JPS6215514A - Solid-state image pickup endoscope - Google Patents

Solid-state image pickup endoscope

Info

Publication number
JPS6215514A
JPS6215514A JP60155653A JP15565385A JPS6215514A JP S6215514 A JPS6215514 A JP S6215514A JP 60155653 A JP60155653 A JP 60155653A JP 15565385 A JP15565385 A JP 15565385A JP S6215514 A JPS6215514 A JP S6215514A
Authority
JP
Japan
Prior art keywords
solid
state image
endoscope
lens
image sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60155653A
Other languages
Japanese (ja)
Inventor
Shoichi Tanaka
正一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP60155653A priority Critical patent/JPS6215514A/en
Publication of JPS6215514A publication Critical patent/JPS6215514A/en
Pending legal-status Critical Current

Links

Landscapes

  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

PURPOSE:To decrease the diameter of an endoscope greatly by arranging a light reflecting element between a lens and a solid-state image pickup element not at right angles to the optical axis of the lens. CONSTITUTION:Signal light 2 from the lens 1 is reflected by a prism 8 to strike the surface of the solid-state image pickup element 3 at right angles. Then, illumination light outputted by a waveguide fiber 5 illuminates an object through the prism 8 and lens 1. A chip substrate which constitutes the solid-state image pickup element 3 is connected by a wire 4 and the signal voltage of the solid- state image pickup element is outputted by a conductor 7. Then, the tip part 6 of the solid-state image pickup endoscope is equipped with said optical system and a pipe 9.

Description

【発明の詳細な説明】 技術分野 “本発明は内視鏡に関し、特にその先端部に固体撮像箪
茅萎’備えろ内視鏡に関1〜ろ。   □背i技術  
゛           □iよ益扁4’hす、1来の
ファイ・し内視鏡に比′較j、i蟹訊仏に本に一部1.
7 □’ Ill ll’i□、−1出願された特開5
9−16718fi、特開188275はE/B垂直転
送法を使用4−ろ固体撮像内視鏡、フルフレー1.、彩
フレーノ、転送Cに T)エリアセンサ(F F ’T
”エリアセンサ)を使用する固体撮像内視鏡などを開示
する。
[Detailed Description of the Invention] Technical field: The present invention relates to an endoscope, and particularly to an endoscope equipped with a solid-state imaging device at its tip.
゛ □I have a 4'h, compared to the previous Phi endoscope.
7 □' Ill ll'i□, -1 filed JP-A-5
9-16718fi, JP 188275 uses E/B vertical transfer method 4-filter solid-state imaging endoscope, full frame 1. , Aya Freno, Transfer C to T) Area sensor (F F 'T
Discloses a solid-state imaging endoscope that uses a ``area sensor''.

発明の開示 上記のE/B垂直転送法を使用するFFTエリアセンザ
は非常に小さいチップ面積と高い解像度を持つので、フ
ァイバー内視鏡に比較j7てより精密な画像を出力でき
ろ。しか12、また内視鏡の解像度はTTVなど、Lり
劣り、その改簿要求は大きかった。たとえば、胃カメラ
などで解像度が改許されれば、より小さい病変を全県オ
ろ11「かできろ。もちろん視野を縮小する事によって
鯉奔婆咀小さな病変を発見できろが、対象領域全体を操
作する時間と動作が大幅に増加する。従って本発明の第
1の目的は固体撮像内視鏡の解像度を改挽オろfltで
ある。更に、患者の苦痛を和らげろために、内視鏡の直
径を更に小さくする事が望まれている。Lかしそれは解
像度を悪くする欠点かぁ−)た。本発明の第2の目的は
固体撮像内視鏡の直径を縮小4〜ろ事である。内視鏡の
上記の問題を解決する為に本発明は2個の独q発明を開
示オろ。各発明を一緒に実施する事によって相乗効果が
得られるので、そA1らは一緒に説明されろ。
DISCLOSURE OF THE INVENTION The FFT area sensor using the above E/B vertical transfer method has a very small chip area and high resolution, so it can output more precise images than a fiber endoscope. However, the resolution of endoscopes was inferior to that of TTV, etc., and there was a strong demand for a change in the record. For example, if the resolution of gastrocameras were revised, it would be possible to detect smaller lesions in all prefectures. Therefore, the first objective of the present invention is to improve the resolution of solid-state imaging endoscopes.Furthermore, in order to alleviate patient pain, It is desired to further reduce the diameter of the solid-state imaging endoscope.However, it is a drawback that it deteriorates the resolution.The second object of the present invention is to reduce the diameter of the solid-state imaging endoscope. In order to solve the above-mentioned problems of endoscopes, the present invention discloses two German inventions. Since a synergistic effect can be obtained by implementing each invention together, they will be explained together. Be it.

クレームl(独立発明1) 本発明は固体撮像素子の表面をレンズの光軸と非直角(
即ら斜め方向または平行方向)に配置オろ事を特徴とす
る。このようにすれば、内視鏡の直径を大幅に小さくす
る事ができろ。即ち、固体撮像素子チップの水平または
垂直幅けその撮像領域の水平または垂直幅よりもかなり
大きい。これは固体撮像素子が撮像領域の他に駆動領域
(周辺回路領域、配線領域、コンタクト領域など)を必
ヅ5とするためである。一般に撮像領域が小さくなろほ
と、デツプの有効面積比率に一撮像領域/全チップ面情
は低下する。内視鏡では一般にkは0.−〜θ・γ以下
である。さらにチップは絶縁の為に樹脂によってカバー
される必要があり、樹脂体の水平または垂直幅は更に増
加する。更にチ・・Iプのコンタクト領域に接続されろ
ワイヤは一般にチップと同じ平面上の電極端子に接続さ
れるので固体撮像素子の全面積は撮像面積に比較してか
なり大きくなる。
Claim 1 (Independent Invention 1) The present invention provides that the surface of the solid-state image sensor is formed at a non-perpendicular angle to the optical axis of the lens.
In other words, it is characterized by being arranged in a diagonal or parallel direction. In this way, the diameter of the endoscope can be significantly reduced. That is, the horizontal or vertical width of the solid-state image sensor chip is considerably larger than the horizontal or vertical width of the imaging area. This is because the solid-state image sensing device necessarily includes a driving area (peripheral circuit area, wiring area, contact area, etc.) in addition to the imaging area. Generally, as the imaging area becomes smaller, the effective area ratio of the depth per imaging area/total chip area decreases. In endoscopes, k is generally 0. −~θ・γ or less. Furthermore, the chip needs to be covered with resin for insulation, which further increases the horizontal or vertical width of the resin body. Furthermore, since the wires connected to the contact areas of the chip are generally connected to electrode terminals on the same plane as the chip, the total area of the solid-state imaging device is considerably larger than the imaging area.

従来において、固体撮像素子の表面(」レンズθ)光軸
に直角に配置されていたので、内視鏡の断面積は少なく
とも固体撮像素子の面積より大きく−4ろ必要があった
。実際にはljl明川フ用イノ<−、各種パイプなどが
存在する2′へに、内視鏡の断面積は固体撮像素子の面
積よりかなり人きくオろ必要がある。これらの問題は本
発明によってかなり改佐される。
Conventionally, the surface of the solid-state image sensor (lens θ) was arranged perpendicular to the optical axis, so the cross-sectional area of the endoscope had to be at least -4 times larger than the area of the solid-state image sensor. In reality, the cross-sectional area of the endoscope must be much larger than the area of the solid-state image pickup device because various pipes and the like are present. These problems are significantly ameliorated by the present invention.

クレーム2 クレーlえ1の好まI、い1実施例にわいて、固体撮像
素子は内視鏡に入力する511軸に尺体N11行に配置
Nされろ。この、Lうにすれば内視鏡断面積に占める受
光系の面積は大幅に小さくなる。
Claim 2: According to Clay's preferred embodiment, the solid-state imaging device is arranged in the 511th axis input to the endoscope in the 11th row of the scale. If the length is set to L, the area occupied by the light receiving system in the cross-sectional area of the endoscope will be significantly reduced.

クレー133 クレームlの好ましい1実施例において、光反射素子に
プリズムが使用されろ。そ1.て内視鏡に人力されろ光
軸に大体直11に配置される第2の固体撮像素子が追加
されろ。そしてプリズ12によって分割された信号光は
上記の2個の固体撮像素子に入力される。このようにす
れば解像度を大体2倍に改善できる。従来プリズ1\(
またはハーフミラ−)を使用して信号光を2分割する2
板式固体カメラは公知である。しかし、2板式固体カメ
ラを内視鏡に内蔵する事、そ17てその結果内視鏡の断
面積を大幅に低減できる事は知られていなかった。
Clay 133 In a preferred embodiment of claim 1, a prism is used as the light reflecting element. Part 1. A second solid-state image sensor is added to the endoscope, which is placed approximately directly along the optical axis. The signal light split by the prism 12 is then input to the two solid-state image sensors. In this way, the resolution can be improved by about twice. Conventional Priz 1\(
or half mirror) to split the signal light into two.
Plate solid-state cameras are known. However, it was not known that a two-plate solid-state camera could be built into an endoscope, and that the cross-sectional area of the endoscope could be significantly reduced as a result.

なお、当然第2固体撮像素子の画素位置は相対的に最初
の固体撮像素子の画素位置に対して水平または垂直方向
に約1/2画素ピッヂだけソフトしている事が好ましい
。最も好ま1−い実施例において、第2固体撮像素子の
画素位置は最初の固体撮像素子の画素位置に対して水平
と垂直方向にそれぞれ1/2画素ピッヂだけソフトされ
ろ。
Of course, it is preferable that the pixel position of the second solid-state image sensor is relatively softer by approximately 1/2 pixel pitch in the horizontal or vertical direction with respect to the pixel position of the first solid-state image sensor. In a most preferred embodiment, the pixel position of the second solid-state image sensor is softened by 1/2 pixel pitch in both the horizontal and vertical directions relative to the pixel position of the first solid-state image sensor.

クレーム4 クレーム3の欠点は上記の第2固体撮像素子の面積が内
視鏡断面積を増加さ■る事である。本実施例は第2固体
撮像素子を最初の固体撮像素子より小さい撮像面積を持
つようにする事によって、この問題を解決する。好まし
い1実施例において、第2固体撮像素子は画像の中央領
域の解像度だけを増加する。
Claim 4 A drawback of claim 3 is that the area of the second solid-state image sensor increases the cross-sectional area of the endoscope. This embodiment solves this problem by making the second solid-state image sensor have a smaller imaging area than the first solid-state image sensor. In one preferred embodiment, the second solid-state image sensor only increases the resolution of the central region of the image.

クレーム5 クレーム1の好ましい1実施例にX;yzて、固体撮像
素子はプリズムを介して信号光を受1)取を)、そして
照明光は−1,記のブリズJいを介して照射さ41.ろ
1゜このようにすれば、照明部の断面積たけ内視鏡断f
f1i積を縮小できろ。
Claim 5 In a preferred embodiment of claim 1, the solid-state image sensor receives signal light through a prism (1), and the illumination light is irradiated through the bristle shown in -1. 41. 1゜If you do this, the cross-sectional area of the illumination part will be the endoscope cross-section f.
You can reduce the f1i product.

クレーノ、6(独立発明2) 本発明は固体撮像内視鏡の解像度を改善するために、固
体撮像素子の1画素−Lに異なる分光感度を持つ2個以
上の部分感光領域を配置し、そして1/+!なるスペク
トルの照明光を交1iに入力する事を特徴とする。この
ようにすれば解像度を改りできる。。
Crano, 6 (Independent Invention 2) In order to improve the resolution of a solid-state imaging endoscope, the present invention arranges two or more partial photosensitive regions having different spectral sensitivities in one pixel-L of a solid-state imaging device, and 1/+! It is characterized by inputting illumination light with a spectrum of 1i to the intersection 1i. In this way, you can change the resolution. .

たとえば、1画素上に水平方向にR(赤)フィルタ、G
(緑)フィルタ、B(青)フィルタを順番に配置する。
For example, an R (red) filter and a G filter are placed horizontally on one pixel.
(green) filter and B (blue) filter are arranged in order.

モしてR、G 、B光を順番に照射する。その結果、R
光照射後の信号出力期間に11画像が111力され、G
光照射後の信号出力期間に6画像が出力され、B光照射
後の信号出力期間に13画像が出力される。その結果水
平解像度は約3倍に改善される。。
Then, irradiate R, G, and B light in order. As a result, R
During the signal output period after light irradiation, 11 images are output 111 times, and G
Six images are output during the signal output period after light irradiation, and 13 images are output during the signal output period after B light irradiation. As a result, the horizontal resolution is improved approximately three times. .

もちろん他の色フィルタを配列する事、他のスペクトル
光を照射する事は可能であり、1画素の垂直方向に複数
の部分感光領域を配置する事も可能である。本発明の他
の特徴と効果が以下の実施例によって説明される。
Of course, it is possible to arrange other color filters and to irradiate light with other spectrums, and it is also possible to arrange a plurality of partial photosensitive areas in the vertical direction of one pixel. Other features and advantages of the invention are illustrated by the following examples.

発明を実施するための最良の形態 図1は従来の固体撮像内視鏡の1実施例断面図である。BEST MODE FOR CARRYING OUT THE INVENTION FIG. 1 is a sectional view of one embodiment of a conventional solid-state imaging endoscope.

図2は本発明の1実施例断面図である。レンズlの信号
光2はプリズム8によって反射して固体撮像素子3の表
面に直角に入力する。そして導光ファイバー5から出力
される照明光はプリズム8とレンズlを介して対象を照
明する。固体撮像素子3を構成するチップと基板はワイ
ヤ4によって接続され、固体撮像素子の信号電圧は導線
7によって出力される。そして固体撮像内視鏡の先端部
6は上記の光学系とパイプ9を備える。レンズプリズム
8の1而8Aは反射防止膜と黒色フィルタが配置されて
いる。図3は図2の1実施例正面図である。パイプ9は
水または圧縮空気の通路であり、更に作業用取っ手の通
路である。図4は図3の変形実施例であり、図2の1実
施例正面図である。レンズIは円形レンズの周辺部をカ
ットしてあり、パイプ9の断面も円形ではない。その結
果内視鏡6の断面は大体円形になり、1.かもその面積
を縮小できる。図2、図3、図4の実施例において、対
象から反射せずに固体撮像素子3に入力される照明光は
固定ノイズとなる。この固定ノイズは対象から反射され
る信号光が無い状態で固体撮像素子から出力される信号
電圧をデジタルメモリに記憶して置き、後から出力され
る信号電圧から上記の記憶電圧を減算する事によって除
去できる。同様に固体撮像素子の各画素の感度のバラツ
キをデジタルメモリに記憶し、後から出力さイする信号
電圧の増幅率を記憶情報で制御する事によ−)で、補償
できる。図5は光軸2に直角に配置される第2固体撮像
素子を備える内視鏡の−・即断面図である。第2固体撮
像素子11は第1固体撮像素子3よりも小さい。この実
施例において導光ファイバは上記のプリズムをかいさず
1こ対象に照射される事が好ましい。図6は図5の1実
施例平面図である。第2固体撮像素子の信号線は横から
取り出される。図7は固体撮像素子1の1実施例平面図
である。基板3A上にl E/R垂直転送法を使用する
FFTエリアセンサが搭載される。そしてチップのレン
ズから遠い1端から各電極線7.7CAからD)が取り
出される。チップ3Bの撮像領域3Cは256 (T(
’)x 256 (v)の画素数を持ち、各画素は約8
×8ミクロンの寸法を持つ。その結果撮像領域の面積は
約2 n+n+X 2 mmになる。図8は本発明の1
実施例平面図であり、チップの撮像領域の平面図である
。光学的分離領域13で囲まれた奇(偶)数画素行の各
画素14はそれぞれRフィルタとGフィルタを備え、そ
して上記のR,Gフィルタは水平方向に交互に配置され
る。同様に偶(奇)数画素行の各画素はGフィルタとB
フィルタを水平方向に交互に備える。そして第1照射期
間にG光が発射され、その後で6画像が出力される。
FIG. 2 is a sectional view of one embodiment of the present invention. The signal light 2 from the lens l is reflected by the prism 8 and inputted to the surface of the solid-state image sensor 3 at right angles. The illumination light output from the light guide fiber 5 illuminates the object via the prism 8 and the lens l. A chip and a substrate constituting the solid-state imaging device 3 are connected by a wire 4, and a signal voltage of the solid-state imaging device is outputted by a conductive wire 7. The distal end portion 6 of the solid-state imaging endoscope includes the optical system and pipe 9 described above. One part 8A of the lens prism 8 is provided with an antireflection film and a black filter. FIG. 3 is a front view of one embodiment of FIG. 2. The pipe 9 is a passage for water or compressed air, and is also a passage for a working handle. FIG. 4 is a modified embodiment of FIG. 3, and is a front view of one embodiment of FIG. The lens I is a circular lens whose peripheral part is cut, and the cross section of the pipe 9 is also not circular. As a result, the cross section of the endoscope 6 becomes approximately circular; 1. Maybe its area can be reduced. In the embodiments shown in FIGS. 2, 3, and 4, the illumination light that is input to the solid-state image sensor 3 without being reflected from the object becomes fixed noise. This fixed noise can be solved by storing the signal voltage output from the solid-state image sensor in a digital memory in the absence of signal light reflected from the target, and then subtracting the above stored voltage from the signal voltage that will be output later. Can be removed. Similarly, variations in sensitivity of each pixel of a solid-state image sensor can be compensated for by storing them in a digital memory and controlling the amplification factor of the signal voltage to be output later using the stored information. FIG. 5 is a cross-sectional view of an endoscope including a second solid-state image sensor arranged perpendicular to the optical axis 2. As shown in FIG. The second solid-state image sensor 11 is smaller than the first solid-state image sensor 3. In this embodiment, it is preferable that the light guide fiber be irradiated to one target without using the above-mentioned prism. FIG. 6 is a plan view of one embodiment of FIG. 5. The signal line of the second solid-state image sensor is taken out from the side. FIG. 7 is a plan view of one embodiment of the solid-state image sensor 1. An FFT area sensor using the IE/R vertical transfer method is mounted on the substrate 3A. Then, each electrode wire 7.7CA to D) is taken out from one end of the chip farthest from the lens. The imaging area 3C of the chip 3B is 256 (T(
') x 256 (v) pixels, each pixel is approximately 8
It has dimensions of x8 microns. As a result, the area of the imaging region is approximately 2 n+n+X 2 mm. FIG. 8 shows one example of the present invention.
FIG. 2 is a plan view of an embodiment, and is a plan view of an imaging area of a chip. Each pixel 14 in odd (even) pixel rows surrounded by the optical isolation region 13 is provided with an R filter and a G filter, and the R and G filters are arranged alternately in the horizontal direction. Similarly, each pixel in an even (odd) pixel row is connected to a G filter and a B filter.
The filters are provided alternately in the horizontal direction. Then, G light is emitted during the first irradiation period, and then six images are output.

次にR−1−13(マゼンタ)光が発射され、その後で
R18画像が出力される。モして各色フィルタの位置に
対応する表示画面位置に信号電圧が印加される。
Next, R-1-13 (magenta) light is emitted, and then an R18 image is output. A signal voltage is then applied to the display screen position corresponding to the position of each color filter.

このようにすれば水平解像度を2倍にできる。図9は図
8の変形実施例であり、各画素は2種類の色フィルタを
備え、(−記の2色フィルタは重め方向に配置される。
In this way, the horizontal resolution can be doubled. FIG. 9 shows a modified embodiment of FIG. 8, in which each pixel is provided with two types of color filters, and the two-color filters indicated by - are arranged in the heavier direction.

そしてG光とl’j +H)i−を交lノに照射する事
によって、平曲解像度は2倍になる。
By irradiating the G light and l'j +H)i- in an intersecting manner, the flat curve resolution is doubled.

本発明の他の特徴と効果が以下に説明されろ。これらの
特徴はクレーノ、されていないが、将来クレーJ\でき
る。
Other features and advantages of the invention are described below. These characteristics are not in Kleeno, but in the future KleeJ\ can be.

本発明の第1の追加特徴は図2から分かるように、レン
ズと固体撮像素子間またはレンズと導光ファイバ間また
はレンズ七プリズ1、間に透明物質(樹脂またはガラス
または液体)を注入する事である。
As can be seen from FIG. 2, the first additional feature of the present invention is that a transparent substance (resin, glass, or liquid) is injected between the lens and the solid-state image sensor, between the lens and the light guide fiber, or between the lens prism 1. It is.

このようにすれば余分の反射を減らし、SN比を改善で
きる。レンズまたはプリズノ、と上記の透明物質間の屈
折率の差は小さい方が好ま17い。本発明の第2の追加
特徴はレンズを非円形に4−ろ事である。このようにす
れば、内視鏡断面積を大幅に低減できろ。本発明の第3
の追加特徴はパイプを流体通過用兼作業取っ子連過用と
する事である。
In this way, unnecessary reflections can be reduced and the S/N ratio can be improved. It is preferable that the difference in refractive index between the lens or prison and the above-mentioned transparent substance be small. A second additional feature of the invention is that the lens is non-circular in shape. In this way, the cross-sectional area of the endoscope can be significantly reduced. Third aspect of the present invention
An additional feature is that the pipe is used for both fluid passage and working handle communication.

このようにすればパイプ数を減らし、内視鏡断面積を低
減できる。たとえば、図3または図4において、パイプ
内面に突起9Aが設置され、作業線(かん子など)9B
のパイプ内移動を確実にする。
In this way, the number of pipes can be reduced and the cross-sectional area of the endoscope can be reduced. For example, in FIG. 3 or 4, a protrusion 9A is installed on the inner surface of the pipe, and a work line (such as a forceps) 9B
to ensure movement within the pipe.

そして作業線9Bの滑りはパイプ内の流体の存在によっ
て3Lす滑らかになる。特に、図31図4から分かる。
The sliding of the working line 9B is smoothed by 3L due to the presence of fluid in the pipe. In particular, it can be seen from FIGS. 31 and 4.

Lうに、作業線9Bの周囲の一部が存在しない事は摩擦
抵抗を減らす。本発明の第4の追加特徴は図2から分か
るように、固体撮像素子をレンズ1の光軸2より内視鏡
の中央部に配置ずろ市である。このようにずイ1ば、固
体撮像素子の面積をより大きくでき、内視鏡の断面積を
円形にしやすい。本発明の第5の追加特徴は対象を経由
せずに固体撮像素子に入力する照明光による固定ノイズ
電圧を予島記憶しておき、そしてその後で出力されろ信
号電圧から1−記の固定ノイズ電圧を減算する事である
。デジタルメモリを使用する上記の減算技術は設計者に
とって周知であるので、詳しい説明は省略される。レン
ズlえノイズの増加を減らすために、固定ノイズ電圧発
生ザイクルを複数回実施し、そ1.てそれぞれ得られた
固定ノイズ電圧の平均値を記憶する事が好ましい。なお
、図8において、異なる信号電圧出力+gI間(フィー
ルド期間)に発生する色信号電圧(フィールド信号型F
E )を色フィルタの水平空間位置に対応する水平空間
位置に表示オろには、固体撮像素子から出力されろ色信
号電圧をサンプリング12て表示すれば良い。このザン
ブリング表示技術は設旧者にとって周知であるので詳し
い説明は省略されろ。TV学会誌VOT、:I 7.N
OI O,830頁に記載さイ1ろようなAM変調技術
の使用も可能である。図8または図9において、奇(偶
)数フイールド期間にG電圧が得られ、偶(奇)数フイ
ールド期間にIN 。
Similarly, the absence of a portion around the working line 9B reduces frictional resistance. As can be seen from FIG. 2, the fourth additional feature of the present invention is that the solid-state image pickup device is arranged closer to the center of the endoscope than the optical axis 2 of the lens 1. In this way, the area of the solid-state image sensor can be made larger, and the cross-sectional area of the endoscope can be easily made circular. A fifth additional feature of the present invention is to store a fixed noise voltage caused by illumination light input to the solid-state image sensor without passing through the target, and then output the fixed noise voltage from the signal voltage. This is to subtract the voltage. The above subtraction techniques using digital memory are well known to designers, so a detailed explanation will be omitted. In order to reduce the increase in lens noise, fixed noise voltage generation cycles were performed multiple times.1. It is preferable to memorize the average value of the fixed noise voltage obtained respectively. In addition, in FIG. 8, the color signal voltage (field signal type F) generated between different signal voltage outputs +gI (field period)
In order to display E) at a horizontal spatial position corresponding to the horizontal spatial position of the color filter, the color signal voltage output from the solid-state image sensor may be sampled 12 and displayed. This zumbling display technology is well known to those who have established the system, so a detailed explanation will be omitted. TV Society Journal VOT: I 7. N
It is also possible to use AM modulation techniques such as those described in OIO, page 830. In FIG. 8 or 9, the G voltage is obtained during the odd (even) field period, and the IN voltage is obtained during the even (odd) field period.

B電圧か得られる。好ましい実施例において、固体撮像
素子から出力されろ各フィールド信号電汗はデジタルメ
モリに記すへされ、1フイ一ルド期間遅延されろ。そ(
、て各フィールド期間に固体撮像素子から出力される)
5f−ルド信号電圧と、デジタルメモリから出力されろ
フィールド信号電圧がそれぞれサンプリング表示される
。この、Lうにすればフィールド期間用Itl+で発生
する色差フリッカを大幅に減らす事ができるので、実用
1−非常に大きな効果を持つ。当然各色信号型r+〕i
J2フィールド期間表示されるので、大きな動きに対)
7て解像度の低下が発生するが、内視鏡の画像の動きは
非常に小さいので殆ど問題は無い。従って、独立発明2
の第1の追加特徴は固体撮像素子から出力されろフィー
ルド信号(フィールド画像)電圧を隣接する複数のフィ
ールド期間に表示する事である。
B voltage can be obtained. In a preferred embodiment, each field signal output from the solid state image sensor is written to digital memory and delayed for one field period. So(
, output from the solid-state image sensor during each field period)
The 5F field signal voltage and the 5F field signal voltage output from the digital memory are each sampled and displayed. By doing this, the color difference flicker occurring in Itl+ for the field period can be significantly reduced, and therefore has a very large effect in practical use. Naturally, each color signal type r+〕i
Since it is displayed during the J2 field period, it is against large movements)
7, a decrease in resolution occurs, but since the movement of the endoscope image is very small, there is almost no problem. Therefore, independent invention 2
The first additional feature is that the field signal (field image) voltage output from the solid-state image sensor is displayed in a plurality of adjacent field periods.

面フリッカは大幅に減る。独■発明2の第2の追加特徴
は画素のy−なる領域に複数の純色系(R,G。
Screen flicker is significantly reduced. The second additional feature of Invention 2 is that a plurality of pure colors (R, G, G, R, G, R, G, R, G, R, G, R, G, R, G, R, G, R, G, R, G, R, G, etc.)

B)色フィルタを配置ずろ事である。このようにすれば
固体撮像素子の各色フイルタ領域に対応する空間位置に
同じ色信号を表示できるので、解像度は非常に改善され
ろ。補色系色フィルタを使用する場合、信号電圧に含ま
れる純色倍電圧の割合を決定する回路によって解像度が
低下する。
B) It is a matter of arranging color filters. In this way, the same color signal can be displayed at the spatial position corresponding to each color filter area of the solid-state image sensor, so the resolution will be greatly improved. When a complementary color filter is used, the resolution is reduced due to the circuit that determines the ratio of the pure color double voltage included in the signal voltage.

【図面の簡単な説明】[Brief explanation of drawings]

図1は従来の固体撮像内視鏡の1実施例断面図である。 図2は本発明の1実施例断面図である。図3と図4はそ
れぞれ図2の内視鏡の1実施例正面図である。図5は本
発明の2板式固体撮像内視鏡の部分断面IR+である。 図5は図4の1実施例平面図である。図7は固体撮像素
子3の1実施例平面図である。図8と図9は固体撮像素
子3の画素領域に配置される色フイルタ配置図である、
。 特許出願人 [11中 1丁 − 手続補正書(方式)
FIG. 1 is a sectional view of one embodiment of a conventional solid-state imaging endoscope. FIG. 2 is a sectional view of one embodiment of the present invention. 3 and 4 are front views of one embodiment of the endoscope of FIG. 2, respectively. FIG. 5 is a partial cross-section IR+ of the two-panel solid-state imaging endoscope of the present invention. FIG. 5 is a plan view of one embodiment of FIG. 4. FIG. 7 is a plan view of one embodiment of the solid-state image sensor 3. As shown in FIG. 8 and 9 are color filter arrangement diagrams arranged in the pixel area of the solid-state image sensor 3.
. Patent applicant [Case 1 of 11 - Procedural amendment (formality)

Claims (6)

【特許請求の範囲】[Claims] (1)、レンズと固体撮像素子をその先端部に備える内
視鏡において、 上記のレンズと固体撮像素子の間に光反射素子を配置し
、そして上記の固体撮像素子の表面をレンズの光軸と非
直角に配置し、そして上記のレンズから入力された光は
上記の光反射素子で反射されて上記の固体撮像素子に入
力される事を特徴とする固体撮像内視鏡。
(1) In an endoscope equipped with a lens and a solid-state image sensor at its tip, a light reflecting element is arranged between the lens and the solid-state image sensor, and the surface of the solid-state image sensor is aligned with the optical axis of the lens. A solid-state imaging endoscope is arranged at a non-perpendicular angle to the lens, and light input from the lens is reflected by the light reflecting element and input to the solid-state imaging device.
(2)、上記の固体撮像素子はレンズの光軸に大体平行
に配置され、そして上記の光反射素子は入力する光を大
体直角に反射する事を特徴とする第1項記載の固体撮像
内視鏡。
(2) In the solid-state imaging system according to item 1, the solid-state imaging device is arranged approximately parallel to the optical axis of the lens, and the light reflecting element reflects the input light approximately at right angles. Endoscope.
(3)、上記記の光反射素子はプリズムであり、そして
第2の固体撮像素子を備え、そして上記のプリズムで分
割された光は上記の2個の固体撮像素子に入力される事
を特徴とする第1項記載の固体撮像内視鏡。
(3) The light reflecting element described above is a prism and includes a second solid-state image sensor, and the light split by the prism is input to the two solid-state image sensors. The solid-state imaging endoscope according to item 1.
(4)、上記の第2の固体撮像素子は他の固体撮像素子
より小さいチップ面積を持つ事を特徴とする第3項記載
の固体撮像内視鏡。
(4) The solid-state imaging endoscope according to item 3, wherein the second solid-state imaging device has a smaller chip area than the other solid-state imaging devices.
(5)、上記の光反射素子はプリズムであり、照明光は
上記のプリズムと上記のレンズを介して出力される事を
特徴とする第1項記載の固体撮像内視鏡。
(5) The solid-state imaging endoscope according to item 1, wherein the light reflecting element is a prism, and the illumination light is output through the prism and the lens.
(6)、固体撮像素子を備える内視鏡において、上記の
固体撮像素子の一部または全部の画素はそれぞれ異なる
透過スペクトルを持つ複数の色フィルタ領域を備え、そ
して周期的に異なるスペクトルの照明光を入力する事を
特徴とする固体撮像内視鏡。
(6) In an endoscope equipped with a solid-state image sensor, some or all of the pixels of the solid-state image sensor are provided with a plurality of color filter regions each having a different transmission spectrum, and the illumination light of the different spectrum is periodically provided. A solid-state imaging endoscope characterized by inputting.
JP60155653A 1985-07-15 1985-07-15 Solid-state image pickup endoscope Pending JPS6215514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60155653A JPS6215514A (en) 1985-07-15 1985-07-15 Solid-state image pickup endoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60155653A JPS6215514A (en) 1985-07-15 1985-07-15 Solid-state image pickup endoscope

Publications (1)

Publication Number Publication Date
JPS6215514A true JPS6215514A (en) 1987-01-23

Family

ID=15610666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60155653A Pending JPS6215514A (en) 1985-07-15 1985-07-15 Solid-state image pickup endoscope

Country Status (1)

Country Link
JP (1) JPS6215514A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04241831A (en) * 1991-01-10 1992-08-28 Toshiba Corp Endoscope
JP2008099746A (en) * 2006-10-17 2008-05-01 Olympus Medical Systems Corp Endoscope
EP2031430A3 (en) * 2007-08-31 2009-06-24 Olympus Medical Systems Corporation Image pickup unit
WO2011148784A1 (en) * 2010-05-26 2011-12-01 オリンパス株式会社 Image capturing unit and endoscope device
EP1287707B2 (en) 2000-04-10 2023-01-04 C2Cure Inc. An image sensor and an endoscope using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04241831A (en) * 1991-01-10 1992-08-28 Toshiba Corp Endoscope
EP1287707B2 (en) 2000-04-10 2023-01-04 C2Cure Inc. An image sensor and an endoscope using the same
JP2008099746A (en) * 2006-10-17 2008-05-01 Olympus Medical Systems Corp Endoscope
US8419616B2 (en) 2007-08-20 2013-04-16 Olympus Medical Systems Corp. Image pickup device with a protection member and an optical reflection member
EP2031430A3 (en) * 2007-08-31 2009-06-24 Olympus Medical Systems Corporation Image pickup unit
WO2011148784A1 (en) * 2010-05-26 2011-12-01 オリンパス株式会社 Image capturing unit and endoscope device

Similar Documents

Publication Publication Date Title
US5495114A (en) Miniaturized electronic imaging chip
JPS6359332B2 (en)
US20110292258A1 (en) Two sensor imaging systems
US4663657A (en) Image pickup apparatus for endoscopes
US8848047B2 (en) Imaging device and endoscopic apparatus
JPH0442934B2 (en)
US4757805A (en) Endoscope
JPH0673517B2 (en) Electronic endoscope system
JPS60260914A (en) Endoscope for measurement
JP4966618B2 (en) Imaging device and endoscope apparatus
JPS6215514A (en) Solid-state image pickup endoscope
JP2008085807A (en) Image processing apparatus, endoscope device, and image processing program
JPH06277213A (en) X-ray image detecting device for medical treatment and x-ray tomograph using the same
JPS6053922A (en) Endoscope for visible light and infrared light
JP4951303B2 (en) Endoscope image sensor
JPS6054589A (en) Illuminating and image pickup device for color video
JPH0285706A (en) Measurable endoscope
JPS6340528A (en) Endoscope apparatus
JPH0794697A (en) Two-dimensional image sensor
CN209346978U (en) Fujinon electronic video endoscope color image imaging system
JP2957247B2 (en) Electronic endoscope
JPS63246715A (en) Electronic endoscope
JPS6066224A (en) Endoscope using solid-state image pickup device
JPS62206878A (en) Solid-state image pickup element
JPH0722243Y2 (en) Endoscope device