

さらに、オン/オフ計測を行う場合、所定の現象(オン
あるいはオフ現象)が生起していないとぎには反射波形
に光損失が生じないので、反射波形上において監視対象
点がどこにあるのか判断することができず、観測に不便
を生じてしまう。
Furthermore, when performing on/off measurement, there is no optical loss in the reflected waveform unless a predetermined phenomenon (on or off phenomenon) occurs, so it is difficult to determine where the monitoring target point is on the reflected waveform. This results in inconvenience for observation.

[発明の目的] この発明は以上の従来技術の問題点を解消すべく創案さ
れたものであり、この発明の目的は、監視対象点の位置
の割り出しを容易に行うことができる多点監視システム
を提供することにある。
[Object of the Invention] This invention was devised to solve the problems of the prior art described above, and an object of the invention is to provide a multi-point monitoring system that can easily determine the position of a point to be monitored. Our goal is to provide the following.

[発明の概要] 上記の目的を達成するために、この発明はパルス光を発
光する光源と、光源からのパルス光を光ファイバへ送出
すると共に光ファイバからの戻り光を取り出すための方
向性結合器と、光ファイバに適宜間隔を隔てて複数設け
られ監視対象の状態に応じて光ファイバを伝送される光
の損失を増減変化させる光損失変化機構と、該光損失変
化機構に近接して設けられ所定の光損失を有する位置表
示器と、方向性結合器により取り出された戻り光の波形
変化から位置表示器による光損失を目印として光損失変
化機構が設置された各点の位置を割り出すと共にこれら
の点における監視対象の状態を検出する信号処理系とを
備えたものである。
[Summary of the Invention] In order to achieve the above object, the present invention includes a light source that emits pulsed light, and a directional coupling for transmitting the pulsed light from the light source to an optical fiber and extracting the returned light from the optical fiber. a plurality of optical loss changing mechanisms that are provided at appropriate intervals on the optical fiber and that increase or decrease the loss of light transmitted through the optical fiber depending on the state of the monitored object; The position indicator has a predetermined optical loss, and the position of each point where the optical loss changing mechanism is installed is determined based on the waveform change of the return light taken out by the directional coupler, using the optical loss due to the position indicator as a landmark. It is equipped with a signal processing system that detects the state of the monitored object at these points.

[実施例] 以下、本発明の実施例を添付図面に従って説明する。[Example] Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図は本発明の一実施例に係る多点監視システムの構
成図である。図中、1は中実装置であり、第4図の従来
例における中実装置と同一の構成を有している。すなわ
ち、発光素子2.パルス発生器3、方向性結合器4、光
受信器9、オシロスコープ10および波形解析回路11
から構成されている。また、方向性結合器4には光ファ
イバ5が接続されており、この光ファイバ5にその長手
方向に沿って適宜間隔に複数の光損失変化機構7a〜7
Cが設けられると共に光フアイバ5上において各光損失
変化機構7a〜7Cの近傍にそれぞれ常時所定の光損失
を示す位置表示器12a〜13Cが設けられている。そ
して、光損失変化機構7a〜7Cはそれぞれその設置点
がオン状態となった場合に光損失を生じ、オフ状態の場
合には光損失を生じないように構成されている。
FIG. 1 is a configuration diagram of a multi-point monitoring system according to an embodiment of the present invention. In the figure, reference numeral 1 denotes a solid device, which has the same configuration as the solid device in the conventional example shown in FIG. That is, light emitting element 2. Pulse generator 3, directional coupler 4, optical receiver 9, oscilloscope 10, and waveform analysis circuit 11
It consists of Further, an optical fiber 5 is connected to the directional coupler 4, and a plurality of optical loss changing mechanisms 7a to 7 are provided at appropriate intervals along the longitudinal direction of the optical fiber 5.
C is provided, and position indicators 12a to 13C are provided on the optical fiber 5 near each of the optical loss changing mechanisms 7a to 7C, respectively, to always indicate a predetermined optical loss. Each of the optical loss changing mechanisms 7a to 7C is configured to cause an optical loss when the installation point thereof is in the on state, and not to cause an optical loss when the installation point is in the off state.

次に、本実施例の作用を説明する。Next, the operation of this embodiment will be explained.

まず、中実装置1より出射したパルス光は光ファイバ5
に入射し、光ファイバ5の各点においてレイリー散乱を
受ける。この散乱による戻り光は中実装置1内の光受信
器9により検出される。第2図には戻り光の波形(その
一部)を示す。横方向は時間を、縦方向は戻り光レベル
もしくは光受信器9の出力電圧を表す。図中、21a〜
21Cはそれぞれ位置表示器12a〜12cにおける損
失、22a〜22cはそれぞれ光損失変化機構78〜7
Cにおける損失を示している。光ファイバ5の位置表示
器12a〜12cを通過した光は所定の損失を受けてそ
のパワーが弱まるので、これよりも遠方の光ファイバ5
からのレイリー散乱による戻り光には常時第2図の如く
段差218.21b、2ICができる。
First, the pulsed light emitted from the solid device 1 is transmitted to the optical fiber 5.
and undergoes Rayleigh scattering at each point of the optical fiber 5. The returned light due to this scattering is detected by the optical receiver 9 in the solid device 1. FIG. 2 shows the waveform (part of it) of the returned light. The horizontal direction represents time, and the vertical direction represents the return light level or the output voltage of the optical receiver 9. In the figure, 21a~
21C are losses in the position indicators 12a to 12c, respectively, and 22a to 22c are optical loss changing mechanisms 78 to 7, respectively.
It shows the loss in C. The light that has passed through the position indicators 12a to 12c of the optical fiber 5 undergoes a predetermined loss and its power weakens.
As shown in FIG. 2, a step 218.21b, 2IC is always formed in the return light due to Rayleigh scattering from the light source.

さらに、光損失変化機構7a〜7Cを通過した光はその
状態変化により損失を受けて戻り光に段差を生じるので
、段差の有無が監視したい対象もしくは物理量の状態を
表わす。
Further, the light that has passed through the optical loss changing mechanisms 7a to 7C undergoes loss due to the state change, and a step is produced in the returned light, so the presence or absence of the step represents the state of the object or physical quantity that is desired to be monitored.

第2図に示した例では22aおよび220において段差
を生じているので、光損失変化機構78および7Cの各
設置点ではオン状態になっていることがわかる。これに
たいして、第2図の22b −では段差を生じていない
。従って、見かけ上は22bの位置が不明確となる。と
ころが、光損失変化機構7bの近傍に設置されている位
置表示器12bによって戻り光に段差21bが生じてい
るので、この段差21bを目印として容易に22bには
段差がないことが判別される。すなわち、光損失変化機
構7bの設置点ではオフ状態となっていることが観測さ
れる。
In the example shown in FIG. 2, there is a step at 22a and 220, so it can be seen that the optical loss changing mechanisms 78 and 7C are in the on state at each installation point. On the other hand, in 22b- of FIG. 2, no step is formed. Therefore, the position of 22b is apparently unclear. However, since a step 21b is generated in the returned light by the position indicator 12b installed near the optical loss changing mechanism 7b, it can be easily determined that there is no step 22b using this step 21b as a landmark. That is, it is observed that the optical loss changing mechanism 7b is in an OFF state at its installation point.

このようにして多点の監視を行うことにより、戻り光の
波形の時間軸上で遅延時間Tを測定してこの遅延時間T
から位置Xを決定するという方法を用いなくても、何番
目の位置表示器かをカウントすれば一義的にその監視対
象点の位置を特定することができる。
By monitoring multiple points in this way, the delay time T is measured on the time axis of the waveform of the returned light.
Even without using the method of determining the position X from the position X, the position of the monitoring target point can be uniquely specified by counting the number of position indicators.

なお、光損失変化機構78〜7Cにおいて損失変化を受
ける光フアイバ5部分が短かいとき(例えばギャップの
とき)には戻り光の波形変化は上記したように段差とな
るが、長いときには波形変化は傾斜変化となって表われ
、これらの波形変化からオン/オフ情報だけでなく、ア
ナログ的な情報を得ることもできる。
Note that when the portion of the optical fiber 5 that undergoes the loss change in the optical loss change mechanisms 78 to 7C is short (for example, in the case of a gap), the waveform change of the returned light becomes a step as described above, but when it is long, the waveform change does not occur. This appears as a slope change, and from these waveform changes, not only on/off information but also analog information can be obtained.

また、戻り光の波形を、一旦、対数変換すると観測しや
すい。このようにすると、光損失が一様な光ファイバ5
の部分からの戻り光の波形は直線状に傾斜する波形とな
るからである。
Furthermore, once the waveform of the returned light is transformed logarithmically, it is easier to observe. In this way, the optical fiber 5 with uniform optical loss
This is because the waveform of the return light from the portion becomes a linearly inclined waveform.

なお、位置表示器12a〜12cとしては、■ 所定の
損失を有するスプライスを設ける。
As the position indicators 12a to 12c, (2) splices having a predetermined loss are provided.

■ 光ファイバ5に外力を加える。■ Apply external force to the optical fiber 5.

■ 光ファイバ5を小さな径で曲げる 等の方法により実現することができる。■ Bend the optical fiber 5 to a small diameter This can be realized by methods such as.

さらに、上記実施例では位置表示器を光損失変化機構と
1対1に対応させて設置したが、これに限るものではな
く複数の光損失変化機構に1つの位置表示器を対応させ
て設けてもよい。例えば、3つの光損失変化機構に1つ
の位置表示器を対応させた場合には第3図のような戻り
光の波形が得られる。すなわち、位置表示器による段差
31に続いて各光損失変化機構による波形変化32.3
3.34が生じる。この図の例では3つの光損失変化機
構の各設置点においてオフ状態、オン状態、オン状態で
あることがわかる。
Further, in the above embodiment, the position indicator was installed in a one-to-one correspondence with the optical loss changing mechanism, but the present invention is not limited to this, and one position indicator may be installed in correspondence with a plurality of optical loss changing mechanisms. Good too. For example, when one position indicator is associated with three optical loss changing mechanisms, a waveform of the returned light as shown in FIG. 3 is obtained. That is, following the step 31 due to the position indicator, the waveform change 32.3 due to each optical loss changing mechanism
3.34 results. In the example shown in this figure, it can be seen that the three optical loss changing mechanisms are in an OFF state, an ON state, and an ON state at each installation point.

[発明の効果〕 以上説明したように本発明によれば、次のどとぎ湊れた
効果を発揮する。
[Effects of the Invention] As explained above, according to the present invention, the following profound effects are achieved.

(1)  光損失変化機構に近接させて位置表示器を設
けたので、監視対象点の位置の割り出しが容易となる。
(1) Since the position indicator is provided close to the optical loss changing mechanism, it is easy to determine the position of the monitoring target point.

このため、監視対象点が多数ある場合でも正確な監視を
行うことが可能となる。
Therefore, accurate monitoring can be performed even when there are many points to be monitored.

(2)  従って、監視対象点を増加してより1B密な
監視システムを実現することができる。
(2) Therefore, it is possible to increase the number of points to be monitored and realize a 1B denser monitoring system.

さらに、光ファイバが断線した場合には容易にその断線
箇所を検知することができる。
Furthermore, when the optical fiber is broken, the location of the break can be easily detected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る多点監視システムの一実施例を示
す構成図、第2図は同システムにより検出される戻り光
の一例を示す波形図、第3図は使の実施例により検出さ
れる戻り光の波形図、第4図は従来の多点監視システム
の構成図、第5図は第4図のシステムにおける波形図、
第6図は光損失変化機構の一例を示す構成図である。 図中、1は中実装置、2は発光素子、3はパルス発生器
、4は方向性結合器、5は光ファイバ、7a〜7Cは光
損失変化機構、9は光受信器、10はオシロスコープ、
11は波形解析回路、12a〜12cは位置表示器であ
る。 特許出願人  日立電線株式会社 代理人弁理士 絹 谷  信 雄 第2図    第3図
Fig. 1 is a block diagram showing an embodiment of the multi-point monitoring system according to the present invention, Fig. 2 is a waveform diagram showing an example of returned light detected by the system, and Fig. 3 is a waveform diagram showing an example of return light detected by the system. Figure 4 is a configuration diagram of a conventional multi-point monitoring system, Figure 5 is a waveform diagram of the system shown in Figure 4,
FIG. 6 is a configuration diagram showing an example of an optical loss changing mechanism. In the figure, 1 is a solid device, 2 is a light emitting element, 3 is a pulse generator, 4 is a directional coupler, 5 is an optical fiber, 7a to 7C are optical loss changing mechanisms, 9 is an optical receiver, and 10 is an oscilloscope. ,
11 is a waveform analysis circuit, and 12a to 12c are position indicators. Patent Applicant: Hitachi Cable Co., Ltd. Representative Patent Attorney Nobuo Kinutani Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] パルス光を発光する光源と、光源からのパルス光を光フ
ァイバへ送出すると共に光ファイバからの戻り光を取り
出すための方向性結合器と、光ファイバに適宜間隔を隔
てて複数設けられ監視対象の状態に応じて光ファイバを
伝送される光の損失を増減変化させる光損失変化機構と
、該光損失変化機構に近接して設けられ所定の光損失を
有する位置表示器と、方向性結合器により取り出された
戻り光の波形変化から位置表示器による光損失を目印と
して光損失変化機構が設置された各点の位置を割り出す
と共にこれらの点における監視対象の状態を検出する信
号処理系とを備えたことを特徴とする多点監視システム
A light source that emits pulsed light, a directional coupler that sends out the pulsed light from the light source to an optical fiber and takes out the return light from the optical fiber, and a plurality of directional couplers that are installed at appropriate intervals on the optical fiber and are used to monitor targets. An optical loss changing mechanism that increases or decreases the loss of light transmitted through an optical fiber depending on the state, a position indicator provided near the optical loss changing mechanism and having a predetermined optical loss, and a directional coupler. It is equipped with a signal processing system that determines the position of each point where the optical loss changing mechanism is installed using the optical loss caused by the position indicator as a mark from the waveform change of the returned light taken out, and detects the state of the monitored object at these points. A multi-point monitoring system characterized by:
JP29803885A 1985-12-28 1985-12-28 Multipoint monitoring system Granted JPS62157526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29803885A JPS62157526A (en) 1985-12-28 1985-12-28 Multipoint monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29803885A JPS62157526A (en) 1985-12-28 1985-12-28 Multipoint monitoring system

Publications (2)

Publication Number Publication Date
JPS62157526A true JPS62157526A (en) 1987-07-13
JPH0551089B2 JPH0551089B2 (en) 1993-07-30

Family

ID=17854317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29803885A Granted JPS62157526A (en) 1985-12-28 1985-12-28 Multipoint monitoring system

Country Status (1)

Country Link
JP (1) JPS62157526A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008032592A (en) * 2006-07-31 2008-02-14 Central Japan Railway Co Optical fiber air route surveillance system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55105909A (en) * 1979-02-08 1980-08-14 Furukawa Electric Co Ltd Electric cable
JPS58163097A (en) * 1982-03-24 1983-09-27 古河電気工業株式会社 Optical fiber sensing wire
JPS5932815A (en) * 1982-08-18 1984-02-22 Fujitsu Ltd Sensing system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55105909A (en) * 1979-02-08 1980-08-14 Furukawa Electric Co Ltd Electric cable
JPS58163097A (en) * 1982-03-24 1983-09-27 古河電気工業株式会社 Optical fiber sensing wire
JPS5932815A (en) * 1982-08-18 1984-02-22 Fujitsu Ltd Sensing system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008032592A (en) * 2006-07-31 2008-02-14 Central Japan Railway Co Optical fiber air route surveillance system

Also Published As

Publication number Publication date
JPH0551089B2 (en) 1993-07-30

Similar Documents

Publication Publication Date Title
CN104796191A (en) Transmission device
CN201378084Y (en) Enclosed bus slot joint or plug temperature measuring device
CN100582688C (en) Optic cable vibration detecting device capable of positioning
CN105116285A (en) Electric power tunnel cable operation monitoring system
CN108155935A (en) A kind of cable network failure detector
JPS62157526A (en) Multipoint monitoring system
US5801818A (en) Active reflex optical range finder
CN100397034C (en) Monitor device for anchorage cable long term working state and its method
JP2011069721A (en) Splitter module, detection method for remaining optical connector using the same, detection method of number of output ports, and optical transmission loss measuring system
JP3762186B2 (en) Optical transmission line and optical transmission line with optical line monitoring device
JPS61288298A (en) Multipoint monitoring system
CN205912058U (en) Optic fibre on -line monitoring system
CN105116286A (en) All-fiber electric power tunnel cable state real-time monitoring system
JP3295595B2 (en) Optical fiber type physical quantity measurement system
JP2007232439A (en) Optical fiber ring interference type sensor
CN204963899U (en) Electric power tunnel cable operational monitoring system
CN204964678U (en) Online positioning system of high tension cable line fault
CN204964679U (en) Fine electric power tunnel cable state real -time monitoring system of full gloss
KR101465787B1 (en) optical line sensor for detecting arc position and method therefor
JP2000180219A (en) Rock fall detecting system
JP5416383B2 (en) Optical pulse tester
JP2003207414A (en) Ray path testing system and light source power level monitoring method
JP5623575B2 (en) Optical pulse tester
JPH0652201B2 (en) Measuring method for linear temperature distribution
JPH0758310B2 (en) Fault detection method for overhead power lines

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees