JPS62156535A - Light frequency network analyzer - Google Patents

Light frequency network analyzer

Info

Publication number
JPS62156535A
JPS62156535A JP60296073A JP29607385A JPS62156535A JP S62156535 A JPS62156535 A JP S62156535A JP 60296073 A JP60296073 A JP 60296073A JP 29607385 A JP29607385 A JP 29607385A JP S62156535 A JPS62156535 A JP S62156535A
Authority
JP
Japan
Prior art keywords
optical
output
section
light
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60296073A
Other languages
Japanese (ja)
Other versions
JPH0523613B2 (en
Inventor
Hideto Iwaoka
秀人 岩岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP60296073A priority Critical patent/JPS62156535A/en
Priority to US06/943,670 priority patent/US4856899A/en
Priority to DE3643569A priority patent/DE3643569C2/en
Priority to GB8630375A priority patent/GB2185567B/en
Publication of JPS62156535A publication Critical patent/JPS62156535A/en
Publication of JPH0523613B2 publication Critical patent/JPH0523613B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/0687Stabilising the frequency of the laser
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/04Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by beating two waves of a same source but of different frequency and measuring the phase shift of the lower frequency obtained
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2/00Demodulating light; Transferring the modulation of modulated light; Frequency-changing of light
    • G02F2/002Demodulating light; Transferring the modulation of modulated light; Frequency-changing of light using optical mixing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/506Multiwavelength transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/572Wavelength control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1303Stabilisation of laser output parameters, e.g. frequency or amplitude by using a passive reference, e.g. absorption cell

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nonlinear Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Optical Communication System (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To measure with a high accuracy an amplitude, a phase characteristic, etc., by comparing an electric output of the first filter part, and an electric signal related to a frequency difference of the first and the second optical outputs, and executing a signal processing. CONSTITUTION:The titled analyzer is provided with a light frequency sweeper 1 for generating the first optical output for sweeping a frequency and the second optical output related to said first optical output and emitting the first optical output to a measuring object, the first heterodyne detecting parts 33, 43 for inputting a light beam related to the emitted light of the measuring object based on the first optical output and the second optical output, the first filter parts 34, 44 for inputting an electric output of this first optical heterodyne detecting part, comparing means 35, 36, 45 and 46 for comparing an electric output of the first filter part and an electric signal related to a frequency difference of the first and the second optical outputs, and a signal processing means 50 for inputting an electric output of this comparing means and executing a signal processing. In this way, a light frequency network analyzer which can measure an amplitude, a phase characteristic, etc. with a high accuracy is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光ファイバ、光導波路、波長分波器。[Detailed description of the invention] (Industrial application field) The present invention relates to an optical fiber, an optical waveguide, and a wavelength demultiplexer.

光スィッチ、0EfCなどの光部品の光伝送特性や光反
射特性等を測定する光周波数ネットワーク・アナライザ
に関する。
This invention relates to an optical frequency network analyzer that measures optical transmission characteristics, optical reflection characteristics, etc. of optical components such as optical switches and 0EfC.

(従来の技術) 第12図は従来の光フ1イバ10失波長特性測定器を示
す構成ブロック図である。可変波長光源VLの出力光は
被測定ファイバMFに入射し、その出射光を光検出器P
Dで検出した後増幅・表示手段DPに出力する。可変波
長光源V[−の出力波長を掃引したときの光パワーの変
化から光フアイバ損失の波長特性を測定する。
(Prior Art) FIG. 12 is a block diagram showing a conventional optical fiber 10 wavelength loss characteristic measuring device. The output light of the variable wavelength light source VL enters the fiber under test MF, and the output light is sent to the photodetector P.
After detection at D, it is output to amplification/display means DP. The wavelength characteristic of optical fiber loss is measured from the change in optical power when the output wavelength of the variable wavelength light source V[- is swept.

第13図は従来の九ファイバ波長分散特性測定器を示す
構成ブロック図である。可変波長光源VLおよび基準波
長光源SLを周波数fの変調(8号源Etで振幅変調す
る。可変波長光源VLの出力光がIrnねる被測定ファ
イバMFおよび基準波長光源S Lの出力光が加わる基
準ファイバSFの出力光パワーを光検出部PDでそれぞ
れ検出し、両者の周波数f成分の位相差を位相測定部P
Sで検出づることにより、被測定ファイバMFの波長に
対する伝WI遅延時間を測定する。
FIG. 13 is a block diagram showing a conventional nine-fiber wavelength dispersion characteristic measuring instrument. The variable wavelength light source VL and the reference wavelength light source SL are modulated at frequency f (amplitude modulated by No. 8 source Et. The output light of the variable wavelength light source VL is applied to the fiber under test MF and the reference wavelength light source SL is added to the reference wavelength light source SL. The output optical power of the fiber SF is detected by the optical detection unit PD, and the phase difference between the frequency f component of both is detected by the phase measurement unit P.
By detecting with S, the propagation WI delay time with respect to the wavelength of the fiber under test MF is measured.

(発明が解決しようとづる問題点) しかしながら、上記のような構成の測定器では、高精度
に光の位相伝搬特性を測定できないという欠点がある。
(Problems to be Solved by the Invention) However, the measuring instrument configured as described above has a drawback in that it cannot measure the phase propagation characteristics of light with high precision.

またファイバのように光路の良いものは測定できるが、
短い導波路などは測定できない。将来のコヒーレンi・
光応用技術の重要部品である光ファイバ、先導波路、波
長分波器、光スィッチ、0EICなどの性能テストには
伝搬特性く損失、ゲイン、位相、11延)や反則特性な
どの測定が!i!要であるが、上記の測定器では不十分
である。
Also, although it is possible to measure objects with a good optical path, such as fibers,
Short waveguides cannot be measured. future coheren i・
Performance tests of optical fibers, leading waveguides, wavelength demultiplexers, optical switches, 0EICs, etc., which are important components of optical application technology, include measurement of propagation characteristics (loss, gain, phase, 11 extension) and anti-fault characteristics! i! However, the above measuring instruments are not sufficient.

本発明はこのような問題点を解決するためになされたち
ので、高精度に振幅2位相特性などが測定できる光周波
数ネットワーク・アナライザを実現することを目的とす
る。
The present invention has been made to solve these problems, and therefore, it is an object of the present invention to realize an optical frequency network analyzer that can measure amplitude two-phase characteristics and the like with high precision.

< l/It題点を解決づるための手段)本発明に係る
光周波数ネットワーク・アナライザは周波数h1引する
第1の光出力およびこの第1の光出力に関連する第2の
光出力を発生し第1の光出力を測定対象に出射する光周
波数スィーパと、前記第1の光出力に基づく前記測定対
象の出射光に関連する光および前記第2の光出力を入力
する第1の光ヘデログイン検波部と、この第1の光ヘテ
ロダイン検波部の電気出力を入力する第1のフィルタ部
と、前記第1のフィルタ部の電気出力と前記第1および
第2の光出力の周波数差に関連するフu気信号とを比較
する比較手段と、この比較手段の電気出力を入力して信
号処理する信号処理手段とを漸えたことを特徴とする。
<Means for solving the l/It problem) The optical frequency network analyzer according to the invention generates a first optical output with a frequency h1 subtracted and a second optical output related to this first optical output. an optical frequency sweeper that emits a first optical output to a measurement object; and a first optical header-in detection that inputs light related to the output light of the measurement object based on the first optical output and the second optical output. a first filter section into which the electrical output of the first optical heterodyne detection section is input, and a filter related to the frequency difference between the electrical output of the first filter section and the first and second optical outputs; The present invention is characterized in that it includes a comparing means for comparing the electric signal with the air signal, and a signal processing means for inputting the electric output of the comparing means and processing the signal.

(実施例) 以下本発明を図面を用いて詳しく説明する。(Example) The present invention will be explained in detail below using the drawings.

第1図は本発明に係る光周波数ネットワーク・アナライ
ザの一実施例を示す構成ブロック図である。1は周波数
掃引する光出力を発生する(を述(第2図〜第11図)
の光周波数スーイーパ、23はこの光周波数スィーパ1
の第1および第2の出力光を入力する光ヘテロダイン検
波部、24はこの光ヘデ[1ダイン検波部23の電気出
力を入力するバンドパスフィルタからなるフィルタ部、
2は面記九周波数スィーパ1の第1の出力光を入力する
光方向性結合器、3はこの光方向性結合器2からの出力
光を出射する出射端、10はこの出射端3からの出力光
を入射する測定対象、4はこの測定対110からの出射
光を入射する入射端、41はこの入射端4からの入射光
を入力する磁気光学効果結晶(YIG、鉛ガラス他)等
を用いた偏光制御部、42はこの偏光制御部41の出力
光を入力する光増幅部、43はPINフォトダイオード
やアバランシェフォトダイオードなどからなり面記光j
[i幅部42および前記光周波数スィーパ1の第2の出
りJ光を入力する光ヘテロダイン検波部、44はこの光
ヘテロダイン検波部43の電気出力を入力して増幅づる
バンドパスフィルタからなるフィルタ部、t+ 5は前
記フィルタ部44J5よび24からの電気出力を入力す
るj辰幅比較部、46はnq記フィルタ部44および2
4からの電気出力を入カシ−る位相比較部、31は前記
測定対象10からの反射光が光方向性結合器2を今して
入力する41と同様の偏光制御部、32はこの偏光制御
部31の出力光を入力する42と同様の光増幅部、33
はこの光増幅部32および前記光周波数スィーパ1の第
2の出力光を入力する43と同様の光ヘテ1]ゲイン検
波部、34はこの光ヘテロダイン検波部33の電気出力
を入力する44と同様のバンドパスフィルタからなるフ
ィルタ部、35は前記フィルタ部34および24からの
電気出力をへカする45と同様の振幅比較部、36は前
記フィルタ部34および24からの電気出力を入力する
46と同様の位相比較部、50は前記娠幅比較部35.
45および位相比較部36,71.6のの電気出力を入
力Jる信工3処理・表示部である。33゜43は第1の
光ヘテロダイン検波部を、34,44は第1のフィルタ
部を、23は第2の光ヘテロダイン検波部を、24は第
2のフィルタ部を、35.36,45.46は比較手段
を、50は信号処理手段をそれぞれ構成している。光増
幅部32゜42はQ @ A I A sレーザ(78
0nm帯)や■uGaAsPレーザ(1500nm帯)
などで構成され、下記の3方式のものを用いることがで
きる。
FIG. 1 is a block diagram showing an embodiment of an optical frequency network analyzer according to the present invention. 1 generates a frequency-sweeping optical output (see Figures 2 to 11).
The optical frequency sweeper 23 is this optical frequency sweeper 1.
An optical heterodyne detection section 24 inputs the first and second output lights of the optical heterodyne detection section 24;
2 is an optical directional coupler that inputs the first output light of the surface frequency sweeper 1, 3 is an output end that outputs the output light from this optical directional coupler 2, and 10 is an output light from this output end 3. 4 is an input end for inputting the output light from the measurement pair 110, and 41 is a magneto-optical effect crystal (YIG, lead glass, etc.) for inputting the incident light from the input end 4. The polarization control unit used, 42 is an optical amplification unit that inputs the output light of this polarization control unit 41, and 43 is a PIN photodiode, an avalanche photodiode, etc.
[An optical heterodyne detection section that inputs the i-width section 42 and the second output J light of the optical frequency sweeper 1; 44 is a filter consisting of a bandpass filter that inputs and amplifies the electrical output of this optical heterodyne detection section 43; section, t+5 is a width comparison section which inputs the electrical output from the filter sections 44J5 and 24, and 46 is a width comparison section nQ, which inputs the electric outputs from the filter sections 44J5 and 24.
31 is a polarization control unit similar to 41 through which the reflected light from the measurement object 10 enters the optical directional coupler 2, and 32 is a polarization control unit for this polarization control unit. an optical amplifying section 33 similar to 42 into which the output light of section 31 is input;
is an optical amplifier 32 and a gain detection section similar to 43 which inputs the second output light of the optical frequency sweeper 1, and 34 is a gain detection section similar to 44 which inputs the electrical output of the optical heterodyne detection section 33. 35 is an amplitude comparison section similar to 45 which receives the electrical outputs from the filter sections 34 and 24; 36 is an amplitude comparison section 46 which inputs the electrical outputs from the filter sections 34 and 24; A similar phase comparison section 50 is the phase comparison section 35.
45 and the phase comparator 36, 71.6 is a processing/display section. 33. 43 is the first optical heterodyne detection section, 34, 44 is the first filter section, 23 is the second optical heterodyne detection section, 24 is the second filter section, 35.36, 45. 46 constitutes a comparison means, and 50 constitutes a signal processing means. The optical amplification section 32゜42 is a Q@AIAs laser (78
0nm band) and uGaAsP laser (1500nm band)
The following three methods can be used.

(イ)共1辰器形半導体レーザ増幅器と呼ばれ、発振閾
1直近例のバイアス電流を流し、レーザダイオードに信
号光を入射して誘導放出により線形光増幅を行うもの。
(a) Both are called 1-axis type semiconductor laser amplifiers, which perform linear optical amplification through stimulated emission by flowing a bias current with an oscillation threshold of 1 and inputting signal light into a laser diode.

(D )光とt人同期増幅器と呼ばれ、発振しているレ
ーザダイオードに信号光を入射して発振光の光周波数お
よび位相を制nするもの。
(D) This is called an optical synchronous amplifier and controls the optical frequency and phase of the oscillated light by inputting a signal light into an oscillating laser diode.

(ハ)進行波形レーザ増幅器と呼ばれ、レーザダイオー
ド・デツプの両端面を無反罰コートし、信号光の透過の
みで光増幅するもの。
(c) Called a traveling wave laser amplifier, both end surfaces of the laser diode depth are coated with a non-repulsion coating, and light is amplified only by transmitting signal light.

l記のJ:うな構成の光周波数ネットワーク・アナライ
ザの動作を次に詳しく説明する。
The operation of the optical frequency network analyzer having the J: U configuration will be described in detail below.

光周波数スィーパ1は光出力を周波数掃引して高精度、
高安定、高スベクl−ル純度に出力する(詳細は後述)
。光周波数スィーパ1の周波数ω0の第1の光出力は光
方向性結合器2.出rA端3を介して測定対象10に入
射し、この測定対@!10からの出射光は入射端4を介
して偏光制御部41に入力する。偏光制御部41は磁気
光学効果結晶の旋光性を利用して印加磁界を制Uj す
ることにより、入力光の偏光面を局部発振光(前記第2
の光出力)と同じ偏光面とくTるように制御する。偏光
制御部41の光出力は光増幅部42で増幅された俊ハー
フミラー等(図では省略)で光周波数スィーパ1からの
局部発振光と合成され、光ヘテロダイン検波部43で画
周波数の差〈ω0+Δω)−ω0−Δωの周波数をもつ
電気信号に変換される。光ヘデログイン検波部43の電
気出力はフィルタ44のバンドパス特性を一部が透過す
る。また光周波数スィーパ1からの第1の出力光(周波
数ω0)はハーフミラ−等で直接局部発振光(周波数ω
0−トΔω)と合成され、光ヘテロダイン検波部23で
画周波数の差Δωの周波数をもつ電気信号に変換される
。光ヘテロダイン検波部23の電気出力はフィルタ24
のバンドパス特性を一部が透過してリファレンス信号と
なる。フィルタ44の測定対象の特性の影費を受番プた
電気(i号出力とフィルタ24の測定対象の特性の彰菅
を受けていないリフアレン243号出力とはj膜幅比較
部45で両者の振幅が比較され、位相比較部46で両番
の位相が比較される。1i幅比較部45および位相比較
部46の電気出力は(i = %理・表示部50で信号
処理され、その111宋として測定対策の伝搬特性が表
示される。測定対策10から出射端3を介して光結合器
2から出力される反射光も偏光制御部31.光増幅部3
2.光ヘテ[1ダイン検波部33、フィルタ34.振幅
比較部351位相比較部36J5よび信号処理・表示部
50において同様に処理され、その結果として測定対象
の反射特性が表示される。光導波路を測定対象とする場
合には、導波路の伝搬損失や位相差の波長特性等を測定
できる。光ファイバを測定対象とする場合には、伝搬損
失、遅延の波長特t/1′?!fが短いファイバを用い
て測定できる。レーザダイオード光増幅器を測定対象と
する場合には、増幅ゲインの波長特性、イウ相遅れ等を
測定でさる。また反射光の特性からは光接続点の反射損
失が測定できる。
Optical frequency sweeper 1 sweeps the optical output in frequency to achieve high precision.
Outputs with high stability and high spectral purity (details will be described later)
. The first optical output at frequency ω0 of the optical frequency sweeper 1 is transmitted to the optical directional coupler 2. It enters the measurement object 10 through the output rA terminal 3, and this measurement pair @! The emitted light from 10 is input to the polarization control section 41 via the input end 4. The polarization control unit 41 controls the applied magnetic field by utilizing the optical rotation of the magneto-optic effect crystal, thereby changing the polarization plane of the input light into the locally oscillated light (the second
The polarization plane is controlled to be the same as the optical output (optical output). The optical output of the polarization control section 41 is amplified by the optical amplification section 42 and combined with the local oscillation light from the optical frequency sweeper 1 using a shallow half mirror (not shown), and the optical heterodyne detection section 43 detects the difference in image frequency. It is converted into an electrical signal with a frequency of ω0+Δω)−ω0−Δω. Part of the electrical output of the optical header-in detection unit 43 passes through the bandpass characteristic of the filter 44 . In addition, the first output light (frequency ω0) from the optical frequency sweeper 1 is directly transmitted to the local oscillation light (frequency ω0) by a half mirror or the like.
0-tΔω), and is converted by the optical heterodyne detection unit 23 into an electrical signal having a frequency equal to the image frequency difference Δω. The electrical output of the optical heterodyne detection section 23 is transmitted through the filter 24.
A part of the signal passes through the bandpass characteristic of the signal and becomes the reference signal. The output of the i output and the output of the reference 243 which has not been subjected to the evaluation of the characteristics of the object to be measured by the filter 44 are determined by the film width comparison section 45. The amplitudes are compared, and the phases of both numbers are compared in the phase comparator 46.The electrical outputs of the 1i width comparator 45 and the phase comparator 46 are signal-processed in the processing/display unit 50, and the 111 Sung The propagation characteristics of the measurement countermeasure are displayed as .The reflected light outputted from the optical coupler 2 from the measurement countermeasure 10 via the output end 3 is also transmitted to the polarization control section 31.The optical amplification section 3
2. Optical heater [1 dyne detection section 33, filter 34 . The amplitude comparison section 351, the phase comparison section 36J5, and the signal processing/display section 50 perform similar processing, and as a result, the reflection characteristics of the measurement target are displayed. When an optical waveguide is the object of measurement, the propagation loss of the waveguide, the wavelength characteristics of the phase difference, etc. can be measured. When measuring an optical fiber, the wavelength characteristics of propagation loss and delay t/1'? ! It can be measured using a fiber with a short f. When a laser diode optical amplifier is to be measured, wavelength characteristics of amplification gain, phase delay, etc. are measured. Also, the reflection loss at the optical connection point can be measured from the characteristics of the reflected light.

このような構成の光周波数ネットワーク・アナライザに
よれば、高精度に振幅1位相、波長特性等を測定できる
According to the optical frequency network analyzer having such a configuration, amplitude, phase, wavelength characteristics, etc. can be measured with high precision.

また測定対象の伝搬特性く損失1位相、理延。In addition, the propagation characteristics of the measurement target are loss 1 phase.

ゲ・イン簀)つ反射特性を同時にかつ容易に測定できる
It is possible to measure both gain and reflection characteristics simultaneously and easily.

なお光ヘテロダイン検波部23,33.43にWNt<
タングステン、ニッケル)点接触ダイオードやジョゼフ
ソン素子を使うこともできる。
Note that WNt<
Tungsten, nickel) point contact diodes or Josephson elements can also be used.

また、上記の実施例ではフィルタ部24,34゜44と
してバンドパスフィルタを用いたが、これに限1うず、
ローパスフィルタを用いてもよい。その場合にはΔω〒
○となる。
Further, in the above embodiment, a bandpass filter was used as the filter section 24, 34°44, but this is limited to one vortex,
A low pass filter may also be used. In that case, Δω〒
It becomes ○.

第2図は第1図の光周波数スィーパ1の一構成例である
光周波数シンセリイブ・スィーパを承り構成ブロック図
である。11は波長を安定化された基準波長光源部、1
2はこの基準波長光源部11の出力光を入カブる光周波
数PLL部、13はこの光周波数PLL部12の出力光
を変調する光変調部、14はこの光変調部13の出力光
を増幅する光増幅部、15は前記光増幅部14の出力周
波数をシフトする光周波数シフタ部である。光周波数P
LL部12において、121は基準波長光源部11の出
力光を一方の入力とする光ヘテロダイン検波部、122
はこの光ヘテロダイン検波部121の出力により出力光
の発振波長を制御される可変波長光源部、123はこの
可変波長光源部122の出力光の周波数をジットする光
周波数シフタ部、124はこの光周波数シフタ部123
の出力光の周波数を逓倍するとともにその出力光を前記
光ヘテロダイン検波部121の他方の人力とする光周波
数逓倍部である。
FIG. 2 is a configuration block diagram of an optical frequency synthesizer sweeper which is an example of the configuration of the optical frequency sweeper 1 shown in FIG. 11 is a reference wavelength light source unit whose wavelength is stabilized;
Reference numeral 2 denotes an optical frequency PLL section which inputs the output light of this reference wavelength light source section 11, 13 an optical modulation section that modulates the output light of this optical frequency PLL section 12, and 14 amplifies the output light of this optical modulation section 13. The optical amplifying section 15 is an optical frequency shifter section that shifts the output frequency of the optical amplifying section 14. optical frequency P
In the LL section 12, 121 is an optical heterodyne detection section which receives the output light of the reference wavelength light source section 11 as one input;
123 is a variable wavelength light source section that controls the oscillation wavelength of output light by the output of this optical heterodyne detection section 121; 123 is an optical frequency shifter section that shifts the frequency of the output light of this variable wavelength light source section 122; Shifter section 123
This is an optical frequency multiplication section that multiplies the frequency of the output light of the optical system and uses the output light as the other manual power of the optical heterodyne detection section 121.

このよ・うな構成の装置の動作を次に説明する。The operation of the device having such a configuration will be explained next.

基準波長光源部11の出クツ光が光周波数P L 1部
12に入力すると、光周波数PLL部12は!3準波長
光源部11の発振波長に対応する波長にその光出力の波
長を固定(ロック)する。すなわち光ヘデログイン検波
部121は基準波長光源部11からの出力光と光周波数
逓倍部124の出力光を比較して、その差が小さくなる
ように可変波長光源部122を制御する。フィードバッ
ク回路における光周波数シフタ部123は可変波長光源
部122の出力光にオフセット周波数を加え、光周波数
逓倍部124は可変波長光源部122の出力光周波数と
基準波長光源部11の出力光周波数の比を定める。光変
調部13は光周波数PLL部12の出ツノ光を変調し、
光増幅部14はこの光変調部13の出力光を増幅して光
周波数シンセサイザ・スイーパの出力を(第1の光出力
として)発生し、光周波数シフタ部15は前記光増幅部
14の出力光の周波数をΔωシフトした出力光を(局部
発揚光出力として)発生する。
When the output light from the reference wavelength light source section 11 is input to the optical frequency PLL section 12, the optical frequency PLL section 12 is! The wavelength of the optical output is fixed (locked) to the wavelength corresponding to the oscillation wavelength of the third sub-wavelength light source section 11. That is, the optical header login detection section 121 compares the output light from the reference wavelength light source section 11 and the output light from the optical frequency multiplication section 124, and controls the variable wavelength light source section 122 so that the difference between them becomes small. The optical frequency shifter section 123 in the feedback circuit adds an offset frequency to the output light of the variable wavelength light source section 122, and the optical frequency multiplier section 124 increases the ratio of the output optical frequency of the variable wavelength light source section 122 and the output optical frequency of the reference wavelength light source section 11. Establish. The light modulation section 13 modulates the output horn light of the optical frequency PLL section 12,
The optical amplification section 14 amplifies the output light of the optical modulation section 13 to generate an output of the optical frequency synthesizer sweeper (as a first optical output), and the optical frequency shifter section 15 amplifies the output light of the optical amplification section 14. The output light whose frequency is shifted by Δω is generated (as a locally pumped light output).

第3図は第2図の構成をさらに具体化したものの構成ブ
ロック図である。基準波長光源部11において、L D
 1はレーデダイオード、CLは1マbガスまたはCs
ガスが封入され前記レーザダイA−ド11〕1の出力光
を入射する吸収ピル、HMlはこの吸収セルCLの出力
光が入射するハーフミラ−1PD1はこのハーフミラ−
HMlの反射光を入力するフォトダイオード、△1はこ
のフォトダイオードPD1の電気出力を入力しこれに対
応する出力で前記レーザダイオードi D 1の電流を
制御する制御回路、[81は前記ハーフミラ−HMlの
透過光が透過プる戻り光防止用のアイソレーク、O△1
はこのアイソレータ181を透過した光が入力する光増
幅素子である。光周波数P l−1部12にJ′3いて
、HM 2は前記基準波長W、源部11の出力光を入射
するハーフミラ−1PD2は光ヘテロダイン検波部12
1を構成し前記ハーフミラ−11M2の透過光を入力す
るPINフォトダ(′A−ドウアバランシェダイA−ド
などからなる〕Aトダイオード、ECは水晶などから基
準周波数を入力して所定の周波数の電気信号を発生する
511辰器、MXIはこの発振器ECの電気出力と前記
光ヘテロダイン検波部PD2の電気出力が接続丈るミキ
サ(混合)回路である。このミキサ′(混合)回路MX
Iの出力が接続する可変波長光源部122において、F
Cは前記ミキ舎す回路MX1の出力が接続する光周波数
変調回路、V L 1〜VL3はこの光周波数変調回路
FCの出力を入力する可変波長レーザダイオード、!8
2はYIG(イツトリウム・アイアン・ガーネット)で
構成され前記可変波長レーザダイオードv[−1〜VL
3の出力光が透過するアイソレータ、O81は少数(第
3図では3つ)のアイソレータ132を透過した光が入
射する光スィッチである。8M3はこの光スイッチO8
1の出力光が人0A1Jるハーフミラ−1OA2はこの
ハーフミラ−8M3の反射光を入力する光増幅素子、U
Mlは光周波数シフタ部123を構成し前記光増幅素子
OΔ2の出力光を入力する超音波変調器、NLは光周波
歓迎(8部を構成しこの光周波数シフタ部の出力光を入
力する非線形材料を用いた先導波路、O△3はこの光導
波路NLの出力光を増幅する光増幅素子である。
FIG. 3 is a block diagram showing a further embodiment of the configuration shown in FIG. In the reference wavelength light source section 11, L D
1 is Raded diode, CL is 1Mb gas or Cs
HMl is a half mirror into which the output light of the absorption cell CL is incident; PD1 is the half mirror into which the output light of the laser diode 11 is incident;
△1 is a control circuit that inputs the electric output of this photodiode PD1 and controls the current of the laser diode i D 1 with the corresponding output; [81 is the half mirror-HMl; Isolake for preventing return light from passing through, O△1
is an optical amplification element into which the light transmitted through this isolator 181 is input. The optical frequency P l-1 is J'3 in the section 12, HM2 is the reference wavelength W, and the half mirror 1PD2 which receives the output light from the source section 11 is the optical heterodyne detection section 12.
A PIN photodiode (consisting of an avalanche diode, etc.) that composes 1 and inputs the transmitted light of the half mirror 11M2, and EC inputs a reference frequency from a crystal etc. The 511 oscillator MXI that generates the signal is a mixer (mixing) circuit to which the electrical output of this oscillator EC and the electrical output of the optical heterodyne detection section PD2 are connected.This mixer' (mixing) circuit MX
In the variable wavelength light source section 122 to which the output of F is connected,
C is an optical frequency modulation circuit to which the output of the above-mentioned mixer circuit MX1 is connected, and VL1 to VL3 are variable wavelength laser diodes to which the output of this optical frequency modulation circuit FC is input. 8
2 is made of YIG (yttrium iron garnet) and the variable wavelength laser diode v[-1 to VL
The isolator O81 through which the output light of No. 3 passes is an optical switch through which the light that has passed through a small number (three in FIG. 3) of isolators 132 enters. 8M3 is this optical switch O8
The half mirror 1OA2 whose output light is 0A1J is an optical amplification element U which inputs the reflected light of this half mirror 8M3.
Ml is an ultrasonic modulator that constitutes the optical frequency shifter section 123 and inputs the output light of the optical amplification element OΔ2, and NL is an optical frequency modulator (constituting the 8th section and a nonlinear material that inputs the output light of this optical frequency shifter section). The leading waveguide O△3 is an optical amplification element that amplifies the output light of this optical waveguide NL.

前記光周波数P L 1部12の出力光を入射する光変
調部13において、八M1.PMIはL+NbO5など
の電気光学結晶を用いたそれぞれ振幅変調器d3よび位
相変調器、LMlはYIGなどの磁気光学結晶を用いた
偏光変all器である。OA4は光増幅部14を構成し
、光変調部13の出力光を゛  増幅する光増幅素子で
ある。光周波数シフタ部15は123と同様の超音波変
調器から構成されている。
In the optical modulation section 13 into which the output light of the optical frequency P L 1 section 12 is input, eight M1. PMI is an amplitude modulator d3 and a phase modulator using electro-optic crystals such as L+NbO5, respectively, and LMl is a polarization modulator all using magneto-optic crystals such as YIG. OA4 is an optical amplification element that constitutes the optical amplification section 14 and amplifies the output light of the optical modulation section 13. The optical frequency shifter section 15 is composed of an ultrasonic modulator similar to 123.

このような構成の装置の動作を次に詳しく説明する。The operation of the apparatus having such a configuration will be described in detail below.

基準波長光源部71はJx下に述べるように、Rb (
またはCs)原子の吸収線にレーザダイオードの発振波
長を1t11制御して絶対波長で?33部、高安定化(
10−12以上)するものである。レーザダイオードL
 D 1の出ツノ光は、吸収セルCLを透過する際にL
Dlの出力光の波長がRbガス(またはC5ガス)の吸
収線と一致すると吸収され、第4図(A)の特性曲線図
に示すような吸収特性が現れる。第5図はRbガスのエ
ネルギ一単位を示す説明図で、Rbの吸収線は02線が
78 Orlm 。
The reference wavelength light source section 71 has Rb (
Or Cs) Control the oscillation wavelength of the laser diode by 1t11 to the absorption line of the atom and use the absolute wavelength? Part 33, highly stabilized (
10-12 or more). Laser diode L
The output horn light of D1 becomes L when it passes through the absorption cell CL.
When the wavelength of the output light of Dl matches the absorption line of Rb gas (or C5 gas), it is absorbed, and an absorption characteristic as shown in the characteristic curve diagram of FIG. 4(A) appears. FIG. 5 is an explanatory diagram showing one unit of energy of Rb gas, and the absorption line of Rb is 02 line at 78 Orlm.

DI線が795nmであり、2逓倍するとそれぞれ15
60nm、1590nmとなり、光ファイバ通信s長で
ある1500nm帯と一致するので都合がよい。これは
また光応用δ1測の分野にも使いやすい波長域である。
The DI line is 795 nm, and when multiplied by 2, it becomes 15
60 nm and 1590 nm, which is convenient because it coincides with the 1500 nm band, which is the optical fiber communication length s. This is also a wavelength range that is easy to use in the field of optical applied δ1 measurement.

吸収セルCLの出力光の内ハーフミラ−1」Mlで反射
された部分は光検出器P D 1で検出され、光検出器
PDIの出力に対応して制御回路△1でレーザダイオー
ドLDIの電流を制御することにより、吸収中心にLD
lの出力波長をロックする。例えば、第4図(A>のa
点にロックしたい場合、制御回路A1でロックインアン
プf−,どを用いて第4図(A>の微分波形である第4
図(B)の6点(微分波形値がOとなる点)に固定する
。この方法は線形吸収法とよばれ、第4図(A>のよう
に吸収スベクi・ルが太くなるが、飽和吸収法(堀、開
田、北野、藪崎、小川:飽和吸収分光を用いた半導体レ
ーザの周波数安定化 fji学技tfI 0QE82−
116)によりドンプラシフ1〜で隠れている超微細構
造の吸収線を検出して、これにレーザダイオード1−D
lの発振波長をロックすればさらに高安定となる。なお
レーザダイオードLD1は恒温槽で温度安定化されてい
る。ハーフミラ−HMlを透過した光はアイソレータf
s1に入射する。アイソレークIs1は、外部からの反
射による戻り光がレーザダイオードLDIに入ってノイ
ズとなることを防止する。アイソレークIS1の出力光
は必要に応じて光増幅索子OAIで増幅される。
The part of the output light of the absorption cell CL that is reflected by the half mirror 1'Ml is detected by the photodetector PD1, and the control circuit Δ1 controls the current of the laser diode LDI in accordance with the output of the photodetector PDI. By controlling the LD at the absorption center
Lock the output wavelength of l. For example, in Figure 4 (A>a
When it is desired to lock to a point, the control circuit A1 uses the lock-in amplifier f-, etc. to obtain the differential waveform of FIG.
It is fixed at six points (points where the differential waveform value becomes O) in the figure (B). This method is called the linear absorption method, and as shown in Figure 4 (A), the absorption spectrum becomes thicker, but the saturated absorption method (Hori, Kaida, Kitano, Yabusaki, Ogawa: Semiconductor using saturated absorption spectroscopy) Laser frequency stabilization fji science and technology tfI 0QE82-
116) to detect the absorption line of the hyperfine structure hidden in the Donplaschiff 1~, and connect it to the laser diode 1-D.
If the oscillation wavelength of l is locked, even higher stability will be achieved. Note that the temperature of the laser diode LD1 is stabilized in a constant temperature bath. The light transmitted through the half mirror HMl is passed through the isolator f.
incident on s1. The isolake Is1 prevents return light due to reflection from the outside from entering the laser diode LDI and becoming noise. The output light of the isolake IS1 is amplified by the optical amplification probe OAI as necessary.

光周波数PLL一部12は以下に述べるように、可変波
長光源部122の発振波長を、J3準波長光源部11の
発振波hcに対し所定の比および所定のオフビットを持
ってロックする機能を有する。基準波長光源部11の出
力光はハーフミラート1M2を透過して光ヘテロダイン
検波部121のフォトダイオードPD2に入射する。光
周波数逓倍部124からのフィードバック光も光増幅素
子OA3を介してハーフミラ−HM2で反射した後フォ
トダイオードPD2に入射する。基準波長光源部11の
出力およびフィードバック光の光周波数をそれぞれωS
、ω!とすると、光ヘテロダイン検波部121の出力電
気信号の周波数ω2はω2−1ωS−ω11となる。発
振器ECの出力周波数をω3とすると、ミキサ回路(位
相検波回路)MXlの出力ω4は、光ヘテロダイン検波
部121の出力周波数ω2にオフセット周波数を加えら
れてω4=ω2−ωコとなる。ミキυ回路MX1の出力
電気13号ω4は可変波長光源部122の光周波数変調
回路FCに入力し、光周波数変調回路FCはω4=0と
なるように可変波長レーザダイオードVL1〜L3の光
周波数を制御する。ここで可変波長レーザダイオードV
LI〜VL3としては、レーデダイオードチップ内に作
り込んだ回折格子からの反射を利用して共振器が構成さ
れ回折格子のピッチで発振周波数が決まるため比較的波
長が安定なりFB(Distributed  Fee
dback)レーザやDBR(D i s t r 1
buted  Brag(]  Reflector)
レーザの一種でADFB(Acoustic  [)1
:B)レーザ(Yamanishi  M、et。
As described below, the optical frequency PLL section 12 has a function of locking the oscillation wavelength of the variable wavelength light source section 122 to the oscillation wave hc of the J3 quasi-wavelength light source section 11 with a predetermined ratio and a predetermined off bit. have The output light from the reference wavelength light source section 11 passes through the half mirror 1M2 and enters the photodiode PD2 of the optical heterodyne detection section 121. The feedback light from the optical frequency multiplier 124 is also reflected by the half mirror HM2 via the optical amplification element OA3, and then enters the photodiode PD2. The output of the reference wavelength light source section 11 and the optical frequency of the feedback light are respectively ωS
,ω! Then, the frequency ω2 of the output electrical signal of the optical heterodyne detection section 121 becomes ω2-1ωS-ω11. When the output frequency of the oscillator EC is ω3, the output ω4 of the mixer circuit (phase detection circuit) MXl is obtained by adding an offset frequency to the output frequency ω2 of the optical heterodyne detection section 121, and becomes ω4=ω2−ω. The output electricity No. 13 ω4 of the MIKI υ circuit MX1 is input to the optical frequency modulation circuit FC of the variable wavelength light source section 122, and the optical frequency modulation circuit FC adjusts the optical frequency of the variable wavelength laser diodes VL1 to L3 so that ω4=0. Control. Here, the variable wavelength laser diode V
For LI to VL3, a resonator is constructed using reflection from a diffraction grating built into the radar diode chip, and the oscillation frequency is determined by the pitch of the diffraction grating, so the wavelength is relatively stable and FB (Distributed Fee)
dback) laser or DBR (D i st r 1
Butted Brag(] Reflector)
ADFB (Acoustic [)1] is a type of laser.
:B) Laser (Yamanishi M, et.

al、:QaAB  ACOuSjiCDistrib
uted  Feedback  La5erS 、 
 、) pn、   J、   Ap  p 1.  
 Phys、   、   5LJI)t)1.1B−
1,p、355.1979)と呼ばれるものを用いてい
る。ADFBレーザはDBRレーデ内の回折格子と直交
して表面弾性波(SAW)を発生させ、チップ内に作り
こんだ回折格子とSAWとでブラック回折による光のリ
ング共振器を形成する。SAWの波長を掃引すると、リ
ング共振器の共振波長が変化し、発振波長を掃引するこ
とができる。本実施例では発振波長を1560nm帯と
している。共振器長の長いDFB、DI3 RウA D
 F Bレーザは発振スペクトルが狭(、スペクトル純
度が良いという利点もある。1つのA l) I= B
レーザ゛の可変波長範囲で不十分の場合は第3図のよう
に複数のΔDFBレーザ(VL1〜VL3)を用い、光
スィッチや光合波器で切換えることができる。すなわち
可変波長レーザダイオードVLI〜VL3の出力光はそ
れぞれ戻り光防止用のアイソレータIS2を介して光ス
ィッチO81に入力し所定の可変波長範囲のものか選択
される。光スイッチ081の出力光の一部はハーフミラ
−1−I M 3で反射され、光増幅素子OA2に入力
する。
al, :QaAB ACOuSjiCDistrib
uted Feedback La5erS,
, ) pn, J, Ap p 1.
Phys, , 5LJI)t)1.1B-
1, p. 355.1979). The ADFB laser generates a surface acoustic wave (SAW) perpendicular to the diffraction grating in the DBR radar, and the SAW and the diffraction grating built into the chip form a ring resonator of light by black diffraction. When the wavelength of the SAW is swept, the resonance wavelength of the ring resonator changes, and the oscillation wavelength can be swept. In this embodiment, the oscillation wavelength is set to 1560 nm band. DFB with long resonator length, DI3 R A D
FB laser has a narrow oscillation spectrum (also has the advantage of good spectral purity. One Al) I=B
If the variable wavelength range of the laser is insufficient, a plurality of ΔDFB lasers (VL1 to VL3) can be used and switched by an optical switch or optical multiplexer as shown in FIG. That is, the output lights of the variable wavelength laser diodes VLI to VL3 are input to the optical switch O81 via the isolator IS2 for preventing return light, respectively, and are selected within a predetermined variable wavelength range. A part of the output light from the optical switch 081 is reflected by the half mirror 1-IM3 and input to the optical amplification element OA2.

光増幅素子OA2の出力光は光周波数シフタ部123に
入力し、超音波変調器UM1に入射して13raggの
S次回折光を出力する。水晶le & 5などの基準周
波数源から供給される超音波の周波数をω5とすると、
回折光の光周波数はSO2だけシフトする。
The output light of the optical amplifying element OA2 is input to the optical frequency shifter section 123, and then input to the ultrasonic modulator UM1 to output S-order diffracted light of 13 ragg. If the frequency of the ultrasonic wave supplied from a reference frequency source such as crystal le & 5 is ω5,
The optical frequency of the diffracted light is shifted by SO2.

光周波数シフタ部123の出力光は光周波数逓倍部12
4に入)jし非線形材料を用いた光導波路NLで入ノコ
光の2次高調波を出力する。寸なわち1560nmの可
変波長レーザダイオード出力を光増幅器を介して入力し
、2次高調波の780nmを出力している。導波路とし
て、ZTISの非線形薄膜およびTiO2の線形薄膜を
用いた空気−T(02ZTLS−ガラスの4層スラブ先
導波路を用いて、非線形効果を効率良く起こしている。
The output light of the optical frequency shifter section 123 is transmitted to the optical frequency multiplier section 12.
4) and outputs the second harmonic of the incoming saw light through an optical waveguide NL using a nonlinear material. In other words, a tunable wavelength laser diode output of 1560 nm is inputted via an optical amplifier, and a second harmonic of 780 nm is output. As a waveguide, a four-layer slab guided waveguide of Air-T (02ZTLS-glass) using a nonlinear thin film of ZTIS and a linear thin film of TiO2 is used to efficiently generate the nonlinear effect.

なおこの実施例では2次高調波を利用しているが、任意
のn次高調波を用いることができる。
Although this embodiment uses second-order harmonics, any n-order harmonics may be used.

光周波数逓倍部124の出力光は光増幅素子OΔ3で増
幅された後、前述のようにフィードバック光としてハル
ツミラーHM2で基準波長光源部11力臼うの出力光と
合流する。
The output light from the optical frequency multiplier 124 is amplified by the optical amplification element OΔ3, and then merges with the output light from the reference wavelength light source 11 by the Hartz mirror HM2 as feedback light, as described above.

以上の動作により、光周波数F)シ1一部12の光出力
の光周波数ω0は ω0=(ωS±ω3)/n±Sω5 となる(ただし符号は同順でない)。ただし本実施例で
は光周波数逓倍数n=2である。すなわちω、が絶対波
長で高精度かつ高安定な光周波数ωSに所定の比nを介
してロックし、さらに任意の周波数ω、/nまたはω5
だけオフセットを持った光周波数となる。ω3またはθ
)5を掃引すれば、高精度の光周波数掃引が実現できる
。ここでω3゜ω5は電気信号であるので、高精度、高
安定性は容易に得られる。
Through the above operation, the optical frequency ω0 of the optical output of the optical frequency F) part 12 becomes ω0=(ωS±ω3)/n±Sω5 (note that the signs are not in the same order). However, in this embodiment, the optical frequency multiplication number n=2. That is, ω is the absolute wavelength and is locked to a highly accurate and highly stable optical frequency ωS via a predetermined ratio n, and furthermore, it can be set to any arbitrary frequency ω, /n or ω5.
becomes an optical frequency with an offset of . ω3 or θ
) 5, a highly accurate optical frequency sweep can be realized. Here, since ω3°ω5 are electrical signals, high accuracy and high stability can be easily obtained.

光周波数P[−1一部12の光出力は光変調部13に入
力し、振幅変調器ΔM1で振輔変調され、位相変調器P
M1で位相を変調され、1−光変調部1−M1で(Ia
光方向を変化される。光変調部13の光出力は光増幅部
14の光増幅素子O△4で増幅された後、シンセリイ+
r出力(第1の光出力)となる。また光増幅素子0△4
の光出力は光周波数シフタ部15の超音波変m器により
出力周波数が△ωシフトし、周波数ω0+Δωの局部′
R,振光(第2の光出力)として出力される。
The optical output of the optical frequency P[-1 part 12 is input to the optical modulation section 13, is amplitude modulated by the amplitude modulator ΔM1, and is modulated by the phase modulator P.
The phase is modulated by M1, and (Ia
The direction of light is changed. The optical output of the optical modulation section 13 is amplified by the optical amplification element O△4 of the optical amplification section 14, and then
r output (first optical output). Also, the optical amplification element 0△4
The output frequency of the optical output is shifted △ω by the ultrasonic transformer of the optical frequency shifter section 15, and the optical output is localized at the frequency ω0 + Δω.
R, is output as a vibration (second optical output).

上記の構成例において、光増幅素子OA1〜O△4は前
記増幅部32.42と同様のものを用いる。
In the above configuration example, the optical amplification elements OA1 to OΔ4 are the same as the amplification sections 32 and 42.

なお上記の構成例において、光周波数シック部123と
元周波歓迎(13部12−’lの1り置を入れt)えて
、光周波数P L 1部12の光出力の周波数ω0を ωo=< ωS ±ω3 ± SO2)/nとしてもよ
い。
In the above configuration example, by replacing the optical frequency thick section 123 and the original frequency (by inserting 1 of the 13 section 12-'l), the frequency ω0 of the optical output of the optical frequency P L 1 section 12 is set to ωo=< It may also be ωS ±ω3 ± SO2)/n.

また光周波数P L 1部12において、ミキサ回路M
 X I J5よび光周波数シフタ部123はいずれも
オフセット周波数をttnえるためのもので−あり、い
ずれか一方を省略することもできる。
In addition, in the optical frequency P L 1 section 12, the mixer circuit M
Both the XI J5 and the optical frequency shifter section 123 are for adjusting the offset frequency, and either one can be omitted.

また光周波数PLL部12にa3いて、逓倍¥1.nを
1とすれば光周波数逓倍部124を省略することができ
る。
Also, there is a3 in the optical frequency PLL section 12, and the multiplication is ¥1. If n is set to 1, the optical frequency multiplier 124 can be omitted.

また上記の構成例では基準波長光源部11においてRb
またはCsの吸収線を利用しているが、これらに限らず
、絶対波長で高精度、高安定線な任意の吸収線例えばN
H)やH2Oの吸収線(1500nm帯)を用いること
もできる。この場合には光周波数逓倍部124は不要と
なる。公知の71ブリベローtt振器を波長検出器とし
て用いて波長安定化することもできるが、上記のような
m子標準的な吸収線を用いた方が特性が浸れている。
Further, in the above configuration example, in the reference wavelength light source section 11, Rb
Or, the absorption line of Cs is used, but it is not limited to these, but any absorption line with high precision and high stability at the absolute wavelength, such as N
It is also possible to use the absorption line (1500 nm band) of H) or H2O. In this case, the optical frequency multiplier 124 becomes unnecessary. Although it is possible to stabilize the wavelength by using the well-known 71 Bribelow TT oscillator as a wavelength detector, the characteristics are better obtained by using the m-son standard absorption line as described above.

また第3図装置においてω3の代りにω3′−ω、+Ω
(Ωは基準波長光源部11においてロックインアンプを
用いた場合のFMgMg波周波数周波数18号をミキサ
回路MXIに入力すれば、光f、′]波数PLL部12
の光出力から不要なFM変調成分を除去することができ
る。
Also, in the device shown in Fig. 3, instead of ω3, ω3'-ω, +Ω
(Ω is the light f, ′ when the FMgMg wave frequency frequency No. 18 is input to the mixer circuit MXI when a lock-in amplifier is used in the reference wavelength light source section 11)] Wave number PLL section 12
Unnecessary FM modulation components can be removed from the optical output.

また可変波長レーデダイオードVL1〜3としては上記
の構成例のようなADFBなどに限られず、レーザダイ
オードチップ外部に回折格子を用いた外部共振器を付加
し、回折格子を回転させ、その波長選択性を利用して可
変波長どしたものでもよい。外部共振器形レーザダイオ
ードは狭スベクi・ルという優れた特長を持つ。
In addition, the variable wavelength radar diodes VL1 to VL3 are not limited to ADFB as in the above configuration example, but an external resonator using a diffraction grating is added outside the laser diode chip, and the wavelength can be selected by rotating the diffraction grating. It may also be possible to make the wavelength variable by taking advantage of its properties. External cavity laser diodes have the excellent feature of narrow spectrum.

また可変波長レーザダイオードV l−1〜VL3とし
て、第6図のように共振器内に波長選択性の素子を挿入
したものを用いてもよい。図においてLD2は半導体レ
ーザ、51.52はこの半導体レーザLl)2の両端に
設けられた無反射コー(へ部、LSlはこの無反射ツー
1〜部51から出射される光を平行光とするレンズ、M
lはこのレンズLS1を透過した光が反射されるミラー
、LS2は無反射コート部52から出射される光を平1
1光とするレンズ、tJM2はこのレンズLS2を透過
する光が入射する第1の超音波変調器、UM3はこの超
音波変調器UM2から出射する光が入射プる第2の超音
波変調器、M2はこの超音波変調器UM3から出射した
光を反!l)j するミラー、DRlは前記超音波変調
器LJM2.UM3を周波数Fで励振する発振器である
。第7図は第6図装置にa3りる超音波変調器UM2.
UM3による波長選択および周波数掃引動作の様子を示
すための動作説明図である。半導体レーγLD2の無反
射コート部51かIう出射した光はレンズLSIで平行
光とされ、ミラーM1で反射される。ミラーM1がらの
反射光は光路を元に戻って再び半導体レーザし、D2に
入射する。無反射コート部52から出射した周波数1’
o+の光はレンズl−32で平行光とされ、第1のIB
 >N波変調器UM2に入射する。この際回折条1′1
から、超音波61により生じる回折格子63への入射角
θ132回折後の出射角θO++光の波長λo J5よ
び超音波の波長Δ0の間には次式のような関係がある。
Further, as the variable wavelength laser diodes V1-1 to VL3, a device in which a wavelength selective element is inserted into a resonator as shown in FIG. 6 may be used. In the figure, LD2 is a semiconductor laser, 51.52 is a non-reflection core provided at both ends of the semiconductor laser (Ll) 2, and LSl is a parallel light emitted from the non-reflection tool 1 to 51. lens, M
l is a mirror on which the light transmitted through this lens LS1 is reflected, and LS2 is a mirror on which the light emitted from the non-reflection coating portion 52 is reflected.
tJM2 is a first ultrasonic modulator into which the light transmitted through the lens LS2 enters; UM3 is a second ultrasonic modulator into which the light emitted from this ultrasonic modulator UM2 enters; M2 reflects the light emitted from this ultrasonic modulator UM3! l) j mirror, DRl is the ultrasonic modulator LJM2. This is an oscillator that excites UM3 at frequency F. FIG. 7 shows an ultrasonic modulator UM2.A3 in the device shown in FIG.
FIG. 3 is an operation explanatory diagram showing how the UM3 performs wavelength selection and frequency sweeping operations. The light emitted from the non-reflection coating portion 51 of the semiconductor laser γLD2 is converted into parallel light by the lens LSI, and is reflected by the mirror M1. The reflected light from the mirror M1 returns to the original optical path, becomes a semiconductor laser again, and enters D2. Frequency 1' emitted from the non-reflection coating section 52
The o+ light is made into parallel light by the lens l-32, and the light from the first IB
>N-wave enters the modulator UM2. In this case, the diffraction line 1'1
Therefore, there is a relationship as shown in the following equation between the incident angle θ132 on the diffraction grating 63 caused by the ultrasonic wave 61, the output angle θO++ after diffraction, the wavelength λo J5 of the light, and the wavelength Δ0 of the ultrasonic wave.

sinθ7++sinθOI=λ0/△0・・・(1) すなわら特定の入射角θi1および出射角θo1を;両
足するような光路を通る光の波長λ0は超音波の波長へ
。が変われば変化する。出射光は超音波によるドツプラ
シフトを受け、この場合はト1次回折光(超音波の方向
と回折される方向が同じ)であるので、その周波数はf
o+ 十Fとなる。超音波変調器UM2からの出射光は
超音波変調′!AUM3で再び]r!l折する。館記同
様、超音波62により生じる回折格子64への入射角θ
L2+回折1殺の出射角θ02.光の波長λ0および超
音波の波長△0の間には次式のような関係がある。
sin θ7++ sin θOI=λ0/Δ0 (1) In other words, the wavelength λ0 of the light passing through the optical path such that both the incident angle θi1 and the output angle θo1 are equal to the wavelength of the ultrasonic wave. It will change if it changes. The emitted light undergoes a Doppler shift due to the ultrasound, and in this case, it is first-order diffracted light (the direction of the ultrasound and the direction of diffraction are the same), so its frequency is f
o+ 10F. The light emitted from the ultrasonic modulator UM2 is ultrasonic modulated! Again with AUM3] r! Fold it. Similar to the library record, the angle of incidence θ on the diffraction grating 64 caused by the ultrasonic wave 62
L2 + diffraction output angle θ02. There is a relationship between the wavelength λ0 of light and the wavelength Δ0 of ultrasound as shown in the following equation.

Sl「]θ(2+sinθo2=λ。/△。Sl"]θ(2+sinθo2=λ./△.

・・・(2) ただしく2)式において超音波変調器UM2のドツプラ
シフトによるλ。の変化は小さいので無T、S2してい
る。ここでは超音波の進行波62と回折光の関係が超音
波変調器UM2における場合と逆で、−1次回折光とな
るので、ドツプラシフl−filは−Fとなり、超音波
変調器UM3の出射光の周波数はfo+  ←F  F
=fo+ となる。超音波変調器(J M 3の出射光
はミラーM2で反射した後先の光路を逆行して、再び半
導体レーザLD2に入射する。逆行する際に、ドツプラ
シフトでUM3の出射光の周波数はf。+Fとなり、U
M2の出射光の周波数はfo+  F+F=fo+と元
の周波数f’o+ となって半導体レーザl−D 2に
戻るので、共振状態が持続する。なお回折効率を高める
ためにブラッグ入射条件を満足させ、超音波の波長へ〇
のとき入射角θ(++出射角θOI+入射角θL2およ
び出射角θo2の間に次の関係が成立つようにしている
...(2) However, in equation 2), λ due to the Doppler shift of the ultrasonic modulator UM2. Since the change in is small, no T and S2 are performed. Here, the relationship between the ultrasonic traveling wave 62 and the diffracted light is opposite to that in the ultrasonic modulator UM2, and it becomes -1st order diffracted light, so the Doppler shift l-fil becomes -F, and the output light of the ultrasonic modulator UM3 The frequency of is fo+ ←F F
=fo+. The emitted light from the ultrasonic modulator (JM3) is reflected by the mirror M2, travels backward along the optical path, and enters the semiconductor laser LD2 again.When going backwards, the frequency of the emitted light from the UM3 changes to f due to Doppler shift. +F and U
The frequency of the light emitted from M2 becomes the original frequency f'o+ (fo+F+F=fo+) and returns to the semiconductor laser l-D2, so that the resonance state continues. In order to increase the diffraction efficiency, the Bragg incident condition is satisfied, and the following relationship is established between the incident angle θ (++ outgoing angle θOI + incident angle θL2 and outgoing angle θo2) when the wavelength of the ultrasonic wave is 0. .

θi+−θOI−θt2=θ02 この様な構成で超音波の波長△。を変えれば、θLI+
 θ01+ θ、2.θo2を満足して共振する尤の波
長λ0を次式のように掃引できる。
θi+−θOI−θt2=θ02 With this configuration, the wavelength of the ultrasonic wave is △. If you change θLI+
θ01+ θ, 2. The likely wavelength λ0 that satisfies θo2 and resonates can be swept as shown in the following equation.

sinθf++5ij1θo1−(λ0+Δλ)/(△
。4・Δ△) また可変波長レー+fダイオードV L 1−V L 
3として、第8図のように共振器内に屈折率を制御でき
る素子を挿入したものを用いてもよい。第6図と同一の
部分には同じad号を付して説明を省略する。EOlは
L i N b O3にオブ酸すヂウム)等からなりレ
ンズLS2の出力光を入射する両面無反射コートの電気
光学素子、71はこの電気光学素子[EOlを制御する
電源である。半導体レーザL1〕2を出04 シた光は
レンズLS2で平行光となった後電気光学素子EOIを
透過し、ミラーM2で反射した後先の光路を逆行して、
再び半導体レーザLD2に入射する。この結果ミラーM
1とミラーM2の間で共振器を構成できる。ミラーM1
とミラーM2の間の電気光学素子EO1の光路に沿った
長さQを除く距離をし、電気光学素子Eo1の屈折率を
n、光速をC,pを整数とけると、発振周波数「02は fo 2 =p−C/2 (L+n (V) Q )・
・・(3) となる。すなυら電源71により電気光学素子E01の
電界強度を変えることにより屈折率nを変化させること
ができ、その結果発振周波数f02を掃引できる。
sinθf++5ij1θo1-(λ0+Δλ)/(△
. 4・Δ△) Also, variable wavelength laser + f diode V L 1-V L
3, a resonator in which an element capable of controlling the refractive index is inserted into the resonator as shown in FIG. 8 may be used. Components that are the same as those in FIG. 6 are given the same ad symbols and their explanations will be omitted. EOl is an electro-optical element made of L i N b O 3 and sodium obate, etc., and has anti-reflection coatings on both sides and receives the output light from the lens LS2. 71 is a power source that controls this electro-optical element [EOl]. The light emitted from the semiconductor laser L1]2 becomes parallel light through the lens LS2, passes through the electro-optical element EOI, is reflected by the mirror M2, and then travels backward along the optical path.
The light enters the semiconductor laser LD2 again. As a result, mirror M
A resonator can be constructed between the mirror M1 and the mirror M2. Mirror M1
If we take the distance excluding the length Q along the optical path of the electro-optical element EO1 between the mirror M2 and the mirror M2, and take the refractive index of the electro-optical element Eo1 as n, the speed of light as C, and p as an integer, then the oscillation frequency "02 is fo 2 = p-C/2 (L+n (V) Q)・
...(3) becomes. In other words, the refractive index n can be changed by changing the electric field strength of the electro-optical element E01 using the power source 71, and as a result, the oscillation frequency f02 can be swept.

第9図は第8図の可変波長レーデダイオードを2重共振
器形としたものを示す構成ブロック図である。第8図と
同一の部分は同じ記号を付して説明を省略する。BSl
はレンズLS2からの出射光を2方向に分1131tす
るビームスプリッタ、EO2はこのビームスプリッタ[
3S1を透過した光を入射する電気光学素子、M2iよ
この電気光学素子E02の出射光を反射するミラー、E
O3は前記ビームスプリッタ881で反射した光を入射
する電気光学素子、M3はこの電気光学素子FO3の出
Di九を反射するミラーである。電気光学素子EO2、
EO3の光路方向の長さをそれぞれQ+、Q2、屈折’
A5それぞれnI+n2、ミラーM1゜M2間の光路に
沿ったQ+を除く距離を1−1、ミラーM1.M3間の
光路に)aつだQ2を除く距離を12、Qを整数とする
と、この」易合の発振周波数[03は fos  =  q −C/21   (L+  +n
+   (V+   )j+−(12+−n2   (
V2  )  Q 2  )   I       −
(4)となる。(4)式は(3)式よりも分母を小さく
できるので、第8図装置の場合よりも発振周波数の可変
範囲を大きくできる。
FIG. 9 is a block diagram showing the configuration of the variable wavelength radar diode of FIG. 8 in a double resonator type. The same parts as in FIG. 8 are given the same symbols and the explanation is omitted. BSL
is a beam splitter that divides the emitted light from lens LS2 into two directions, and EO2 is this beam splitter [
An electro-optical element that receives the light transmitted through 3S1, a mirror that reflects the light emitted from the electro-optical element E02 on the side of M2i, and E
O3 is an electro-optical element that receives the light reflected by the beam splitter 881, and M3 is a mirror that reflects the output Di9 of the electro-optical element FO3. electro-optical element EO2,
The length of EO3 in the optical path direction is Q+, Q2, and refraction', respectively.
A5 respectively nI+n2, the distance excluding Q+ along the optical path between mirrors M1 and M2 is 1-1, mirror M1. If the distance excluding Q2 is 12, and Q is an integer, then the oscillation frequency [03 of this easy case is fos = q - C/21 (L+ +n
+ (V+)j+-(12+-n2 (
V2) Q2) I-
(4) becomes. Since the denominator of equation (4) can be made smaller than that of equation (3), the variable range of the oscillation frequency can be made larger than in the case of the device shown in FIG.

第10図は第8図の可変波長レーザダイオードを1チツ
プ上に集積形としたものを示す崩成図である。91はG
aAQΔs 、EnGa As Phどから構成される
レーザダイオード、92はこのし一ヂダイオード91の
接合部に段けられた光増幅部、9ζ3は同じく導波路屋
外部共振器、94.95はレーザダイオード91の両端
にもうけられたミラー、06は前記光増幅部92に対応
してレーザダイオード91の表面に設【プられた電極、
97は前記導波路屋外部共振器93に対応してレーデダ
イオード91の表面に設けられた電極である。
FIG. 10 is a construction diagram showing the tunable wavelength laser diode of FIG. 8 integrated on one chip. 91 is G
A laser diode composed of aAQΔs, EnGaAs Ph, etc., 92 is an optical amplification section arranged at the junction of the single diode 91, 9ζ3 is also a waveguide outdoor resonator, and 94.95 is the laser diode 91. 06 is an electrode provided on the surface of the laser diode 91 corresponding to the optical amplification section 92;
Reference numeral 97 denotes an electrode provided on the surface of the radar diode 91 corresponding to the waveguide outdoor resonator 93.

電極9Gを介して接合部に電流1t、oをF、F人して
光増幅部92にdiいてレーザ光を発生さけ、導波路形
外部」上振器93に電極97を介して電流IFを流し導
波路屋外部共振器93の屈折率を変化さ・  ぜて発振
周波数を1吊引する。光増幅部92および導波路形外部
共撮器93の接合部に沿った良さをそれぞれ93 N 
(!4 、屈折率をそれぞれn3、n4、rを整数とす
ると、発振周波数fodはfo 4−r−C/2 (n
3 Q3 +n4 (fF) Qとなる。
A current of 1t, o is applied to the junction through the electrode 9G, and a current is applied to the optical amplification section 92 to generate a laser beam, and a current IF is applied to the waveguide type external oscillator 93 through the electrode 97. By changing the refractive index of the flowing waveguide outdoor resonator 93, the oscillation frequency is lowered by one. The quality along the junction of the optical amplification section 92 and the waveguide type external co-imager 93 is 93 N, respectively.
(!4, if the refractive index is n3, n4, and r is an integer, the oscillation frequency fod is fo 4-r-C/2 (n
3 Q3 +n4 (fF) Q.

また光ヘテロダイン検波部121にW  Nt(タング
ステン、ニッケル)点接触ダイオードやジョげフソン素
子を使うこともできる。これらの索子は逓イ8とミキサ
の両方の機能を備えているためωS、ω1.ω3を同時
に人力することができ、第3図におtノるミキサ回路M
X1は不要となる。
Further, a WNt (tungsten, nickel) point contact diode or a George Fson element can also be used for the optical heterodyne detection section 121. These cables have the functions of both a transmitter 8 and a mixer, so ωS, ω1. The mixer circuit M that can be operated manually at the same time as ω3 is shown in Figure 3.
X1 becomes unnecessary.

この場合、これらの素子の出ツノ1jなわら光周波数変
調回路FCの入力信りはω4−ωS−ω1±mω3 (
口1は逓倍数)となる。またω4=ωs2ω1±mω3
とすることもでき、この場合には光周波数ミーヤリ12
4が不要となる。
In this case, the input signal of the optical frequency modulation circuit FC from the output point 1j of these elements is ω4−ωS−ω1±mω3 (
Port 1 is the multiplication number). Also ω4=ωs2ω1±mω3
In this case, the optical frequency signal 12
4 becomes unnecessary.

第11図は光ヘテIコダイン検波部121の曲の構成例
を示す構成ブロック図である。oCは第2の波長安定化
光源を用いた先出り周波数のしの局部発振器、OXはこ
の局部発振器OCの光出力および前記光周波数逓倍部1
24の光出力が前記光増幅索子OA3を介して入力する
非線形光学結晶を用いた光周波数ミキサ、ODはこの光
周波数ミーヤリOXの光出力と前記基準波長光源部11
からの出力光を入力して可変波長光源部122に出力J
るP r Nフォトダ・イオードまたは7バランシエフ
4トダイオード<Tどからなる光検出器である。
FIG. 11 is a configuration block diagram showing an example of the configuration of a song of the optical hete I codine detection section 121. oC is a local oscillator with a first frequency using a second wavelength stabilized light source, and OX is an optical output of this local oscillator OC and the optical frequency multiplier 1.
OD is an optical frequency mixer using a nonlinear optical crystal into which the optical output of 24 is inputted via the optical amplification cable OA3, and OD is a combination of the optical output of this optical frequency Meyari OX and the reference wavelength light source section 11.
inputs the output light from J and outputs it to the variable wavelength light source section 122.
The photodetector is composed of a P r N photodiode or a 7-balanced 4-diode <T.

このような構成によれば、光周波数ミキナoXの光出力
周波数ω6は非線形光学効果により、(!J6−ω1+
ωLとなる。第3図の構成では光周波数逓倍部により、
(オフセット周波数は別にして)ωS−ω1=ntt)
Qで決まる限られたω1しか得られないが、第11図の
構成ではいろいろな波長の光を出力できる。例えばRb
の吸収線を用いてωSの波長をλs=780nm、C6
の吸収線を用いてωLの波長をλL=852nmと選べ
ば、フィードバックループのバランス時の関係ωs=ω
6からωS、ω1.ωLのそれぞれの波長λ5゜λ1.
λLの間には1/λs=1/λ1+1/λLの関係があ
るから、λIl−9230nとなる。
According to such a configuration, the optical output frequency ω6 of the optical frequency mikina oX becomes (!J6−ω1+
It becomes ωL. In the configuration shown in Figure 3, the optical frequency multiplier allows
(Apart from the offset frequency) ωS - ω1 = ntt)
Although only a limited ω1 determined by Q can be obtained, the configuration shown in FIG. 11 can output light of various wavelengths. For example, Rb
The wavelength of ωS is determined by using the absorption line of λs=780nm, C6
If the wavelength of ωL is chosen as λL=852nm using the absorption line of , then the relationship when the feedback loop is balanced is ωs=ω
6 to ωS, ω1. Each wavelength of ωL λ5°λ1.
Since there is a relationship between λL of 1/λs=1/λ1+1/λL, it becomes λIl-9230n.

以上説明したような光周波数シンセサイデ・スィーパは
次のような特長を有している:(イ)その光出力が絶対
波長で高精度かつ高安定にRb、Csなどの吸収線にロ
ックすることができ、1Q−12以上の安定度の間予標
準(従来の周波数標準はCs <9Gl−1z)、Rb
 (6GHz>のマイクロ波共鳴を利用している)を得
ることができる。
The optical frequency synthesizer sweeper described above has the following features: (a) Its optical output can be locked to absorption lines such as Rb and Cs with high precision and high stability at the absolute wavelength. Preliminary standard with stability of 1Q-12 or higher (conventional frequency standard is Cs <9Gl-1z), Rb
(Using microwave resonance of >6 GHz) can be obtained.

(ロ)また可変波長レーザダイオードV11〜V1−3
として共振器長の艮い△DFBや外部共振;S形し−ザ
ダイオードを用いるため、共撮器のQが高く、発振スペ
クトル幅を狭くすることができる。
(b) Also, variable wavelength laser diodes V11 to V1-3
Since the resonator length is changed to ΔDFB or an S-type diode is used, the Q of the co-imager is high and the oscillation spectrum width can be narrowed.

(ハ)また光周波数PLLの原理を用いているため、高
精度な光周波数スィーブができる。
(c) Also, since the principle of optical frequency PLL is used, highly accurate optical frequency sweeping is possible.

(ニ)またRbの吸収線(780nm、795nm)な
どを用いていることと2逓倍方式により、光通信用ファ
イバで最も光伝送1(+1失が小さい1500nm帯の
光を高精度かつ高安定に出力できるので、実用性に優れ
ている。
(d) Also, by using Rb absorption lines (780 nm, 795 nm) and the doubling method, optical communication fibers can transmit light in the 1500 nm band with the lowest optical transmission 1 (+1 loss) with high precision and high stability. Since it can be output, it is highly practical.

(ホ)第11図に示したような構成により、いろいろ4
r光周波数を出ツノできる。
(e) With the configuration shown in Figure 11, various 4
Can emit r-light frequency.

第1図の実施例に述べたような構成の光周波数ネットワ
ーク・アナライザにお(プる光周波数の動作例を次に示
す。
An example of the operation of the optical frequency applied to the optical frequency network analyzer configured as described in the embodiment of FIG. 1 will be described below.

ωSの波長: 780nm (レーザダイオードの波長
をRbの吸収線にロックする) ω0の波1n:1560nm±50 n +nΔωの周
波fl:100MI−IZ この動作例は測定光が光ファイバ通(gの最適波長であ
る場合で、光通信用装置の測定には特に効果がある。
Wavelength of ωS: 780 nm (Lock the wavelength of the laser diode to the absorption line of Rb) Wave of ω0 1n: 1560 nm±50 n +nΔω Frequency fl: 100MI-IZ In this operation example, the measurement light is passed through an optical fiber (optimum of g) It is particularly effective for measuring optical communication devices in wavelengths.

なお上記の光周波数ネットワーク・アナライリ゛の実施
例では光周波数スィーパとして尤周e、故シンセリイザ
・スィーパを用いているが、これに限lうず、シンセ+
J−イズドされていない高g+良なスィーパを用いても
よい。
Note that in the above embodiment of the optical frequency network analyzer, a synthesizer sweeper is used as an optical frequency sweeper, but this is limited to a synthesizer sweeper.
A high g+good sweeper that is not J-ized may also be used.

また」1記の実施例では比較手段のリファレンス信号を
、第2の九ヘテロダイン検波部23および第2のフィル
タ部24を用いて得ていたが、これに限らず、例えば第
3図の光周波数シンセサイザ・スイーパの光周波数シフ
タ15に加わるシフト周波数Δωに対応する変調用電気
信号を用いてもよい。この場合には第2の光ヘテロダイ
ン検波部および第2のフィルタ部を省略して構成を簡単
にすることができる。
Furthermore, in the embodiment described in section 1, the reference signal of the comparison means is obtained using the second nine-heterodyne detection section 23 and the second filter section 24, but the invention is not limited to this, for example, the optical frequency shown in FIG. A modulation electrical signal corresponding to the shift frequency Δω applied to the optical frequency shifter 15 of the synthesizer sweeper may be used. In this case, the configuration can be simplified by omitting the second optical heterodyne detection section and the second filter section.

また光周波数ネットワーク・アナラ・イ噂アから測定対
象への出射光は連続光に限らず、パルス光を使用しこの
パルス光と同期して光周波数を(1■引することにより
パルス光に対する波長特性を測定することもできる。
In addition, the light emitted from the optical frequency network analyzer to the measurement target is not limited to continuous light, but pulsed light is used, and in synchronization with this pulsed light, the optical frequency (1) can be subtracted by Properties can also be measured.

(発明の効果) 以上述べたように本発明によれば、高精度に振幅1位相
特性などが測定できる光周波数ネットワーク・アナライ
ザを実現することかできる。
(Effects of the Invention) As described above, according to the present invention, it is possible to realize an optical frequency network analyzer that can measure amplitude and one-phase characteristics with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す構成ブロック図、第2
図は本発明で使用する光周波数スィーパ1の(M成例を
示す構成ブロック図、第3図は第2図の構成を具体化し
た構成例を示す構成ブ1コック図、第4図は第3図装置
の動作を説明するための特性曲線図、第5図は第3図装
置の動作を説明するための説明図、第6図および第8図
〜第1o図は第3図における可変波長レーザダイオード
の他の構成例を示す構成説明図、第7図は第6図装置の
動作を説明するための動作説明図、第11図は第3図装
置の一部の変形例を示すための偶成ブロック図、第12
図は従来の光ファイバ損失波長特性測定器をホブ構成ブ
ロック図、第13図は従来の光)?イバ波長分散特+を
測定器を示す偶成ブロック図である。 1・・・光周波数スィーパ、10・・・測定対象、23
・・・第2の光ヘテロダイン検波部、24・・・第2の
フィルタ部、33.43・・・第1の光ヘテ[コダイン
検波部、34,4.4・・・@1のフィルタ部、35,
36.45.46・・・比較手段、50・・・信号処理
T:段。 ・′、−\
FIG. 1 is a configuration block diagram showing one embodiment of the present invention, and FIG.
The figure is a block diagram showing a configuration example of the optical frequency sweeper 1 used in the present invention, FIG. 3 is a block diagram showing a configuration example embodying the configuration of FIG. Figure 3 is a characteristic curve diagram to explain the operation of the device, Figure 5 is an explanatory diagram to explain the operation of the device in Figure 3, and Figures 6 and 8 to 1o are the variable wavelength diagrams in Figure 3. A configuration explanatory diagram showing another configuration example of the laser diode, FIG. 7 is an operation explanatory diagram for explaining the operation of the device in FIG. 6, and FIG. 11 is a diagram showing a partial modification of the device in FIG. 3. Conjunction block diagram, 12th
The figure is a block diagram of the hob configuration of a conventional optical fiber loss wavelength characteristic measuring instrument, and Figure 13 is a conventional optical)? FIG. 2 is a conjunctive block diagram showing a device for measuring wavelength dispersion characteristics. 1... Optical frequency sweeper, 10... Measurement object, 23
...Second optical heterodyne detection section, 24...Second filter section, 33.43...First optical heterodyne detection section, 34,4.4...@1 filter section ,35,
36.45.46... Comparison means, 50... Signal processing T: stage.・′、−\

Claims (9)

【特許請求の範囲】[Claims] (1)周波数掃引する第1の光出力およびこの第1の光
出力に関連する第2の光出力を発生し第1の光出力を測
定対象に出射する光周波数スイーパと、前記第1の光出
力に基づく前記測定対象の出射光に関連する光および前
記第2の光出力を入力する第1の光ヘテロダイン検波部
と、この第1の光ヘテロダイン検波部の電気出力を入力
する第1のフィルタ部と、前記第1のフィルタ部の電気
出力と前記第1および第2の光出力の周波数差に関連す
る電気信号とを比較する比較手段と、この比較手段の電
気出力を入力して信号処理する信号処理手段とを備えた
ことを特徴とする光周波数ネットワーク・アナライザ。
(1) an optical frequency sweeper that generates a first optical output that sweeps a frequency and a second optical output related to the first optical output and emits the first optical output to a measurement target; a first optical heterodyne detection unit that inputs the light related to the output light of the measurement target based on the output and the second optical output; and a first filter that inputs the electrical output of the first optical heterodyne detection unit. a comparing means for comparing the electrical output of the first filter section and an electrical signal related to the frequency difference between the first and second optical outputs; and signal processing by inputting the electrical output of the comparing means. An optical frequency network analyzer characterized in that it is equipped with a signal processing means.
(2)前記第1および第2の光出力を入力する第2の光
ヘテロダイン検波部と、この第2の光ヘテロダイン検波
部の電気出力を入力する第2のフィルタ部とを備え、比
較手段で第2のフィルタ部の電気出力を第1のフィルタ
部の電気出力と比較する特許請求の範囲第1項記載の光
周波数ネットワーク・アナライザ。
(2) comprising a second optical heterodyne detection section into which the first and second optical outputs are input; and a second filter section into which the electrical output of the second optical heterodyne detection section is input; 2. The optical frequency network analyzer of claim 1, wherein the electrical output of the second filter section is compared with the electrical output of the first filter section.
(3)測定対象の出射光を入力して偏光面を制御する偏
光制御部と、この偏光制御部の出力光を増幅する光増幅
部とを備え、光増幅部の出力を第1の光ヘテロダイン検
波部へ入力するようにした特許請求の範囲第1項記載の
光周波数ネットワーク・アナライザ。
(3) Equipped with a polarization control section that inputs the output light of the measurement target and controls the polarization plane, and an optical amplification section that amplifies the output light of this polarization control section, and converts the output of the optical amplification section into a first optical heterodyne. The optical frequency network analyzer according to claim 1, wherein the optical frequency network analyzer is configured to input the signal to a detection section.
(4)比較手段が振幅比較手段を備えた特許請求の範囲
第1項記載の光周波数ネットワーク・アナライザ。
(4) The optical frequency network analyzer according to claim 1, wherein the comparing means comprises amplitude comparing means.
(5)比較手段が位相比較手段を備えた特許請求の範囲
第1項記載の光周波数ネットワーク・アナライザ。
(5) The optical frequency network analyzer according to claim 1, wherein the comparison means includes phase comparison means.
(6)フィルタ部を光周波数スイーパの2つの出力周波
数の差に対応する透過周波数帯域を有するバンド・パス
・フィルタで構成した特許請求の範囲第1項記載の光周
波数ネットワーク・アナライザ。
(6) The optical frequency network analyzer according to claim 1, wherein the filter section is constituted by a band pass filter having a transmission frequency band corresponding to the difference between two output frequencies of the optical frequency sweeper.
(7)光周波数スイーパとして、基準波長光源部と、こ
の基準波長光源部の発振波長に対応する波長に光出力の
波長を制御する光周波数PLL部とを備え、前記光周波
数PLL部の光出力の波長を可変とする光周波数シンセ
サイザ・スイーパを用いた特許請求の範囲第1項記載の
光周波数ネットワーク・アナライザ。
(7) The optical frequency sweeper includes a reference wavelength light source section and an optical frequency PLL section that controls the wavelength of the optical output to a wavelength corresponding to the oscillation wavelength of the reference wavelength light source section, and the optical frequency PLL section has an optical output. 2. The optical frequency network analyzer according to claim 1, which uses an optical frequency synthesizer sweeper that makes the wavelength of the optical frequency variable.
(8)基準波長光源部としてR_b原子のD_2(78
0nm)線およびD_1線(795nm)のいずれか1
つの吸収スペクトルにレーザダイオードのR振波長を制
御したものを用い、光周波数PLL部が前記各発振波長
の2倍の波長帯域の光を出力する特許請求の範囲第7項
記載の光周波数ネットワーク・アナライザ。
(8) D_2 (78
0nm) line or D_1 line (795nm)
The optical frequency network according to claim 7, wherein the optical frequency PLL section outputs light in a wavelength band twice as large as each of the oscillation wavelengths, using a laser diode whose R oscillation wavelength is controlled in two absorption spectra. analyzer.
(9)光周波数PLL部が基準波長光源部の出力光を一
方の入力とする光ヘテロダイン検波部と、この光ヘテロ
ダイン検波部の電気出力に関連する出力により出力光の
発振波長が制御される可変波長光源部とを備え、この可
変波長光源部の出力光に関連する光を前記光ヘテロダイ
ン検波部の他方の入力とした特許請求の範囲第7項記載
の光周波数ネットワーク・アナライザ。
(9) An optical heterodyne detection section in which the optical frequency PLL section receives the output light of the reference wavelength light source section as one input, and a variable oscillation wavelength of the output light is controlled by an output related to the electrical output of this optical heterodyne detection section. 8. The optical frequency network analyzer according to claim 7, further comprising a wavelength light source section, wherein light related to the output light of the variable wavelength light source section is inputted to the other input of the optical heterodyne detection section.
JP60296073A 1985-12-20 1985-12-27 Light frequency network analyzer Granted JPS62156535A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60296073A JPS62156535A (en) 1985-12-27 1985-12-27 Light frequency network analyzer
US06/943,670 US4856899A (en) 1985-12-20 1986-12-18 Optical frequency analyzer using a local oscillator heterodyne detection of incident light
DE3643569A DE3643569C2 (en) 1985-12-20 1986-12-19 Optical frequency analyzer
GB8630375A GB2185567B (en) 1985-12-20 1986-12-19 Optical frequency analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60296073A JPS62156535A (en) 1985-12-27 1985-12-27 Light frequency network analyzer

Publications (2)

Publication Number Publication Date
JPS62156535A true JPS62156535A (en) 1987-07-11
JPH0523613B2 JPH0523613B2 (en) 1993-04-05

Family

ID=17828762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60296073A Granted JPS62156535A (en) 1985-12-20 1985-12-27 Light frequency network analyzer

Country Status (1)

Country Link
JP (1) JPS62156535A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002082038A1 (en) * 2001-04-02 2002-10-17 Advantest Corporation Optical network analyzer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002082038A1 (en) * 2001-04-02 2002-10-17 Advantest Corporation Optical network analyzer
US6980288B2 (en) 2001-04-02 2005-12-27 Advantest Corporation Optical network analyzer

Also Published As

Publication number Publication date
JPH0523613B2 (en) 1993-04-05

Similar Documents

Publication Publication Date Title
US4893353A (en) Optical frequency synthesizer/sweeper
EP0828178B1 (en) Wavelength conversion apparatus with improved efficiency, easy adjustability, and polarization insensitivity
Kourogi et al. A monolithic optical frequency comb generator
US4856899A (en) Optical frequency analyzer using a local oscillator heterodyne detection of incident light
US8681827B2 (en) Generation of single optical tone, RF oscillation signal and optical comb in a triple-oscillator device based on nonlinear optical resonator
US6201638B1 (en) Comb generating optical cavity that includes an optical amplifier and an optical modulator
Zhuang et al. Electro‐optic frequency combs: Theory, characteristics, and applications
US20130170843A1 (en) Optical coherent receiver with local oscillator laser having hybrid cavity
WO2014197780A1 (en) Low-noise microwave-frequency generator
Zhang et al. A silicon photonic integrated frequency-tunable optoelectronic oscillator
Dong et al. Directly reflectivity modulated laser
Saitoh et al. Modulation characteristic of waveguide-type optical frequency comb generator
Savchenkov et al. Spectral purity improvement in flickering self-injection locked lasers
WO2022230217A1 (en) Optical frequency comb generator control device
JPS62156535A (en) Light frequency network analyzer
CN117561655A (en) Frequency modulation nonlinear calibration device and calibration method
CN116710740A (en) Photonic integrated circuit
JP2583410B2 (en) Optical frequency spectrum analyzer
JPH0521496B2 (en)
JPH06331495A (en) Device and method for measuring zero dispersion wavelength
US20230387647A1 (en) Methods and systems for pulsed beam phase locking
JPH03123828A (en) Instrument and method for measuring characteristic of optical phase modulator
JP3231117B2 (en) Measurement method of nonlinear refractive index of optical fiber
JPH0587684A (en) Zero-dispersed wavelength measuring apparatus
JPS62145887A (en) Optical frequency synthesizer sweeper

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees