JPS62156568A - Optical voltage/electric field measuring instrument - Google Patents

Optical voltage/electric field measuring instrument

Info

Publication number
JPS62156568A
JPS62156568A JP60298929A JP29892985A JPS62156568A JP S62156568 A JPS62156568 A JP S62156568A JP 60298929 A JP60298929 A JP 60298929A JP 29892985 A JP29892985 A JP 29892985A JP S62156568 A JPS62156568 A JP S62156568A
Authority
JP
Japan
Prior art keywords
voltage
measurement
electric field
optical
base light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60298929A
Other languages
Japanese (ja)
Inventor
Hideki Saito
秀樹 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP60298929A priority Critical patent/JPS62156568A/en
Publication of JPS62156568A publication Critical patent/JPS62156568A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PURPOSE:To realize easily a measurement of a DC voltage, and also, to measure an AC voltage with a high accuracy by forming a voltage dissipation electrode in a pair of voltage/electric field measuring electrodes, respectively, connecting a switch between both voltage dissipation electrodes, and also closing this switch immediately before the measurement. CONSTITUTION:A voltage and an electric field which are applied to an optical modulating element 4 immediately before starting a measurement are set to zero temporarily by short-circuiting a glass electrode 2A, a non-modulating state is made and optical power of a base light at that time is derived from an O/E 10, compared by a comparator 11 for constituting a negative feedback with a reference voltage 12, a shift from a prescribed value is corrected, and thereafter, a light emitting element of an E/O 9 is driven to as to go to a reference value of the base light by an E/O driving circuit 9A. At the time of an actual measurement, the base light to which an AC signal has been superposed is applied to the comparator 11 by applying an AC voltage, etc., and the base light itself is varied. Accordingly, at the time of a measurement, a base light correcting value immediately before the measurement is held by a holding circuit 8. Namely, it is because a variation of the base light is small to such an extent that it can be disregarded, when a light voltage measurement is executed immediately after a correction.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電力配電系統などにおいて、電圧あるいは電
界を光学的に測定する測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a measuring device for optically measuring voltage or electric field in a power distribution system or the like.

〔従来の技術〕[Conventional technology]

電力配電系統における配@、vAの電圧、電界を監視す
る手段として、光学式測定器が採用されてきている。光
学式の優れている点は、測定された電圧・電界情報が、
配電線の電圧や電界に影響されないで伝送できることで
ある。
Optical measuring instruments have been adopted as a means for monitoring distribution@, vA voltages, and electric fields in power distribution systems. The advantage of the optical method is that the measured voltage and electric field information is
Transmission is possible without being affected by the voltage or electric field of the power distribution line.

光学式電圧・電界センサにおいては、基本となるベース
光が重要である。従来方式では光受信パワーP+の平均
値を求め、更に信号成分光パワーPtをPlで除して測
定値を求めるなどの手法を採用しているが、その場合、
回路が複雑化すると同時に直流電圧を測ることができな
いなどの問題があった。
In optical voltage/electric field sensors, the basic light is important. In the conventional method, the average value of the optical reception power P+ is calculated, and the signal component optical power Pt is further divided by Pl to obtain the measured value.
There were problems such as the complexity of the circuit and the inability to measure DC voltage.

従来の電圧・電界測定器は、純光学的に電圧を測定する
第3図による方法では、以下に述べる理由により「交流
」測定に限られている。まず、光応用電圧・電界センサ
の基本的動作原理と従来の測定器の内部構成を説明する
Conventional voltage/electric field measuring instruments are limited to "alternating current" measurements for the reasons described below in the method shown in FIG. 3, which measures voltage purely optically. First, we will explain the basic operating principles of optical voltage/electric field sensors and the internal configuration of conventional measuring instruments.

第3図において、電圧・電界測定器は、読み取り部31
.2本のファイバ34.35及び検出部36から□構成
されている。検出部36には電気光学効果をもった金属
酸化物結晶、例えばB S O(Bi+。Sing。)
、ニオブ酸リチウム(LiNbOl)、酸化珪素(Si
ng)等(以下光学センサという)が主に使われる。
In FIG. 3, the voltage/electric field measuring device includes a reading section 31
.. It is composed of two fibers 34 and 35 and a detection section 36. The detection unit 36 includes a metal oxide crystal having an electro-optic effect, for example, BSO (Bi+.Sing.).
, lithium niobate (LiNbOl), silicon oxide (Si
ng) etc. (hereinafter referred to as optical sensors) are mainly used.

読み取り部31は更に内部構成として電気E (=el
ectrics)を光0 (=optics)に変換す
る電気−光変換素子(以下、rEloJという)32、
逆に光を電気に変換する光電気変換素子(以下、「0/
EJという)33と信号処理回路38からなり、第3図
に示すように接続されている。
The reading unit 31 further includes electricity E (=el
an electric-to-optical conversion element (hereinafter referred to as rEloJ) 32 that converts electrics into optical zero (=optics);
Conversely, a photoelectric conversion element (hereinafter referred to as "0/
33 (referred to as EJ) and a signal processing circuit 38, which are connected as shown in FIG.

動作と信号の流れは次の通りとなる。The operation and signal flow are as follows.

まず、読み取り部31からE1032を通じて直流のベ
ース光が1本の光ファイバ34を介して光センサ36に
供給される。直流のベース光とはその光の強度が殆ど一
定不変であって、この光をベースにして後述するように
これに変調がかけられるため、このように称している。
First, DC base light is supplied from the reading section 31 to the optical sensor 36 via one optical fiber 34 through the E1032. The direct current base light is so called because the intensity of the light is almost constant and modulation is applied to this light as a base, as will be described later.

光学センサは結晶を含むいくつかの光学部品からなり、
これらの光学回路に前記ベース光が通過する。このとき
、光学センサは印加された電圧又は電界によって動作す
る。そして、このベース光に強度的な変化が生しる。
Optical sensors consist of several optical components, including crystals,
The base light passes through these optical circuits. At this time, the optical sensor is operated by an applied voltage or electric field. Then, a change in intensity occurs in this base light.

つまり、光学センサから出てくる光パワーの変化分は印
加電圧(電界)と相位である。従って、もう1本の光フ
ァイバ35でこの変調光を読み取り部31まで導き、O
/E33で電気信号に戻せば元の印加電圧(電界)が判
る。しかし現実的にはE1032からの発光パワーが一
定不変とはならない。
In other words, the amount of change in the optical power output from the optical sensor is in phase with the applied voltage (electric field). Therefore, another optical fiber 35 guides this modulated light to the reading section 31, and the O
If you return it to an electric signal with /E33, you can find the original applied voltage (electric field). However, in reality, the power of light emitted from E1032 does not remain constant.

これは、発光ダイオード、レーザダイオードの温度変化
や経年変化及び光フアイバ伝送路の長さや曲げ具合、経
年変化により光パワーの損失が変化するからである。
This is because the loss of optical power changes due to temperature changes and aging of the light emitting diode and laser diode, the length and bending of the optical fiber transmission path, and aging.

そのため、不具合に対して従来の対策として次の2つが
ある。1つはO/Eの出力から直流成分を抽出し、この
値が常にある一定値になるよう信号処理回路を働かせ、
Eloの入力にネガティブフィードバックをかけるもの
である。
Therefore, there are the following two conventional countermeasures against the problem. One is to extract the DC component from the output of the O/E, and use a signal processing circuit to keep this value constant.
This applies negative feedback to Elo's input.

光学センサにおいては、ベース光に対する変調度はベー
ス光の強度にかかわらず、常に一定であるからO/Eの
出力の直流成分が一定であれば交流成分(信号変化分)
は安定となる。ただし、この前提条件として前記光パワ
ーの変動は極めてゆっくりとしており、交流成分よりも
直流に近いものであり、また、光学センサには直流成分
を印加しないことが条件である。
In optical sensors, the degree of modulation with respect to the base light is always constant regardless of the intensity of the base light, so if the DC component of the O/E output is constant, the AC component (signal change)
becomes stable. However, the prerequisite for this is that the fluctuation of the optical power is extremely slow and is closer to a direct current than an alternating current component, and that no direct current component is applied to the optical sensor.

もう1つの方法は第4図に示すように、ネガティブフィ
ードバックをかけずにO/Eの出力のうち交流成分を直
流成分で割算することである。
Another method, as shown in FIG. 4, is to divide the AC component of the output of the O/E by the DC component without applying negative feedback.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の装置ではこうして交流信号を安定に精密に測定で
きるが、その性質上、直流は測ることができない。また
、割算回路が必要となるなど、回路が複雑となっていた
Conventional devices can measure alternating current signals stably and precisely in this way, but due to their nature, they cannot measure direct current. In addition, the circuit is complicated, as a division circuit is required.

本発明は、従来とは異なった手段によって電圧・電界の
測定が可能な装置を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a device capable of measuring voltage and electric field by means different from conventional methods.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するため、本発明は、電気光学的セン
サと2本の光ファイバと読み取り部とを備えた光学式電
圧・電界測定器において、前記電気光学的センサ部を構
成する一対の偏光子間の間隙に配置される一対の電圧・
電界測定用電極に電圧消失電極をそれぞれ形成し、両電
圧消失電極間にスイッチを接続し、かつ、測定直前にこ
のスイッチを閉じるスイッチ駆動手段を設けたことを特
徴とする。
In order to achieve the above object, the present invention provides an optical voltage/electric field measuring device including an electro-optical sensor, two optical fibers, and a reading section, in which a pair of polarized light beams constituting the electro-optic sensor section is provided. A pair of voltages placed in the gap between the
A voltage dissipation electrode is formed on each of the electric field measuring electrodes, a switch is connected between both voltage dissipation electrodes, and switch driving means is provided for closing the switch immediately before measurement.

さらに好適には、前記電圧・電界測定用電極をガラス等
の透明材料の表面の片面に形成し、電圧消失用電極を同
透明材料の他方の面に形成した構成とする。
More preferably, the voltage/electric field measuring electrode is formed on one surface of a transparent material such as glass, and the voltage dissipation electrode is formed on the other surface of the transparent material.

〔実施例〕 以下本発明を図面に示す実施例に基づいて具体的に説明
する。
[Example] The present invention will be specifically described below based on an example shown in the drawings.

第1図には本発明方法を具体化した一つのシステム例と
して有接点スイッチを用いた例を示す。
FIG. 1 shows an example of a system embodying the method of the present invention using a contact switch.

勿論スイッチは半導体スイッチ等も可能である。Of course, the switch can also be a semiconductor switch or the like.

光ファイバと読み取り部は従来方式と同様であるので、
光センサ部とE/○回路について説明する。
The optical fiber and reading section are the same as in the conventional method, so
The optical sensor section and E/○ circuit will be explained.

光センサ部は、E109から出たベース光を光センサ部
へ導く光ファイバ5、光センサ部から出た光パワー信号
を読み取り部へ導く光ファイバ6及び光学結晶等の光変
調素子4、先部光面を一定にする偏光子1、偏光情報信
号を読み取り出す検光子IA、光変調素子4に電圧・電
界をかけるための透明電極2、及び変調素子4に対し無
変調条件を作るための電圧・電界消失用透明電極2Aと
で構成されている。
The optical sensor section includes an optical fiber 5 that guides the base light emitted from the E109 to the optical sensor section, an optical fiber 6 that guides the optical power signal emitted from the optical sensor section to the reading section, a light modulation element 4 such as an optical crystal, and a tip section. A polarizer 1 that keeps the light plane constant, an analyzer IA that reads polarization information signals, a transparent electrode 2 that applies voltage and electric field to the light modulation element 4, and a voltage that creates a non-modulation condition for the modulation element 4. - It is composed of a transparent electrode 2A for dissipating the electric field.

電圧・電界消失用電極2^は、直接に電圧測定電極2を
短絡させると被測定源の破壊や悪影響を与えるため、こ
れを避けて被測定源と絶縁性をもたせるため設けている
The voltage/electric field dissipation electrode 2^ is provided to provide insulation from the source to be measured in order to avoid this, since directly short-circuiting the voltage measuring electrode 2 would cause destruction or adverse effects on the source to be measured.

更に、光変調用光学素子4は高価であり、電極蒸着時の
歩留りが悪いとコスト上昇を招き易いため、変調素子の
直接加工を避け、コストの低いガラスに電極をつけるこ
とによりコストの面その他の改善を図ることとしている
Furthermore, the optical element 4 for optical modulation is expensive, and poor yield during electrode deposition tends to increase the cost. Therefore, by avoiding direct processing of the modulation element and attaching the electrode to low-cost glass, cost and other costs can be reduced. We are aiming to improve this.

基4!雷電圧生回路12で発生した基準電圧は、比較器
11.ホールド回路8.E/○駆動回路9^を経て21
09部の発光ダイオード、レーザダイオード等の発光素
子を駆動し、所定のベース光を発生する。O/ E 1
0 読み取り回路は、ベース光及びベース光に重なった
光パワー信号を読み取る。
Base 4! The reference voltage generated in the lightning voltage generation circuit 12 is supplied to the comparator 11. Hold circuit 8. 21 via E/○ drive circuit 9^
The light emitting elements such as light emitting diodes and laser diodes in section 09 are driven to generate a predetermined base light. O/E 1
0 The reading circuit reads the base light and the optical power signal superimposed on the base light.

直流基準電圧は比較器11.ホールド回路8.  E1
0駆動回路9Aを経て2109部の発光ダイオード又は
レーザダイオード等の発光素子を駆動し、ベース光をセ
ンサ部へ供給する。
The DC reference voltage is determined by comparator 11. Hold circuit 8. E1
A light emitting element such as a light emitting diode or a laser diode of 2109 parts is driven through the 0 drive circuit 9A, and base light is supplied to the sensor part.

センサ部へ供給されたベース光は偏光子lにより偏光さ
れ、偏光面が揃えられた後、光変調素子4に入り変調電
圧による変調を受け、楕円偏光となる。更に検光子1八
で信号出力が検出され、光ファイバ6によってO/ E
 10の読み取り部へ導かれ電気信号出力となる。
The base light supplied to the sensor section is polarized by the polarizer 1, and after the polarization planes are aligned, it enters the light modulation element 4 and is modulated by a modulation voltage, becoming elliptically polarized light. Furthermore, the signal output is detected by the analyzer 18, and the optical fiber 6 outputs the O/E signal.
The signal is guided to the reading section 10 and becomes an electrical signal output.

以上が基本的な動作であるが、本発明では更に第2図の
タイムチャートで示すようなタイミングを設けてヨ11
定開始直前に光変調素子4に印加されている電圧・電界
をガラス電極2Aを短絡することにより一時的に零とし
、無変調状態を作りその時のベース光の光パワーをO/
 E 10より求めて、基準電圧12とネガティブフィ
ードバックを構成する比較器11により比較し、所定の
値からずれを補正した後E10駆動回路9AによってE
109の発光素子をベース光の基準値になるように駆動
する。
The above is the basic operation, but the present invention further provides timing as shown in the time chart of FIG.
Immediately before the start of modulation, the voltage and electric field applied to the light modulation element 4 are temporarily brought to zero by shorting the glass electrode 2A, creating a non-modulation state and reducing the optical power of the base light at that time to O/
E10 is calculated, compared with the reference voltage 12 by a comparator 11 constituting negative feedback, and after correcting the deviation from a predetermined value, the E10 drive circuit 9A
The light emitting element 109 is driven so as to have the reference value of the base light.

実際の測定時には、交流電圧の印加等により比較器11
交流信号の重なったベース光が印加され、ベース光自身
が変動する。従って、測定時は測定直前のベース光補正
値をホールド回路8にて保持する。すなわち、補正後た
だちに光電圧測定を行えばベース光の変動は無視できる
程小さいがらである。
During actual measurement, the comparator 11 is
Base light with overlapping alternating current signals is applied, and the base light itself fluctuates. Therefore, during measurement, the base light correction value immediately before the measurement is held in the hold circuit 8. That is, if the photovoltage measurement is performed immediately after correction, the variation in the base light is negligibly small.

以上の動作によってベース光は、常に基準電圧で決まる
所定の値に保たれる。
By the above operation, the base light is always maintained at a predetermined value determined by the reference voltage.

〔発明の効果〕〔Effect of the invention〕

上述したように本発明によれば、交流電圧測定の場合に
は、コンデンサ結合等による簡単な交流信号分離回路に
より、交流電圧を分離し、表示するだけで精度よく交流
電圧が測定可能である。
As described above, according to the present invention, when measuring AC voltage, it is possible to accurately measure AC voltage by simply separating and displaying the AC voltage using a simple AC signal separation circuit such as capacitor coupling.

また直流電圧の測定は、基準電圧と直流印加時のベース
直流電圧成分の差を演算増幅器で取り出すことによって
簡単に実現できる。
Furthermore, measurement of the DC voltage can be easily realized by using an operational amplifier to extract the difference between the reference voltage and the base DC voltage component when DC is applied.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示すブロック図、第2図はそ
の動作を示す波形図、第3図及び第4図は従来の構成を
示すブロック図である。
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a waveform diagram showing its operation, and FIGS. 3 and 4 are block diagrams showing a conventional configuration.

Claims (1)

【特許請求の範囲】 1、電気光学的センサと2本の光ファイバと読み取り部
とを備えた光学式電圧・電界測定器において、 前記電気光学的センサ部を構成する一対の偏光子間の間
隙に配置される一対の電圧・電界測定用電極に電圧消失
電極をそれぞれ形成し、両電圧消失電極間にスイッチを
接続し、かつ、測定直前にこのスイッチを閉じるスイッ
チ駆動手段を設けたことを特徴とする光学式電圧・電界
測定器。 2、電圧・電界測定用電極をガラス等の透明材料の表面
の片面に形成し、電圧消失用電極を同透明材料の他方の
面に形成したことを特徴とする特許請求の範囲第1項記
載の光学式電圧・電界測定器。
[Claims] 1. An optical voltage/electric field measuring instrument comprising an electro-optical sensor, two optical fibers, and a reading section, including: a gap between a pair of polarizers constituting the electro-optical sensor section; A voltage dissipation electrode is formed on each of the pair of voltage/electric field measurement electrodes disposed in the electrode, a switch is connected between the two voltage dissipation electrodes, and switch driving means is provided to close the switch immediately before measurement. Optical voltage/electric field measuring instrument. 2. The voltage/electric field measuring electrode is formed on one side of a transparent material such as glass, and the voltage dissipation electrode is formed on the other side of the transparent material. Optical voltage/electric field measuring instrument.
JP60298929A 1985-12-27 1985-12-27 Optical voltage/electric field measuring instrument Pending JPS62156568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60298929A JPS62156568A (en) 1985-12-27 1985-12-27 Optical voltage/electric field measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60298929A JPS62156568A (en) 1985-12-27 1985-12-27 Optical voltage/electric field measuring instrument

Publications (1)

Publication Number Publication Date
JPS62156568A true JPS62156568A (en) 1987-07-11

Family

ID=17866006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60298929A Pending JPS62156568A (en) 1985-12-27 1985-12-27 Optical voltage/electric field measuring instrument

Country Status (1)

Country Link
JP (1) JPS62156568A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193365A (en) * 1983-04-19 1984-11-01 Sumitomo Electric Ind Ltd Voltage detecting apparatus
JPS60257367A (en) * 1984-05-24 1985-12-19 ミテツク モデルネ インドウストリーテヒニーク ゲーエムベーハー Voltage parameter measuring device for high voltage conductor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193365A (en) * 1983-04-19 1984-11-01 Sumitomo Electric Ind Ltd Voltage detecting apparatus
JPS60257367A (en) * 1984-05-24 1985-12-19 ミテツク モデルネ インドウストリーテヒニーク ゲーエムベーハー Voltage parameter measuring device for high voltage conductor

Similar Documents

Publication Publication Date Title
EP0083196B1 (en) Voltage and electric field measuring device using light
US6946827B2 (en) Optical electric field or voltage sensing system
JPH0670651B2 (en) Method and device for measuring electric and magnetic quantities by light
KR0153277B1 (en) Wide bandwidth fiber optic accelerometer
US4982151A (en) Voltage measuring apparatus
JP2986503B2 (en) Optical DC voltage transformer
EP0324611B1 (en) Optical unit including electrooptical crystal elements
KR940011956A (en) Voltage sensor
JPS62156568A (en) Optical voltage/electric field measuring instrument
JP2810976B2 (en) Electrical signal measuring method and apparatus
GB2340233A (en) Current measuring method,current sensor,and IC tester using the same current sensor
US5012183A (en) Electrooptic effect element and electrical signal waveform measuring apparatus using the same
Li et al. Optical voltage sensor using a pulse-controlled electrooptic quarter waveplate
JPS62168058A (en) Correcting method for optical voltmeter and electric field meter
JP3130187B2 (en) Electric field detector
JP4875835B2 (en) Measuring system
JPH09251036A (en) Optical electric-field sensor and transformer for optical instrument using sensor thereof
JPH05164788A (en) Signal measuring device
JPH10221380A (en) Voltage-measuring device
JP2714965B2 (en) Optical DC electric field measuring device
JP2983106B2 (en) Optical DC voltage measuring device
JP2580443B2 (en) Optical voltage sensor
JPS61165665A (en) Apparatus for detecting voltage electric field
JPH10111320A (en) Photo-voltage/photo-current sensor
JPH02143173A (en) Optical dc transformer