JPS62157236A - Suction device for rotary piston engine - Google Patents

Suction device for rotary piston engine

Info

Publication number
JPS62157236A
JPS62157236A JP60299499A JP29949985A JPS62157236A JP S62157236 A JPS62157236 A JP S62157236A JP 60299499 A JP60299499 A JP 60299499A JP 29949985 A JP29949985 A JP 29949985A JP S62157236 A JPS62157236 A JP S62157236A
Authority
JP
Japan
Prior art keywords
cylinder
during
working chamber
intake
stroke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60299499A
Other languages
Japanese (ja)
Inventor
Tatsuya Kida
達也 喜田
Hiroshi Sasaki
弘 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP60299499A priority Critical patent/JPS62157236A/en
Publication of JPS62157236A publication Critical patent/JPS62157236A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B53/04Charge admission or combustion-gas discharge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B53/04Charge admission or combustion-gas discharge
    • F02B53/06Valve control therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B2053/005Wankel engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

PURPOSE:To make a suction swirl formable, by installing an interconnecting passage, aerating an air-fuel mixture during a compression stroke on one side to a suction stroke of a cylinder on the other, between mutual spaces of each cylinder, and offsetting opening positions of opposed interconnecting passages with each other to some extent. CONSTITUTION:In case of a three-cylinder rotary piston engine, interconnecting passages 21-23, interconnecting an operating chamber during a compression stroke of a cylinder on one side and an operating chamber during a suction stroke of a cylinder one the other by rotation of rotors 8-10, are installed among respective cylinders 5-7, and heat, control valves 24-26, controlling a airflow quantity according to engine load, are installed. In addition, two interconnecting passages to be opposed to one cylinder are opened to side housings 3 and 4 at both sides of this cylinder, while the opening parts 23a, 21, 22 and 23b are offset with one another and positioned within a range where on-off timing by these rotors comes to sameness. Thus, a pumping loss is re duced, while these interconnecting passages are utilized, producing a suction swirl, and improvement in combustibility is promoted.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は複数気筒を有するロータリピストンエンジンに
おいてボンピングロスの低減のため気筒相互間に連通路
を設置プだ吸気装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a rotary piston engine having a plurality of cylinders, in which a communication passage is provided between the cylinders in order to reduce pumping loss.

(従来技術) 従来、特開昭58−172429号公報に示されるよう
に、2気筒のロークリピストンエンジンにおいてボンピ
ングロスを低減するため、インタメゾイエイトハウジン
グに、ロータの回転に応じて一方の気筒の圧縮行程中の
作fJJ ffを他方の気筒の吸気行程中の作動室に連
通ずる状態と、上記他方の気筒の圧縮行程中の作動室を
上記一方の気筒の吸気行程中の作動室に連通する状態と
を交互に生じさせる連通路を設け、この連通路に、エン
ジン負荷に応じてこの連通路の通気量を制御する制御弁
を介設し、低負荷時にこの制御弁を開りにうにした吸気
装置が知られている。この装置によると、低負荷時には
、吸気行程で必要量より余分に混合気が作動室に導入さ
れて負圧が小さくされ、圧縮行程中に余剰の混合気が上
記連通路を通って別の気筒の吸気行程中の作動室に4J
l出されるため、負荷に応じて充填量が調整されつつ、
ボンピングロスが低減される。また、圧縮行程中の作動
室から排出される混合気は他の気筒に送られ、吸気通路
内に逆流して外部に流出づ゛ることはないので、燃料の
ロスや吸気騒音の増大等の問題がない。
(Prior Art) Conventionally, as shown in Japanese Patent Application Laid-Open No. 58-172429, in order to reduce the pumping loss in a two-cylinder rotor piston engine, an intermezzo-eight housing is provided with one side depending on the rotation of the rotor. A state in which the working chamber fJJ ff during the compression stroke of a cylinder is communicated with the working chamber during the intake stroke of the other cylinder, and the working chamber during the compression stroke of the other cylinder is connected to the working chamber during the intake stroke of the one cylinder. A communication path is provided that alternately creates a state of communication, and a control valve is installed in this communication path to control the amount of ventilation in this communication path according to the engine load, and the control valve is opened at low load. A suction device with a similar structure is known. According to this device, when the load is low, an excess amount of air-fuel mixture is introduced into the working chamber during the intake stroke to reduce the negative pressure, and during the compression stroke, the excess air-fuel mixture passes through the communication path and is transferred to another cylinder. 4J in the working chamber during the intake stroke of
Since the filling amount is adjusted according to the load,
Bumping loss is reduced. Additionally, the air-fuel mixture discharged from the working chamber during the compression stroke is sent to other cylinders and does not flow back into the intake passage and flow out to the outside, reducing fuel loss and increased intake noise. there is no problem.

ところで、このようなボンピングロスの問題とは別に、
低負荷時には吸気スワールによって燃焼性の向上を図り
たいという要求があるが、上記従来装置では、連通路に
よりポンピングロスの低減を図るようにしているだけで
、スワールの生成については格別に配慮されていなかっ
た。
By the way, apart from this problem of pumping loss,
There is a demand for improving combustibility through intake swirl at low loads, but the conventional devices mentioned above only attempt to reduce pumping loss through communication passages, but do not give special consideration to the generation of swirl. There wasn't.

(発明の目的) 本発明は口のような事情に鑑み、複数気筒を有づ゛るロ
ータリピストンエンジンにおいて、低負荷時に、気筒相
互間に設けた連通路によってボンピングロスを低減する
とともに、連通路を利用して吸気スワールを生じさせ、
燃焼性の向上も図るようにしたロークリピストンエンジ
ンの吸気装置を提供づるものである。
(Object of the Invention) In view of the above-mentioned circumstances, the present invention reduces pumping loss by connecting passages provided between the cylinders during low load in a rotary piston engine having multiple cylinders. Create an intake swirl using
The present invention provides an intake device for a rotary piston engine that is designed to improve combustibility.

(発明の構成) 本発明は、複数の気筒を備え、各気筒相互間に、一方の
気筒の圧縮行程中の作動室と他方の気筒の吸気行程中の
作動室とを連通ずる連通路を設け、この連通路にエンジ
ン負荷の大きさに応じて通気量を制御する制御弁を設け
たロータリピストンエンジンの吸気装置において、1気
筒に対してその両側のサイドハウジングに、対向する2
つの連通路を開口させるとともに、この両連通路の開口
部を、ロータによる開閉タイミングが同一となる範囲で
互いにオフセットさせた位置に設けたものである。
(Structure of the Invention) The present invention includes a plurality of cylinders, and a communication passage is provided between each cylinder to communicate the working chamber of one cylinder during the compression stroke with the working chamber of the other cylinder during the intake stroke. In an intake system for a rotary piston engine, in which a control valve for controlling the amount of ventilation according to the size of the engine load is provided in the communication passage, two cylinders are provided opposite to each other in side housings on both sides of one cylinder.
Two communication passages are opened, and the openings of both communication passages are provided at positions offset from each other within a range where the opening and closing timings by the rotor are the same.

この構成により、エンジンの低負荷時には、上記連通路
を通して気筒相互間で混合気が流通し、ポンピングロス
が低減されるとともに、1つの気筒に対して上記両連通
路開口部から流入する混合気が作動室内にスワールを生
じさせる作用をなずことになる。
With this configuration, when the engine is under low load, the air-fuel mixture flows between the cylinders through the communication passage, reducing pumping loss, and the air-fuel mixture flowing into one cylinder from the openings of both the communication passages flows between the cylinders through the communication passage. This results in the effect of creating a swirl within the working chamber.

(実施例) 第1図および第2図は本発明の装置を3気筒ロータリビ
ス1〜ンエンジンに適用した場合の一実施例を示す。こ
れらの図において、1は3気筒ロータリピストンエンジ
ンのケーシングであって、それぞれ内周面がトロコイド
状に形成されて並列に配置された3つのロータハウジン
グ2と、これらの各ロータハウジング2間に位置する2
つのインクメゾイエイトハウジング(気筒間のサイドハ
ウジング)3と、両側部のサイドハウジング4とを備え
、これらにより、第1図の左側から順に1番気筒5.2
番気筒6.3番気筒7の3つの気筒が形成されている。
(Embodiment) FIGS. 1 and 2 show an embodiment in which the device of the present invention is applied to a three-cylinder rotary rev engine. In these figures, 1 is a casing of a three-cylinder rotary piston engine, which includes three rotor housings 2 each having a trochoidal inner peripheral surface and arranged in parallel, and a casing located between each of these rotor housings 2. do 2
The cylinders 5, 2 are arranged in order from the left side in FIG.
Three cylinders are formed: cylinder No. 6 and cylinder No. 7.

これらの各気筒5.6.7内の空間にはそれぞれ略三角
形のロータ8,9.10が収容されており、各ロータ8
.9.10は共通の偏心軸[に支承され、1番気筒5か
ら順に1200の位相差をもって遊星回転運動するよう
になっている。そしてこの各ロータ8,9.10により
、各気筒5,6.7内の空間がそれぞれ3つの作動室1
1に区画されるとともに、ロータ8.9゜10の回転に
伴って吸気、圧縮、爆発、膨張および排気の各行程が行
なわれるようになっている。
Approximately triangular rotors 8, 9.10 are accommodated in the spaces within each of these cylinders 5.6.7, and each rotor 8.
.. 9.10 are supported on a common eccentric shaft, and rotate planetarily with a phase difference of 1200 in order from cylinder 5. The rotors 8, 9.10 each reduce the space inside each cylinder 5, 6.7 into three working chambers 1.
1, and the intake, compression, explosion, expansion, and exhaust strokes are performed as the rotor 8.9°10 rotates.

上記ロータ8.9.10には、ガスシールのためのアペ
ックスシール12、サイドシール13、コーナシール1
4が装備されている。
The rotor 8.9.10 has an apex seal 12 for gas sealing, a side seal 13, and a corner seal 1.
4 is equipped.

上記インタメゾイエイトハウジング3およびナイトハウ
ジング4には、各気筒5.6.7に対してそれぞれ、吸
気通路15に連通して吸気行程が行なわれるべき位置で
作動室11に開口する吸気ボート16が形成されている
。また、各ロータハウジング2には、排気通路17に連
通して排気行程が行なわれるべき位置で作動室11に開
口する排気ボート18が形成されるとともに、爆発行程
が行なわれるべき位置に点火プラグ19が取付けられて
いる。20は吸気ボート16に燃料を供給する燃料噴射
弁である。
The intermediate housing 3 and the night housing 4 each have an intake boat 16 that communicates with the intake passage 15 and opens into the working chamber 11 at a position where the intake stroke is to be performed for each cylinder 5, 6, 7. is formed. Further, each rotor housing 2 is formed with an exhaust boat 18 that communicates with the exhaust passage 17 and opens into the working chamber 11 at a position where an exhaust stroke is to be performed, and a spark plug 19 is formed at a position where an explosion stroke is to be performed. is installed. 20 is a fuel injection valve that supplies fuel to the intake boat 16.

また、21は圧縮行程中の作動室11と2番気筒6の吸
気行程中の作動室11とを連通ずる第1連通路、22は
2番気筒6の圧縮行程中の作動室11と3番気筒7の吸
気行程中の作りJl室11とを連通づる第2連通路、2
3は3番気筒7の圧縮行程中の作動室11と1番気筒5
の吸気行程中の作fil+室11とを連通ずる第3連通
路である。上記第1連通路21および第2!通路22は
各インタメゾイエイトハウジング3にそれぞれ形成され
、インタメデイエイトハウジング3を貫通してその両側
の気筒内に間口している。また、第3連通路23は、両
側のサイドハウジング4に形成した貫通7L23a、2
3bと、この両頁通孔23a、23bを連通する外部通
路23Cとで構成されている。
Further, 21 is a first communication passage that communicates the working chamber 11 during the compression stroke with the working chamber 11 during the intake stroke of the second cylinder 6, and 22 is the first communication passage that connects the working chamber 11 during the compression stroke of the second cylinder 6 with the working chamber 11 during the intake stroke. A second communication passage that communicates with the Jl chamber 11 created during the intake stroke of the cylinder 7;
3 is the working chamber 11 during the compression stroke of the third cylinder 7 and the first cylinder 5.
This is a third communication path that communicates with the air filter chamber 11 during the intake stroke. The first communicating path 21 and the second! The passages 22 are formed in each intermediate housing 3, and pass through the intermediate housing 3 and open into the cylinders on both sides thereof. Further, the third communication passage 23 is formed through the through holes 7L23a and 2 formed in the side housing 4 on both sides.
3b, and an external passage 23C that communicates these page through holes 23a, 23b.

従って容気tf15.6.7にはそれぞれ、その両側の
1ナイトハウジング(インタメゾイエイトハウジング3
およびサイドハウジング4)に、2つの連通路が対向し
て開口している。
Therefore, each air tf15.6.7 has one night housing (intermediate housing 3) on both sides.
and the side housing 4), two communicating passages are opened to face each other.

この1気筒に対して2つの対向した連通路の開口部tま
、ロータ8,9.10による開閉タイミングが同一とな
る範囲で互いにオフセットした位置に設けられている。
The openings t of the two opposing communication passages for this one cylinder are provided at positions offset from each other within a range where the opening and closing timings of the rotors 8, 9, and 10 are the same.

このような連通路開口部の配置を1番気筒5について第
3図により説明すると、1番気筒5に対する第1連通路
21および貫通孔23aの開口部は、ロータ8の矢印方
向の回転にPI’い、所定の間タイミングの位置にロー
タ8が回転したとき間き始め、所定の開タイミングの位
置にロータ8が回転したとき閉じ終る。そしてこの間タ
イミングおよび閉タイミングは、連通路の聞き始め側の
側辺paおよび閉じ終り側の側辺pbの位置によって決
まるが、聞き始めの時期のロータ8の側辺Ra iJ3
よび閉じ終りの時期のロータ8の側辺Rbに沿って連通
路の上記各側辺Pa、Pbの長さを変えても開閉タイミ
ングは変らない。
The arrangement of the openings of the communication passages as described above for the first cylinder 5 will be explained with reference to FIG. The opening starts when the rotor 8 rotates to a position at a predetermined timing for a predetermined period of time, and ends when the rotor 8 rotates to a position at a predetermined opening timing. The timing during this period and the closing timing are determined by the positions of the side side pa on the listening start side and the side side pb on the closing end side of the communication path, but the side side Ra iJ3 of the rotor 8 at the time of starting listening.
Even if the lengths of the above-mentioned sides Pa and Pb of the communication path are changed along the side Rb of the rotor 8 at the end of closing, the opening/closing timing does not change.

そこで、第3図および第4図に示ずように、ロータ8に
よる第1連通路21および貫通孔23aの開閉タイミン
グは同一とし、ボンピングロス低減のために適当な間口
開開が得られるようにしつつ、例えば第1連通路21は
閉じ終り側の側辺pbを長く形成し、貫通孔23aは開
き始め側の側辺Paを良く形成することにより、出力軸
方向からみて第1連通路21と貫通孔23aの側辺部が
互いにずれ、第1連通路21と貫通孔23 aが互いに
オフセットされた配置となるようにしている。同様にし
て、2番気筒6に対して第1連通路21aと第2連通路
22とが同−間開タイミングとされつつ互いにオフセッ
トされた配置で開口し、3番気筒7に対して第2連通路
22と第3連通路23の貫通孔23bとが同一開閉タイ
ミングとされつつηいにオフセットされた配置で開口す
るように構成されている。
Therefore, as shown in FIGS. 3 and 4, the opening and closing timings of the first communication passage 21 and the through hole 23a by the rotor 8 are set to be the same, so that an appropriate opening and opening can be obtained to reduce the pumping loss. At the same time, for example, the first communication passage 21 is formed with a long side Pb on the closing end side, and the through hole 23a is formed with a good side side Pa on the opening side, so that the first communication passage 21 and the through hole 23a are formed well when viewed from the output shaft direction. The side portions of the through holes 23a are offset from each other, so that the first communication path 21 and the through holes 23a are arranged offset from each other. Similarly, the first communicating passage 21a and the second communicating passage 22 open to the second cylinder 6 at the same opening timing and are offset from each other, and the second communicating passage 21a and the second communicating passage 22 to the third cylinder The communication passage 22 and the through-hole 23b of the third communication passage 23 are configured to open and close at the same timing, but at an offset position.

また、上記第1連通路21および第2連通路22と、第
3連通路23の両端部の貫通孔23a。
Also, through holes 23a at both ends of the first communicating path 21, the second communicating path 22, and the third communicating path 23.

23bにはそれぞれ、エンジン負荷に応じて通気量を制
御する制御弁24.25.26が設けられている。これ
らの制御弁24.25.26は、例えばロータリバルブ
により形成され、アクセルペダル(図示せず)に機械的
に連動され、あるいはアクセル開度に応じて電気的な制
御手段およびアクチュエータで駆動される等により、負
荷に応じて開度が調整されるようになっている。そして
、各制御弁24.25.26は、エンジンの低負荷時に
開度が大きくされ、エンジン負荷が高くなるにつれて開
度が小さくされて、全負荷付近の高負荷時には全閉され
るようになっている。
23b are each provided with control valves 24, 25, and 26 that control the amount of ventilation depending on the engine load. These control valves 24, 25, 26 are formed, for example, by rotary valves, and are mechanically linked to an accelerator pedal (not shown), or are driven by electrical control means and actuators depending on the accelerator opening degree. etc., the opening degree is adjusted according to the load. Each of the control valves 24, 25, and 26 is opened to a large degree when the engine load is low, and as the engine load increases, the degree of opening is decreased, and is fully closed at high loads near full load. ing.

なお、上記制御弁24.25.26による連通路21.
22.23の通気量の制御によって充填■が調整される
こととなるので、吸気通路15に設けられたスロットル
弁(図示Uず)によっては吸気の流通を負荷に応じて制
限することを1lliず、このため上記スロットル弁は
、低負荷時にも比較的大きなl71I度となるように調
整されている。
Note that the communication path 21. by the control valves 24, 25, 26.
22. Since the filling amount is adjusted by controlling the ventilation amount in 23, it is necessary to limit the flow of intake air according to the load using the throttle valve (not shown) provided in the intake passage 15. For this reason, the throttle valve is adjusted to provide a relatively large 171I degree even under low load.

以上のような吸気装置によると、エンジンの高負荷時に
は、各連通路21,22.23の制御弁24.25.2
6が閉じられることにより、通常のエンジンと同様の状
態で運転され、高負荷時に必要な充填量が確保される。
According to the intake system as described above, when the engine is under high load, the control valves 24, 25, 2 of the communication passages 21, 22, 23
6 is closed, the engine is operated in the same manner as a normal engine, and the required filling amount is ensured during high loads.

一方、エンジンの低負荷時には、吸気通路15のスロッ
トル弁が比較的大きな開度に調整されるとともに、制御
弁24゜25.26が開かれ、後述のように各連通路2
1゜22.23を通して混合気が流通されることにより
、各気筒において吸気行程では混合気が余剰に導入され
、吸気負圧が小さくされる。そして、圧縮行程中に余剰
の混合気が他の気筒に排出される。
On the other hand, when the engine is under low load, the throttle valve of the intake passage 15 is adjusted to a relatively large opening, and the control valves 24, 25, 26 are opened, and each communication passage 2 is opened as described below.
By flowing the air-fuel mixture through the 1°22.23 angle, an excess of the air-fuel mixture is introduced into each cylinder during the intake stroke, and the intake negative pressure is reduced. Then, during the compression stroke, excess air-fuel mixture is discharged to other cylinders.

このような動作は、各気筒5.6.7のロータ8゜9.
10が1200ずつの位相差をちって回転するに伴い、
各気筒5.6.7において順次行なわれる。
Such operation is performed by the rotor 8° 9 . 7 of each cylinder 5 .
As 10 rotates with a phase difference of 1200,
This is done sequentially for each cylinder 5.6.7.

このような低負荷時の動作を第5図によって説明すると
、各気筒5,6.7のロータ8.9.10が1200ず
つの位相差をちって回転するに応じ、先ず第5図(△)
のように1番気筒5のロータ8が吸気ボート16を閉じ
て1番気筒5が圧縮行程に移行したとき、1番気筒5に
通じる連通路のうらで第3連通路23&よ3番気筒7の
ロータ10により塞がれるが、第1連通路21は、1香
気1n5の圧縮行程中の作動室11と2番気筒6の吸気
行程中の作動室11とを連通する状態となる。
The operation at such a low load is explained with reference to FIG. )
As shown in the figure, when the rotor 8 of the No. 1 cylinder 5 closes the intake boat 16 and the No. 1 cylinder 5 shifts to the compression stroke, the third communication passage 23 & 3. However, the first communication passage 21 is in a state of communicating the working chamber 11 during the compression stroke of one aroma 1n5 with the working chamber 11 during the intake stroke of the second cylinder 6.

そして、1番気筒5のロータ8による連通路閉時191
までは、1番気筒5の圧縮り程中の作fIJ室11内の
余剰混合気が主に、第1連通路21を通して2番気筒6
の吸気行程中の作動室11に排出され、F記l」−夕8
による連通路閉鎖後に実質的に圧縮が行なわれる。なお
、1番気筒5のロータ8による連通路閉時開直11aに
は、3番気筒7のロータ10が第3連通路23からずれ
て多少は3番気筒7にち混合気が排出される。
When the communication path is closed by the rotor 8 of the No. 1 cylinder 5, 191
Until now, the excess air-fuel mixture in the IJ chamber 11 during the compression stroke of the first cylinder 5 was mainly transferred to the second cylinder 6 through the first communication passage 21.
It is discharged into the working chamber 11 during the intake stroke of
Compression is substantially carried out after the communication passage is closed by. Note that when the rotor 8 of the first cylinder 5 closes the communicating passage 11a, the rotor 10 of the third cylinder 7 deviates from the third communicating passage 23, and some of the air-fuel mixture is discharged from the third cylinder 7. .

次に、第5図(B)のように2番気筒6のロータ9が吸
気ボート16を閉じて2番気筒Gが圧縮行程に移行した
ときは、2番気筒6に通じる連通路のうちで第1連通路
21は1番気筒5のロータ8により塞がれるが、第2連
通路22は2番気筒6の圧縮行程中の作動室11と3番
気筒7の吸気行程中の作動室11とを連通ずる。また、
第5図(C)のように3番気筒7のロータ10 /i<
吸気ポート16を閉じて3番気筒7が圧縮行程に移行し
たときは、3番気筒7に通じる連通路のうちで第2連通
路22は2番気筒6のロータ9により塞がれるが、第3
連通路23は3番気筒7の圧縮行程中の作動室11と1
番気筒5の吸気行程中の作動室11とを連通ずる。従っ
て、2番気筒6の圧縮行程では、その圧縮行程中の作動
室11内の余剰混合気が主に第2連通路22を通して3
番気筒7の吸気行程中の作動室11に排出され、3番気
筒7の圧縮行程では、その圧縮行程中の作動室11内の
余剰混合気が主に第3連通路23を通して1番気筒5の
吸気行程中の作動室11に排出されることとなる。
Next, when the rotor 9 of the second cylinder 6 closes the intake boat 16 and the second cylinder G shifts to the compression stroke as shown in FIG. The first communicating passage 21 is blocked by the rotor 8 of the first cylinder 5, but the second communicating passage 22 is closed by the working chamber 11 of the second cylinder 6 during the compression stroke and the working chamber 11 of the third cylinder 7 during the intake stroke. communicate with. Also,
As shown in FIG. 5(C), the rotor 10 of the third cylinder 7 /i<
When the intake port 16 is closed and the No. 3 cylinder 7 shifts to the compression stroke, the second communication passage 22 among the communication passages leading to the No. 3 cylinder 7 is blocked by the rotor 9 of the No. 2 cylinder 6; 3
The communication passage 23 connects the working chambers 11 and 1 during the compression stroke of the third cylinder 7.
It communicates with the working chamber 11 of the number cylinder 5 during the intake stroke. Therefore, during the compression stroke of the second cylinder 6, the excess air-fuel mixture in the working chamber 11 during the compression stroke mainly passes through the second communication passage 22 to the third cylinder.
During the intake stroke of the No. 3 cylinder 7, the excess air-fuel mixture in the working chamber 11 is discharged into the working chamber 11 during the intake stroke of the No. 3 cylinder 7, and during the compression stroke of the No. It is discharged into the working chamber 11 during the intake stroke.

このようにして、各気筒5.6.7において同等の条件
で、吸気行程での吸気ポート16および他気筒からの混
合気の導入、圧縮行程での他気筒への混合気の排出が行
なわれるため、吸気負圧の減少によってボンピングロス
が低減されるとともに、各気筒5.6.7にお()る充
填間が等しく調整される。また、吸気行程中に他気筒か
ら導入される混合気の量も各気筒5.6.7において等
しく、従って、吸気通路15からの新気導入量が不均一
になって燃料制御が困難になるといった事態が生じるこ
ともない。
In this way, the air-fuel mixture is introduced from the intake port 16 and other cylinders during the intake stroke, and the air-fuel mixture is discharged to other cylinders during the compression stroke, under the same conditions in each cylinder 5.6.7. Therefore, the pumping loss is reduced by reducing the intake negative pressure, and the filling intervals in each cylinder 5, 6, and 7 are adjusted equally. Moreover, the amount of air-fuel mixture introduced from other cylinders during the intake stroke is also equal in each cylinder 5.6.7, and therefore the amount of fresh air introduced from the intake passage 15 becomes uneven, making fuel control difficult. Such a situation will never occur.

また、上記のように、気筒相H間において混合気は主に
1 ?ri気筒5から2番気筒6.2番気筒6から3番
気筒7.3番気筒7から1番気筒5へと、第5図の矢印
方向へ流通するが、特定時期には一部の連通路において
t記の主たる流通方向とは逆向きに混合気が流通し、こ
れによって1つの気筒の作動¥11に2つの連通路から
同時に混合気が流入することがある。例えば2番気筒6
の1つの作動室11が吸気行程中であって、3番気筒7
の1つの作動室11が圧縮行程途中にあり、かつ、1番
気筒5の1つの作動室11も吸気下死点を過ぎているよ
うな時期には、第4図に矢印で示すように、2番気筒6
の吸気行程中の作動室11に、1番気筒5と3番気筒7
とから混合気が第1N通路21および第2連通路22を
それぞれ通って流入する。このとぎ、第1連通路21と
第2連通路22とが互いにオフセットされた配置で2番
気筒6に間口していることにより、第1連通路21およ
び第2連通路22からそれぞれ流入する混合気が互いに
ずれ、2番気筒6の作動室11内にスワールが生じさせ
ることとなる。同様に1番気筒5おJ:び3番気筒7に
おいても、吸気行程中の作動室11に2つの連通路から
同時に混合気が流入する時期に、有効にスワールが得ら
れることとなる。
Furthermore, as mentioned above, the air-fuel mixture is mainly 1? between the cylinder phases H. ri cylinder 5 to No. 2 cylinder 6, No. 2 cylinder 6 to No. 3 cylinder 7, and No. 3 cylinder 7 to No. 1 cylinder 5 in the direction of the arrow in Fig. The air-fuel mixture flows in the passageway in a direction opposite to the main flow direction shown in t, and as a result, the air-fuel mixture may simultaneously flow into one cylinder from the two communicating passages. For example, number 2 cylinder 6
One of the working chambers 11 is in the intake stroke, and the third cylinder 7
When one of the working chambers 11 of the No. 1 cylinder 5 is in the middle of the compression stroke and one of the working chambers 11 of the No. 1 cylinder 5 has also passed the intake bottom dead center, as shown by the arrow in FIG. 2nd cylinder 6
During the intake stroke, the first cylinder 5 and the third cylinder 7 are in the working chamber 11.
From there, the air-fuel mixture flows through the first N passage 21 and the second communication passage 22, respectively. At this point, since the first communication passage 21 and the second communication passage 22 are offset from each other and open to the second cylinder 6, the mixture flowing from the first communication passage 21 and the second communication passage 22, respectively, The air is shifted from each other, and a swirl is generated in the working chamber 11 of the second cylinder 6. Similarly, in the first cylinder 5 and the third cylinder 7, swirl can be effectively obtained during the intake stroke when the air-fuel mixture simultaneously flows into the working chamber 11 from the two communicating passages.

第6図(、(本発明の装置を2気筒ロークリピストンエ
ンジンに適用した場合の実施例を示ず。2気筒の場合、
1番気筒5′と2番気筒6′ との間のインタメゾイエ
イトハウジング3に1つの連通路31を設けておくだけ
でも、各気筒5’ 、6’ のロータ8’ 、9’ が
1800の位相差で回転するに伴い、1?S気筒5′の
圧縮行程中の作動室11が2香気R6’ の吸気行程中
の作動室11に連通する状態と、2番気筒6′の圧縮行
程中の作fIJ室11が1番気筒5′の吸気行程中の作
動v11に連通ずる状態とが交互に生じ、上記連通路3
1により気筒間の混合気の授受が行なわれが、第6図の
装置では低負荷時の通気量を充分に確保するため、上記
連通路31に加え、両側のサイドハウジング4に形成さ
れた貫通孔32a、32bと外部通路32Gとからなる
連通路32が具備されている。そして、インウメディエ
イ1−ハウジング3と、連通路32の両端の貫通孔32
a、32bとは、同一開閉タイミングとされつつ、互い
にオフセラ1〜された配置で各気筒5’ 、6’ の作
動室11に間口している。各連通路31.32には制御
弁33.34が配設されている。
FIG. 6 (, (does not show an example in which the device of the present invention is applied to a two-cylinder low-repetition piston engine. In the case of a two-cylinder engine,
Even if only one communication passage 31 is provided in the intermezzo housing 3 between the first cylinder 5' and the second cylinder 6', the rotors 8' and 9' of each cylinder 5' and 6' can reach 1800 mm. As it rotates with a phase difference of 1? The working chamber 11 during the compression stroke of the S cylinder 5' communicates with the working chamber 11 during the intake stroke of the 2nd aroma R6', and the working chamber 11 during the compression stroke of the 2nd cylinder 6' communicates with the working chamber 11 in the 1st cylinder 5. ' during the intake stroke, the state of communication with the operation v11 occurs alternately, and the communication path 3
1, the air-fuel mixture is exchanged between the cylinders. In the device shown in FIG. A communication path 32 is provided that includes holes 32a, 32b and an external path 32G. Then, the through holes 32 at both ends of the input media 1-housing 3 and the communication path 32 are connected.
a and 32b open to the working chamber 11 of each cylinder 5', 6' in an off-set arrangement with the same opening and closing timing. A control valve 33.34 is arranged in each communication passage 31.32.

この実施例によると、低負荷時に1番気筒5′の圧縮行
程では余剰混合気が両連通路31.32を通って2番気
筒6′の吸気行程中の作動室11に排出され、2番気筒
6′の圧縮行程では余剰混合気が両連通路31.32を
通り1番気筒5′の吸気行程中の作動室11に排出され
ることにより。
According to this embodiment, during the compression stroke of the No. 1 cylinder 5' at low load, excess air-fuel mixture is discharged through both communication passages 31 and 32 into the working chamber 11 of the No. 2 cylinder 6' during the intake stroke; During the compression stroke of the cylinder 6', excess air-fuel mixture passes through the two communicating passages 31, 32 and is discharged into the working chamber 11 of the first cylinder 5' during the intake stroke.

ポンピングロスが低減されつつ、充填台)が調整される
。そしてこの場合も、吸気行程中の作動′全11にはH
いにオフセットされた両連通路31.32から混合気が
流入することにより、スワールが生成されることとなる
(filling table) is adjusted while reducing pumping losses. In this case as well, all 11 operations during the intake stroke are H
Swirl is generated by the air-fuel mixture flowing in from both communication passages 31 and 32 which are offset from each other.

なお、上記各実施例では、1気筒に対して2つの対向し
た)1通路を、全体的に互いにAフセツ1〜さけた形状
としているが、第7図に示すように、連通路41.42
のの各間口部41a、42nのみを互いにオフセットさ
せるように形成してもよい。
In each of the above embodiments, the two opposing passages for one cylinder are generally spaced apart from each other, but as shown in FIG.
Only the frontage portions 41a and 42n may be formed so as to be offset from each other.

(発明の効果) 以上のように本発明は、一方の気筒の圧縮?−J程中の
作動室と他方の気筒の吸気行程中の作動室とを連通ずる
連通路を設けて低負荷時のボンピングロスの低減を図る
とともに、1気筒に対してその両側のサイドハウジング
に対向する2つの連通路を開口させ、この両連通路の間
口部を同一開閉タイミング内で互いにオフセットざゼて
いるので、低負荷時に、上記連゛通路を利用してスワー
ルを生じさせ、燃焼性を向上することができるものであ
る。
(Effects of the Invention) As described above, the present invention provides compression in one cylinder? - A communication passage is provided to communicate the working chamber during the J stroke with the working chamber during the intake stroke of the other cylinder to reduce pumping loss at low loads. Two opposing communication passages are opened, and the openings of both communication passages are offset from each other within the same opening/closing timing, so that the communication passages are used to create a swirl during low loads, which increases the combustibility. This is something that can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の装置を3気筒ロータリピストンエンジ
ンに適用した実施例を示す断面図、第2図は第1図のI
I−I線に沿った断面図、第3図は連通路間口部の配置
を示す説明図、第4図は第1図のIV −IV線に沿っ
た断面図、第5図(A)〜(C)はそれぞれ各気筒を分
離して示した動作説明図、第6図は本発明の装置を2気
筒ロータリピストンエンジンに適用した実施例を示す断
面図、第7図は連通路の別の実施例を示す要部断面図で
ある。 1・・・ケーシング、5.6.7.5’ 、6’・・・
気筒、3・・・インタメゾイエイトハウジング、4・・
・サイドハウジング、8.9.10.8’ 、9’ ・
・・ロータ、21.22.23,31.32.41.4
2・・・連通路、24.25.26.33.34・・・
制御弁。 特許出願人     マ ツ ダ 株式会社代 理 人
     弁理士   小谷悦司同       弁理
士   長1)正向       弁理士   板谷康
夫第2図 第  3  図 第  5tA 第  5  図 (C) 第  6  図 第  7171
FIG. 1 is a sectional view showing an embodiment in which the device of the present invention is applied to a three-cylinder rotary piston engine, and FIG.
3 is an explanatory diagram showing the arrangement of the frontage of the communication passage, FIG. 4 is a sectional view taken along line IV-IV in FIG. 1, and FIGS. (C) is an operation explanatory diagram showing each cylinder separately, FIG. 6 is a sectional view showing an embodiment in which the device of the present invention is applied to a two-cylinder rotary piston engine, and FIG. 7 is a diagram showing another example of the communication passage. FIG. 2 is a cross-sectional view of main parts showing an example. 1...Casing, 5.6.7.5', 6'...
Cylinder, 3... Intermezzo Eight Housing, 4...
・Side housing, 8.9.10.8', 9'
...Rotor, 21.22.23, 31.32.41.4
2...Communication path, 24.25.26.33.34...
control valve. Patent Applicant Mazda Co., Ltd. Agent Patent Attorney Etsushi Kotani Patent Attorney Chief 1) Masayuki Patent Attorney Yasuo Itaya Figure 2 Figure 3 Figure 5tA Figure 5 (C) Figure 6 Figure 7171

Claims (1)

【特許請求の範囲】[Claims] 1、複数の気筒を備え、各気筒相互間に、一方の気筒の
圧縮行程中の作動室と他方の気筒の吸気行程中の作動室
とを連通する連通路を設け、この連通路にエンジン負荷
の大きさに応じて通気量を制御する制御弁を設けたロー
タリピストンエンジンの吸気装置において、1気筒に対
してその両側のサイドハウジングに、対向する2つの連
通路を開口させるとともに、この両連通路の開口部を、
ロータによる開閉タイミングが同一となる範囲で互いに
オフセットさせた位置に設けたことを特徴とするロータ
リピストンエンジンの吸気装置。
1. Equipped with a plurality of cylinders, a communication passage is provided between each cylinder to communicate the working chamber during the compression stroke of one cylinder with the working chamber during the intake stroke of the other cylinder, and the engine load is applied to this communication passage. In an intake system for a rotary piston engine that is equipped with a control valve that controls the amount of ventilation according to the size of the cylinder, two opposing communication passages are opened in the side housing on both sides of one cylinder, and the two communication passages are connected to each other. The opening of the passage,
An intake device for a rotary piston engine, characterized in that the intake device is provided at positions offset from each other within a range where the opening and closing timings of the rotor are the same.
JP60299499A 1985-12-28 1985-12-28 Suction device for rotary piston engine Pending JPS62157236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60299499A JPS62157236A (en) 1985-12-28 1985-12-28 Suction device for rotary piston engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60299499A JPS62157236A (en) 1985-12-28 1985-12-28 Suction device for rotary piston engine

Publications (1)

Publication Number Publication Date
JPS62157236A true JPS62157236A (en) 1987-07-13

Family

ID=17873367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60299499A Pending JPS62157236A (en) 1985-12-28 1985-12-28 Suction device for rotary piston engine

Country Status (1)

Country Link
JP (1) JPS62157236A (en)

Similar Documents

Publication Publication Date Title
US6988482B2 (en) Dual rotor internal combustion engine
GB1382017A (en) Supercharged rotary piston internal combustion engine
US4756284A (en) Intake system for internal combustion engine
US4562804A (en) Intake system for rotary piston engine
JPS62157236A (en) Suction device for rotary piston engine
US4759324A (en) Intake system for rotary piston engine
JPH0447388Y2 (en)
JPH06590Y2 (en) Intake device for rotary piston engine
JPH0647943B2 (en) Intake device for rotary piston engine
JPS62157237A (en) Suction device for rotary piston engine
JPH0658163A (en) Rotary piston engine
JPH045697Y2 (en)
JPS6225851B2 (en)
JPS62170729A (en) Intake device for rotary piston engine
JPS63140827A (en) Pumping loss reduction device for rotary piston engine
JPS63131829A (en) Pumping loss reducing device for rotary piston engine
JPS6248920A (en) Supercharger of engine
JPS62157235A (en) Suction device for rotary piston engine
JPS62157233A (en) Suction device for rotary piston engine
JPS62225722A (en) Exhaust gas reflux amount control device for engine
JPH0652046B2 (en) Lubrication device for rotary piston engine
JPS63131830A (en) Pumping loss reducing device for rotary piston engine
JPS639637A (en) Rotary piston engine with pumping loss reduction device
JPS62157232A (en) Suction device for rotary piston engine
JPS6024293B2 (en) Intake system for 2-cylinder rotary piston engine