JPS62156311A - Production of polyester fiber suitable for rubber-reinforcing woven fabrics - Google Patents

Production of polyester fiber suitable for rubber-reinforcing woven fabrics

Info

Publication number
JPS62156311A
JPS62156311A JP29281685A JP29281685A JPS62156311A JP S62156311 A JPS62156311 A JP S62156311A JP 29281685 A JP29281685 A JP 29281685A JP 29281685 A JP29281685 A JP 29281685A JP S62156311 A JPS62156311 A JP S62156311A
Authority
JP
Japan
Prior art keywords
yarn
heat
polyester
fibers
intrinsic viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29281685A
Other languages
Japanese (ja)
Inventor
Futoshi Sasamoto
太 笹本
Masanori Mineo
嶺尾 昌紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP29281685A priority Critical patent/JPS62156311A/en
Publication of JPS62156311A publication Critical patent/JPS62156311A/en
Pending legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/22Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

PURPOSE:A yarn drawn under specific conditions is heat-set under specific conditions to obtain a polyester yarn which has high elasticity and low shrinkage, thus is suitably used in woven fabrics for rubber reinforcement. CONSTITUTION:A polyester with an intrinsic viscosity of over 1.1, preferably 1.3-1.5 is melt-extruded into filaments, solidified by cooling and taken up at a speed of over 1,500m/min, preferably 2,000-6,000m/min, and drawn at a ratio of less than 5, preferably 1.5-4. After completion of drawing which corresponds to more than 80% of the total draw ratio, heat treatment is conducted under multistage stretching of inched step to give polyester fiber with an intrinsic viscosity of over 0.92. The heat-set temperature is preferably over 150 deg.C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は産業用ポリエステル繊維の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for producing industrial polyester fibers.

更に詳しくは、ゴム補強用織物に適した高弾性率で寸法
安定性が良好な高強度ポリエステル繊維の製造方法に関
するものである。
More specifically, the present invention relates to a method for producing high-strength polyester fibers having a high elastic modulus and good dimensional stability, which are suitable for rubber reinforcing fabrics.

〔従来の技術〕[Conventional technology]

従来からポリエステル繊維、特にポリエチレンテレフタ
レート繊維はその優れた機械的性能を生かし、産業用資
材、特にゴム補強用の素材として広く利用されている。
Conventionally, polyester fibers, especially polyethylene terephthalate fibers, have been widely used as industrial materials, especially rubber reinforcing materials, due to their excellent mechanical properties.

特に乗用車用タイヤでのポリエステル繊維の進出は著し
いものがあるが、近年のタイヤt1ζ造のラジアル化に
伴ない、高強力でかつ弾性率が高く寸法安定性が良好な
(すなわち低収縮率である)、ポリエステル繊維の開発
が強く望まれている。
The use of polyester fibers in passenger car tires in particular has been remarkable, and with the shift to radial tires in recent years, polyester fibers have become highly strong, have a high elastic modulus, and have good dimensional stability (i.e., low shrinkage). ), the development of polyester fibers is strongly desired.

かかる要求に対して特開昭57−154410号公報に
は、比較的高紡速で製糸した特定範囲の複屈折の未延伸
糸を延伸して高弾性率、低収縮率のポリエチレンテレフ
タレート繊維全行ル方法が開示されている。この方法で
は確かに従来技術に比べて高弾性率、低収縮率のf!&
維が得られ、現在産業用ポリエステル繊維の製造の主流
技術となりつつある。
In response to this demand, Japanese Patent Application Laid-Open No. 57-154410 discloses a complete line of polyethylene terephthalate fibers with high elastic modulus and low shrinkage by drawing undrawn yarn with birefringence in a specific range and spinning at a relatively high spinning speed. method is disclosed. This method certainly has a higher modulus of elasticity and lower shrinkage than the conventional technology. &
This method is now becoming the mainstream technology for producing industrial polyester fibers.

〔発明が解決しようとする間m点〕[M points while the invention is trying to solve]

しかしながら近年タイヤメーカーのポリエステル原、6
 K 21する高弾性率、低収縮率化の要望は増々厳し
くなり、前記した技術でも十分に満足できるレベルの繊
維が得られなくなって来た。
However, in recent years, tire manufacturers' polyester raw materials, 6
The demand for high elastic modulus and low shrinkage rate has become increasingly severe, and it has become impossible to obtain fibers of a sufficiently satisfactory level even with the above-mentioned techniques.

そこで木発明者らはより高弾性率で低収縮率の寸;°リ
エスデルを裁千11を得るため税音倹謔土したところ、
1.・正沖終了後蓚取りに至る間の処理条件が繊維の弾
性率に大きく影響することをつきとめた。
Therefore, the inventors of wood used a material with a higher modulus of elasticity and a lower shrinkage rate;
1.・It was found that the processing conditions from the end of the clearing to the removal of the fibers have a large effect on the elastic modulus of the fibers.

すなわち、前述の方法では繊維を延伸後、製糸性の向上
や低収縮化を図るため最終延伸ローラーで高温で熱処理
し、しかる後にリラックスして巻取っているが、この工
程で著しい弾性率の低下を招いていることがわかった。
In other words, in the above-mentioned method, after the fiber is drawn, it is heat-treated at a high temperature with a final drawing roller in order to improve spinning properties and reduce shrinkage, and then it is relaxed and wound, but this process causes a significant decrease in the elastic modulus. It turned out that he was inviting.

そこで、本発明者らは、ポリエステル繊維の延伸終了後
、巻取りに至る間での処理方法を改善して、繊維の高弾
性率化と低収縮率化を図る方法(Cついて検討した。
Therefore, the present inventors investigated a method (C) of improving the processing method after the end of drawing of polyester fibers and before winding them up to increase the modulus of elasticity and reduce the shrinkage rate of the fibers.

繊維の高弾性率化を図る方法としては、例えば特開昭5
9−400711号公報に、結晶性高配向ポリエステル
繊維を温度勾配下で延伸・熱処理する方法が記載され実
施例にはいわゆる逆チー29−ローラーを用いて温度勾
配下で延伸する例が示されている。しかしながらこの方
法を単に実施しても、弾性率の向上効果は見られるもの
の、繊維の収縮率が所望のレベルより高くなってし1つ
ために、本発明の目的でちる高弾恰−率、低収縮率の繊
維は得られない。
As a method for increasing the elastic modulus of fibers, for example, Japanese Patent Application Laid-open No. 5
No. 9-400711 describes a method of stretching and heat-treating crystalline highly oriented polyester fibers under a temperature gradient, and the examples show an example of stretching under a temperature gradient using a so-called reverse Chi-29 roller. There is. However, even if this method is simply carried out, although the effect of improving the elastic modulus is observed, the shrinkage rate of the fiber becomes higher than the desired level. Fibers with low shrinkage cannot be obtained.

又、繊維の低収縮化を図る方法としては、上述の様に一
般的には高温のローラーで熱セントされるのが通常であ
るがこの方法では、繊維の弾性率が大きく低下してし捷
う。さらに特開昭49〜+323j7号公報や特公昭4
B−28371号公報には延伸後、収縮下で熱処理して
低収縮率の糸条を得る方法が開示されているがこの方法
では確かに糸の低収縮化は図れても肝心の弾性率が犬き
く低下してしまう。
In addition, as a method for reducing the shrinkage of fibers, as mentioned above, the usual method is to apply heat centrifugation using a high-temperature roller, but this method greatly reduces the elastic modulus of the fibers and makes it difficult to unshape them. cormorant. Furthermore, JP-A No. 49-+323j7 and JP-A No. 4
Publication B-28371 discloses a method of obtaining yarn with a low shrinkage rate by heat-treating it under shrinkage after drawing, but although this method does reduce the shrinkage of the yarn, it does not improve the essential elastic modulus. The dog's hearing deteriorates.

この様に従来の技術では高弾性率で低収縮のポリエステ
ル繊維の製造にはおのずと限界があった。
As described above, conventional techniques naturally have limitations in producing polyester fibers with high elastic modulus and low shrinkage.

前記した問題点を解決し、従来の方法で得られるポリエ
ステル繊維よりもより一層高弾性率で低収縮率のゴム補
強用織物に適したポリエステル繊維の製造方法全提供す
ることが本発明の目的であり、その目的は延伸終了まで
の繊維の製造条件と実質的に延伸が終了した後の熱セン
ト条件を厳密にコントロールすることにより、初めて達
成される。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems and to provide a method for producing polyester fibers suitable for rubber reinforcing fabrics that have a higher modulus of elasticity and a lower shrinkage rate than polyester fibers obtained by conventional methods. This objective can only be achieved by strictly controlling the fiber manufacturing conditions up to the end of stretching and the heat sink conditions after the stretching is substantially completed.

〔問題を解決するだめの手段〕[Failure to solve the problem]

本発明の目的はポリエステル繊維の製造に際し、 (1)  原料ポリマーとして極限粘度11以上のポリ
エステルを用い、口金から吐出し く2)  該紡出糸条を冷却固化後、引取速度1500
m/分以上で引取り、 (3)  引続き/又は一旦巻取った後膣糸条を5倍以
下の延伸倍率で1段又は多段で延伸しく4)  全延伸
倍率の80%以上の延伸が終了後に多段【分割された小
きざみなストレツチを加えつつ熱処理し、 (5)極限粘度0.92 JJ上のポリエステル繊維と
なす ことを特徴とするゴム補強用織物に適したポリエステル
繊維の製造方法によって達成できる。
The purpose of the present invention is to produce polyester fibers by: (1) using polyester with an intrinsic viscosity of 11 or more as a raw material polymer and discharging it from a spinneret; and (2) after cooling and solidifying the spun yarn, taking it off at a take-up speed of 1500.
(3) Continue to/or once wound up, stretch the vaginal filament in one or multiple stages at a stretching ratio of 5 times or less. 4) Stretching of 80% or more of the total stretching ratio is completed. Achieved by a method for producing polyester fibers suitable for rubber reinforcement fabrics, which is then heat-treated while adding a multi-stage [divided small-sized stretch] to produce polyester fibers with an intrinsic viscosity of 0.92 JJ. can.

以下に本発明についてより詳細に説明する。The present invention will be explained in more detail below.

本発明におけるポリエフチルとは90モル係り上カエチ
レンテレフタレート構造単位のポリエステルで共重合成
分を10モル係未満含有しても良いが、共重合成分全実
質的に含まないポリエチレンテレフタレートであること
は好ましい。
The polyethyl in the present invention is a polyester having 90 moles of polyethylene terephthalate structural units and may contain less than 10 moles of a copolymer component, but is preferably a polyethylene terephthalate containing substantially no copolymer components.

本発明のポリエステル繊維の製造において使用する原料
ポリマーの@1粘度は1.1以上とする必要がある。原
料ポリマーの極限粘度が11未満の場合、本発明の目的
とする高弾性率、低収縮率の高強度糸が得られない。こ
れは極限粘度が1.1未満のポリマーを用いて製糸した
場合、得られる繊維の極限粘度が製糸時の粘度低下のた
め0.92未満となり、弾性率、強度が所望のレベルに
至らないばかりでなく、糸の111疲労性が低下するた
めである。粘度11未満のポリマーを用いて製糸時の粘
度低下を抑えて0.92以上の繊維全行ようとすると紡
糸温度を極端に低くしなくてはならず、得られる糸が不
均斉になり著しく強度が低下する。従って本発明では、
(ヌ限粘度1.1以上のポリマーを用いて製糸し092
以上の極限粘度のf!&紺となす必要がある。
The @1 viscosity of the raw material polymer used in the production of the polyester fiber of the present invention needs to be 1.1 or more. If the intrinsic viscosity of the raw material polymer is less than 11, a high-strength yarn with high elastic modulus and low shrinkage rate, which is the object of the present invention, cannot be obtained. This is because if a polymer with an intrinsic viscosity of less than 1.1 is used for spinning, the intrinsic viscosity of the resulting fiber will be less than 0.92 due to the decrease in viscosity during spinning, and the elastic modulus and strength will not reach the desired level. This is not because the 111 fatigue properties of the yarn are reduced. If you try to use a polymer with a viscosity of less than 11 to suppress the drop in viscosity during spinning and run all the fibers of 0.92 or more, the spinning temperature must be extremely low, and the resulting yarn will be asymmetrical and have a significantly lower strength. decreases. Therefore, in the present invention,
(092 yarn made using polymer with limiting viscosity of 1.1 or more)
The limiting viscosity f! & Must be navy blue.

なお・、本発明の効果を一層発揮するにはポリマーの極
限粘ii f:1.2以上1.5未満、さらに好ましく
は1.5以上1.5未満とし、極限粘度0.951υ上
の繊准とすることが好ましい。
In addition, in order to further exhibit the effects of the present invention, the intrinsic viscosity of the polymer should be ii f: 1.2 or more and less than 1.5, more preferably 1.5 or more and less than 1.5, and the fiber with an intrinsic viscosity of 0.951υ or more should be used. It is preferable to set it as associate.

さらに本発明では原料ポリマーとして極限粘度1.1以
上のポリエステルを用い口金から吐出し、冷却固化させ
た後、引取速度1500 m 7分り上で引取る必要が
ある。引取速度が1500m7/分未満では、弾性率が
低く収縮率が高くなり、目的とするポリエステル繊維は
得られない。さらに高弾性率、低収縮率とするためには
引堰速t!全2000 m 7分以上とすることが好ま
しい。
Further, in the present invention, it is necessary to use polyester having an intrinsic viscosity of 1.1 or more as the raw material polymer, discharge it from a die, cool it and solidify it, and then take it off at a take-up speed of 1500 m/7 min. If the take-up speed is less than 1500 m7/min, the elastic modulus will be low and the shrinkage rate will be high, making it impossible to obtain the desired polyester fiber. Furthermore, in order to obtain a high elastic modulus and low shrinkage rate, weir speed t! It is preferable that the total distance is 2000 m for 7 minutes or more.

又引取速度は6000m/分り下が強度や製産性の而か
ら好ましい。
In addition, a take-up speed of 6000 m/min or less is preferable from the viewpoint of strength and productivity.

さらに本発明では上記未延伸糸を引続き/又は一旦巻取
った後、5焙り下の延伸倍率で1段又は多段で延伸する
必要がある。lL伸倍率が5倍をこえると、製産性が悪
化して安定に製造できなくなるばかりか、収縮率が上昇
し好ましくない。最も好ましい延伸倍率の範囲(−、を
未延伸糸の引取速度によっても′I′となるが15〜4
11ηの7π囲である。
Furthermore, in the present invention, it is necessary to continuously/or once wind up the above-mentioned undrawn yarn and then draw it in one stage or in multiple stages at a stretching ratio of 5 or less. When the IL stretching ratio exceeds 5 times, not only does productivity deteriorate and stable production becomes impossible, but also the shrinkage rate increases, which is undesirable. The most preferable range of draw ratio (-, 'I' also depends on the take-up speed of undrawn yarn, but it is 15 to 4
It is a 7π range of 11η.

本発明での延伸はホットローラー、ホットプレート、ス
リットヒーター、スチームヒーター、スチームジェット
およびエアージェットを用いた方法が好ましく適用でき
る。
For the stretching in the present invention, methods using hot rollers, hot plates, slit heaters, steam heaters, steam jets, and air jets are preferably applicable.

さらに本発明では上述の如く限定された条件を満足して
得た延伸糸を特定条件で熱セットして初めて高弾性率、
低収縮率のポリエステル繊維の製造が可能となる。具体
的には、全延伸倍率の80%以上の延伸が終了後に、多
段に分割された小きざみなストレッチを加えつつ熱処理
する必要がある。全延伸倍率の80%以上の延伸が終了
するり前で、上述の熱処理を実施しても、熱処理中、又
は熱処理後再び繊維が高倍率に延伸されるため、糸の収
縮率が増大してしまう。従って全延伸倍率の80%り上
の延伸が終了した後に多段に分割された小きざみなスト
レッチを加えつつ熱処理を行なう必要がある。具体的方
法としては、例えば入口側から出口側に向かつて漸次ロ
ーラー径が増大していくテーパーローラー会用いつつ、
熱板や外部加熱あるいはローラー自体を加熱ローラーと
して熱処理することが挙げられる。
Furthermore, in the present invention, the drawn yarn obtained by satisfying the limited conditions as described above is heat-set under specific conditions to achieve a high elastic modulus.
It becomes possible to produce polyester fibers with low shrinkage. Specifically, after the stretching of 80% or more of the total stretching ratio is completed, it is necessary to perform heat treatment while applying small stretches divided into multiple stages. Even if the above-mentioned heat treatment is performed before the drawing of 80% or more of the total drawing ratio is completed, the shrinkage rate of the yarn increases because the fiber is drawn to a high ratio again during or after the heat treatment. Put it away. Therefore, it is necessary to carry out the heat treatment while adding small stretches divided into multiple stages after completing stretching of more than 80% of the total stretching ratio. As a specific method, for example, while using a tapered roller system in which the roller diameter gradually increases from the inlet side to the outlet side,
Examples of heat treatment include using a hot plate, external heating, or using the roller itself as a heating roller.

この様に高度に糸条を緊張させながら熱七ソトシ繊維の
結晶化を促進させることにより、弾性率を低下させず、
低収縮率化が図れるのである。熱処理中に加えるストレ
ッチ率(すなわちテーパーローラーを用いる場合は入口
径と出口径の比)は105以上1.25以下であること
が好ましく、加えるストレッチの変化率は実質的に一定
であることが好ましい。さらに熱処理の温度は150℃
り上が好ましく、さらに好ましくは210℃以上が良い
。さらに糸条の加熱温fσを徐々に上げて熱処理を行な
うことがより好ましい。
In this way, by promoting the crystallization of the heat-sodified fibers while highly tensioning the threads, the elastic modulus is not reduced.
This allows for a lower shrinkage rate. The stretch rate applied during heat treatment (i.e., the ratio of the inlet diameter to the outlet diameter when using a tapered roller) is preferably 105 or more and 1.25 or less, and the rate of change in the applied stretch is preferably substantially constant. . Furthermore, the temperature of heat treatment is 150℃
The temperature is preferably 210° C. or higher, and more preferably 210° C. or higher. Furthermore, it is more preferable to perform the heat treatment by gradually increasing the heating temperature fσ of the yarn.

また5本発明の方法はトータルデニール1000〜50
00 デニール、単糸’y’ニール2〜7デニールのボ
リエ千しンテレフタレート延伸糸の製造に適用するとそ
の効果は一層発揮される。
In addition, 5 the method of the present invention has a total denier of 1000 to 50
00 denier, the effect is even more pronounced when it is applied to the production of drawn borie terephthalate yarn with a single yarn 'y' denier of 2 to 7 deniers.

なお本発明の高弾性率、低収縮化の効果は最終の熱処理
以前では出来るだけ糸の結晶化をおこさせず、非晶質高
配向糸とし、その後熱処理時に、ローラーによる小きざ
みなスルノチ下で一気に結晶化をおこさせることKより
、一層発揮されるものであり、かかる意味からも最終の
多段に分割された小きざみなストレッチを加えつつ、行
なう熱処理以前のローラ一群の温度は余り高温としない
こと、(具体的には糸の結晶化温度未満(110〜12
0℃未満))が好ましい。
The effect of the present invention in terms of high elastic modulus and low shrinkage is to prevent the crystallization of the yarn as much as possible before the final heat treatment, making it a highly amorphous highly oriented yarn, and then, during the heat treatment, to make it a highly oriented amorphous yarn under small grooves with a roller. This is more effective than causing crystallization all at once, and from this point of view, the temperature of the group of rollers before heat treatment is not made too high while adding small stretches divided into final stages. (specifically below the crystallization temperature of the thread (110 to 12
(below 0°C)) is preferred.

〔実施例〕〔Example〕

以下に実施例により本発明をより詳細に説明する。なお
本発明で規定する特性値の測定方法は以下の通りである
The present invention will be explained in more detail with reference to Examples below. Note that the method for measuring the characteristic values defined in the present invention is as follows.

A 極限帖度(I V ) 温fff25℃においてオルノクロロフェノール(+2
.I下OCPとする)1(1[1meに対し試料8gを
溶解し、オルトワルド粘度計を用いて相対粘変ηrを下
式により求める。
A Ultimate strength (IV) Ornochlorophenol (+2
.. Dissolve 8 g of the sample in 1 (1 me) and use an Ortwald viscometer to determine the relative viscosity change ηr using the following formula.

IV=0.02421r+0.2634B1強伸度、中
間伸度 テン70ン引張り試験機(東洋ボールドウィン社製)を
用いて試長25(:rn引張速度30(1)7分でS−
6曲線を測定し強仲eを求めたー又中間伸変ば45g/
dの応力に対応する伸度として、上述のS−S曲線から
求めた。
IV=0.02421r+0.2634B1 Strong elongation, medium elongation S-
We measured the 6 curves and found the strong middle e. Also, the middle elongation was 45g/
The elongation corresponding to the stress d was determined from the above SS curve.

C9弾性率 上述のS−6曲線の引張り初期の頌きの:査線から直線
上の伸度S(%)に対応する強度T(g/d)を続みと
りM二TX100./Sとして弾性率M(g/’a)を
求めた。
C9 Elasticity Modulus of the above S-6 curve: Continuing the strength T (g/d) corresponding to the elongation S (%) on a straight line from the scan line, M2 TX100. The elastic modulus M (g/'a) was determined as /S.

D、乾熱収縮率 試料をカセ状にとり、20℃、65%RHの温調室に2
4時間以上放置したのち、試料の0.1 g、 / d
に相当する荷重をかけて測定された長さで。の試料を、
無張力状態で150℃のオーブン中に30分放置したの
ち、オーブンから取り出して前記温調室で4時間放置し
、再び上記荷重をかけて測定した長さelから次式によ
り算出した。
D. Dry heat shrinkage rate Sample was taken in a skein shape and placed in a temperature controlled room at 20°C and 65% RH for 2 hours.
After leaving for more than 4 hours, 0.1 g/d of sample
at a length measured under a load corresponding to . A sample of
After being left in an oven at 150° C. for 30 minutes under no tension, it was taken out from the oven and left in the temperature-controlled room for 4 hours, and the load was applied again to calculate the measured length el using the following formula.

乾熱収縮率” (la  ll)/eoX100(%)
E、対疲労性二GY疲労試験(グノドイヤーマロリーフ
ァテイーグテスト) ASTM  D885に準じた。チューブ内圧3.5に
9 / cn G、回転速度850 rpm 、チュー
ブ角変を80℃とし、チューブが破裂するまでの時間を
求め、良好な水準を○、従来並の水準をΔ、従来以下の
水準を×で示した。
Dry heat shrinkage rate (la ll)/eoX100 (%)
E. Anti-fatigue 2-GY fatigue test (Gnodyer Mallory Fateig test) According to ASTM D885. Setting the tube internal pressure to 3.5, 9/cn G, rotation speed 850 rpm, and tube angle change to 80°C, find the time until the tube ruptures. Good level is ○, conventional level is Δ, and less than conventional level. The level is indicated by ×.

実箔例1 1i限粘変(以下IVとする)1.3のポリエチレンテ
レフタレートチップをエクストル−ダーで溶融し、ポリ
マ一温度298℃ロ金孔径0.6橢で孔数192ホール
の口金から紡糸した。口金下ては紡糸機ブロックと断熱
板を介し30砺の加熱筒をとりつけ、雰囲気温度’、1
300℃とした。
Actual foil example 1 A polyethylene terephthalate chip with a 1i limiting viscosity change (hereinafter referred to as IV) of 1.3 is melted in an extruder and spun from a spindle with a polymer temperature of 298°C and a pore diameter of 0.6mm and 192 holes. did. At the bottom of the nozzle, a heating cylinder of 30 knots was attached via the spinning machine block and a heat insulating plate, and the ambient temperature was set to 1.
The temperature was 300°C.

紡出糸は加熱筒を通過した後、加熱筒下に設けられたチ
ムニ−から吹出された冷却、虱により冷却され固化し、
オイリングローラ−により油剤を付与された後、引取速
度2500m/分で引取られた。
After the spun yarn passes through the heating cylinder, it is cooled and solidified by the cooling lice blown out from the chimney installed under the heating cylinder.
After being applied with an oil agent by an oiling roller, it was taken off at a take-up speed of 2500 m/min.

上記未延伸糸を一旦巻取った後、以下の(Al、(B)
2種類の方法により、延伸し、 1000デニール、1
92フイラメント、工V1.01の繊維として巻取られ
た。
After winding up the above undrawn yarn, the following (Al, (B)
Stretched by two methods, 1000 denier, 1
92 filament, was wound as a fiber of engineering V1.01.

表1から明らかな様に、本発明の熱処理方法[Blでは
、従来の定長熱処理法1p、Iに比べて著しく強度、弾
性率が上昇し中間伸度が低下し、かつ乾熱収縮率も低く
なり高弾性率、低収縮率化が図れていることがわかる。
As is clear from Table 1, the heat treatment method of the present invention [Bl] significantly increases the strength and elastic modulus, lowers the intermediate elongation, and decreases the dry heat shrinkage rate compared to the conventional constant length heat treatment methods 1p and I. It can be seen that a high elastic modulus and a low shrinkage rate have been achieved.

実施例2 供給するチップの工V及び紡糸時のポリマ−11ム度を
変更し、延伸糸工Vが変化したサノプルを実施例1−(
Blの方法により延伸倍率配分は各水準で倍率の上限値
が得られる条件で製造する。
Example 2 The material V of the tips to be supplied and the degree of polymer 11 during spinning were changed, and Sanople with a different drawing material V was used in Example 1-(
By the method of Bl, the stretching ratio is distributed under conditions such that the upper limit of the ratio can be obtained at each level.

各物性値を表2にまとめる。The physical property values are summarized in Table 2.

♂七2かも明らかな様に千ノブエV +、 10り上で
かつ糸TV 0.92以上の屋2−1.2−5でのみ、
本発明の効果が達成されていることがわかる。
As is clear from ♂72, Sennobue V +, only in Ya 2-1.2-5 with Ito TV 0.92 or higher,
It can be seen that the effects of the present invention have been achieved.

実施例ろ 引取速度を500−3000 m/分の範囲で変更する
り外実癩例1−(Blと同一の条件で延伸倍率は各紡速
jでおける上限倍率にて、10QOデニール−192フ
イラメ/トの1fjl沖糸をイ!Iた。各、A″DD物
性5に示す。
Example The filter take-up speed was changed in the range of 500-3000 m/min, and the stretching ratio was set to 10QO denier-192 filament under the same conditions as Bl, at the upper limit at each spinning speed j. A 1fjl oki yarn of /t was used. Each is shown in A″DD physical properties 5.

表  3 ノセ6から明らかな様に引取速Ir11500m/分未
満では強度は高くなるものの本発明の弾性率向上、収縮
率低下の効果が得られないことがわかる。
As is clear from Nose 6 in Table 3, if the take-up speed Ir is less than 11,500 m/min, although the strength increases, the effects of improving the elastic modulus and reducing the shrinkage rate of the present invention cannot be obtained.

実施例4 実施例1と同一条件で延伸時の倍率配分を変更した。結
果を表4に示す。
Example 4 The same conditions as Example 1 were used, except that the magnification distribution during stretching was changed. The results are shown in Table 4.

表  4 なお多段に分割された小きざみなストレツチを加えつつ
行なう熱処理は実施例1と同様にρネ板を用いて行なっ
た。
Table 4 The heat treatment, which was performed while adding small stretches divided into multiple stages, was carried out using a rho plate in the same manner as in Example 1.

表4から明らかな様に熱処理ローラー以前で80係り上
の延伸が終了していない実施例4では乾熱収縮率が高く
なり本発明の目的が達成できない。
As is clear from Table 4, in Example 4, in which stretching of 80 mm or more was not completed before the heat treatment roller, the dry heat shrinkage rate was high and the object of the present invention could not be achieved.

〔発明の効果〕〔Effect of the invention〕

本発明の方法により得られたポリエステル繊維は、強度
8.2 g/ dり上、弾性率1o 5g/d1ノ」二
、中間伸度5.5係り下、乾熱収縮率5係り下の高強度
で、かつ高弾i生率、低収縮率であり、良好な操業性の
下に製造できる。
The polyester fiber obtained by the method of the present invention has a strength of 8.2 g/d, an elastic modulus of 1.5 g/d1, an intermediate elongation of 5.5, and a dry heat shrinkage of 5. It has high strength, high elasticity, and low shrinkage, and can be manufactured with good operability.

父、本発明のポリエステル繊維はコ゛ム補強用織物とし
て使用した場合良好な耐疲労性全示し、本繊維をタイヤ
コードとして用いて製造したタイヤは、操縦安定性等優
れた性能全発揮する。
The polyester fiber of the present invention exhibits excellent fatigue resistance when used as a comb reinforcing fabric, and tires manufactured using the fiber as a tire cord exhibit excellent performance such as handling stability.

Claims (1)

【特許請求の範囲】 ポリエステル繊維の製造に際し、 (1)原料ポリマーとして極限粘度1.1以上のポリエ
ステルを用い、口金から吐出し (2)該紡出糸条を冷却固化後、引取速度1500m/
分以上で引取り、 (3)引続き/又は一旦巻取つた後、該糸条を5倍以下
の延伸倍率で1段又は多段で延伸し、(4)全延伸倍率
の80%以上の延伸が終了後に多段に分割された小きざ
みなストレツチを加えつつ熱処理し、 (5)極限粘度0.92以上のポリエステル繊維となす
ことを特徴とするゴム補強用織物に適したポリエステル
繊維の製造方法。
[Claims] When producing polyester fibers, (1) polyester with an intrinsic viscosity of 1.1 or more is used as a raw material polymer, and is discharged from a spinneret (2) the spun yarn is cooled and solidified, and then taken at a take-up speed of 1500 m/min.
(3) Subsequently/or once wound, the yarn is drawn in one or multiple stages at a draw ratio of 5 times or less; (4) the yarn is drawn at a draw ratio of 80% or more of the total draw ratio (5) A method for producing polyester fibers suitable for rubber reinforcing fabrics, characterized by heat-treating the fibers while applying small stretches divided into multiple stages after completion of the treatment, and (5) forming polyester fibers having an intrinsic viscosity of 0.92 or more.
JP29281685A 1985-12-27 1985-12-27 Production of polyester fiber suitable for rubber-reinforcing woven fabrics Pending JPS62156311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29281685A JPS62156311A (en) 1985-12-27 1985-12-27 Production of polyester fiber suitable for rubber-reinforcing woven fabrics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29281685A JPS62156311A (en) 1985-12-27 1985-12-27 Production of polyester fiber suitable for rubber-reinforcing woven fabrics

Publications (1)

Publication Number Publication Date
JPS62156311A true JPS62156311A (en) 1987-07-11

Family

ID=17786721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29281685A Pending JPS62156311A (en) 1985-12-27 1985-12-27 Production of polyester fiber suitable for rubber-reinforcing woven fabrics

Country Status (1)

Country Link
JP (1) JPS62156311A (en)

Similar Documents

Publication Publication Date Title
JPH0355566B2 (en)
JP3886360B2 (en) Method for producing polyester multifilament yarn
KR100571214B1 (en) Polyester multifilamentary yarn for tire cords, dipped cord and production thereof
JPS5947726B2 (en) Polyester fiber manufacturing method
JPH06511293A (en) High modulus polyester yarn for tire cord and composites
JPS584089B2 (en) Polyester Senino Seizouhouhou
KR20170037392A (en) Poly(ethyleneterephthalate) Yarn, Method for Manufacturing The Same, and Tire Cord Manufactured Using The Same
JPH0663128B2 (en) Polyester fiber for reinforcing rubber structure and method for producing the same
US4956446A (en) Polyester fiber with low heat shrinkage
JPH0733610B2 (en) Manufacturing method of polyester tire cord
JPS58156017A (en) Production of high strength polyester yarn
JP3130683B2 (en) Method for producing polyester fiber with improved dimensional stability
JPH0246688B2 (en)
JPS62156311A (en) Production of polyester fiber suitable for rubber-reinforcing woven fabrics
JPS584091B2 (en) Polyester fiber manufacturing method
JPH02210013A (en) Dry and wet spinning process
JPH04194021A (en) Naphthalate polyester fiber and its production
JPS63165547A (en) Polyester tire cord having high modulus of elasticity and its production
JPH04222215A (en) Polyester fiber and production thereof
JPH05163627A (en) Production of polyester tire cord
JP2004027415A (en) Low-shrinkage polyester fiber and method for producing the same
JPH04119119A (en) Production of naphthalate polyester fiber
JPS63315608A (en) Polyester fiber
JPS63243319A (en) Polyamide fiber
JPH0617317A (en) Production of polyester fiber