JPS6215503Y2 - - Google Patents
Info
- Publication number
- JPS6215503Y2 JPS6215503Y2 JP19080880U JP19080880U JPS6215503Y2 JP S6215503 Y2 JPS6215503 Y2 JP S6215503Y2 JP 19080880 U JP19080880 U JP 19080880U JP 19080880 U JP19080880 U JP 19080880U JP S6215503 Y2 JPS6215503 Y2 JP S6215503Y2
- Authority
- JP
- Japan
- Prior art keywords
- discharge hole
- valve
- cylinder
- suction
- valve plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000006835 compression Effects 0.000 claims description 12
- 238000007906 compression Methods 0.000 claims description 12
- 230000007423 decrease Effects 0.000 description 4
- 230000003111 delayed effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
Landscapes
- Temperature-Responsive Valves (AREA)
- Compressor (AREA)
Description
【考案の詳細な説明】
この考案は圧縮機の弁装置に関するもので、特
にその吐出孔構造に関するものである。[Detailed Description of the Invention] This invention relates to a valve device for a compressor, and particularly to its discharge hole structure.
従来の圧縮機の弁装置を第1図に示す。図にお
いて、1はシリンダ、2はシリンダ1内を往復す
るピストン、3はシリンダトツプに取付けられた
弁板、4は弁板3に穿設された吸入孔、5は吸入
孔4を開閉する吸入弁、6は弁板3に穿設された
吐出孔、7は吐出孔6を開閉する吐出弁、8は吐
出弁7の動きを規制する弁押え、9は弁板3の上
部に密室を形成するカバーである。 A conventional compressor valve device is shown in FIG. In the figure, 1 is a cylinder, 2 is a piston that reciprocates inside the cylinder 1, 3 is a valve plate attached to the top of the cylinder, 4 is a suction hole drilled in the valve plate 3, and 5 is a suction hole that opens and closes the suction hole 4. A valve, 6 is a discharge hole drilled in the valve plate 3, 7 is a discharge valve that opens and closes the discharge hole 6, 8 is a valve holder that restricts the movement of the discharge valve 7, 9 is a closed chamber formed in the upper part of the valve plate 3 It is a cover that does.
このように構成された従来の弁装置において
は、ピストン2が上死点位置にある時に、シリン
ダ内には、ピストン2と弁板3とのすき間2cと
吐出孔6により形成されるすき間6cが残される
が、このすき間2c+6cは往復動圧縮機の性能
に対し大きな意味をもつている。すなわち、すき
間2c+6cが大き過ぎると、吐出行程の終りに
おいてもシリンダ内に多くの高圧ガスが取り残さ
れることになり、吸入行程に入つてもシリンダ内
の圧力が仲々吸入圧力以下に下がらないため、吸
入ガスがシリンダ内に流入するタイミングが遅
れ、結局1回転の間に吸い込む吸入ガスの量が少
なくなつてしまう。つまり体積効率が低下してし
まう。逆に、すき間2c+6cが小さければシリ
ンダ内に取り残される高圧ガスの量が少なく、吸
入行程において吸入ガスが流入しやすくなる。つ
まり体積効率は増加する。従つて、体積効率を上
げるにはすき間2c+6cをできるだけ小さくす
る必要がある。 In the conventional valve device configured in this way, when the piston 2 is at the top dead center position, a gap 6c is formed in the cylinder by the gap 2c between the piston 2 and the valve plate 3 and the discharge hole 6. However, this gap 2c+6c has a great significance on the performance of the reciprocating compressor. In other words, if the gap 2c + 6c is too large, a lot of high-pressure gas will be left behind in the cylinder even at the end of the discharge stroke, and the pressure in the cylinder will not fall below the suction pressure even when the suction stroke begins, so the suction The timing at which gas flows into the cylinder is delayed, resulting in a decrease in the amount of suction gas sucked in during one rotation. In other words, the volumetric efficiency decreases. Conversely, if the gap 2c+6c is small, the amount of high-pressure gas left behind in the cylinder will be small, making it easier for suction gas to flow in during the suction stroke. In other words, the volumetric efficiency increases. Therefore, in order to increase the volumetric efficiency, it is necessary to make the gap 2c+6c as small as possible.
一般にすき間2cは小さくすることができる
が、しかし、すき間6cは弁板3にある程度の厚
さがあるために、これを小さくしようとすれば吐
出孔6の内径を小さくせざるを得ない。吐出孔6
の内径を小さくすれば、ガス流量の少ない高圧縮
比運転時には、体積効率が上がり有利であるが、
逆に流量の多い低圧縮比運転時にはガスの通路と
なる吐出孔6の断面積が小さいために抵抗を生
じ、温度上昇の結果吸入ガスが過熱され結局体積
効率は向上しない。さらに吐出に要する抵抗のた
めに圧縮機の仕事量が増え、経済的な運転ができ
ない。以上のような理由により、従来の弁装置で
は高圧縮比運転時の体積効率低下をおかしても、
ある程度すき間6cを大きくとらざるを得なかつ
た。 Generally, the gap 2c can be made smaller, but since the valve plate 3 has a certain thickness in the gap 6c, if this is to be made smaller, the inner diameter of the discharge hole 6 has to be made smaller. Discharge hole 6
If the inner diameter of the cylinder is made smaller, it is advantageous to increase the volumetric efficiency during high compression ratio operation with low gas flow rate.
On the other hand, during low compression ratio operation with a large flow rate, the cross-sectional area of the discharge hole 6 serving as a gas passage is small, which causes resistance, and as a result of the temperature rise, the suction gas is overheated, resulting in no improvement in volumetric efficiency. Furthermore, the resistance required for discharge increases the workload of the compressor, making it impossible to operate economically. For the reasons mentioned above, with conventional valve devices, even if volumetric efficiency decreases during high compression ratio operation,
The gap 6c had to be increased to some extent.
本考案はこのような欠点に鑑みなされたもの
で、以下本考案の一実施例について説明する。 The present invention was devised in view of these drawbacks, and one embodiment of the present invention will be described below.
第3図は本考案の一実施例を示す圧縮機の弁装
置の吐出部で、図において、10は吐出孔6の内
壁に嵌入されたスライダ、11はスライダ10の
背部と弁板3に密着して嵌入された熱膨張係数の
大きい例えばテフロン(商標名)等のブロツクで
あり、これら両部材10,11によつて絞り機構
を構成しており、これにより前記ブロツク11の
熱変形によつて前記スライダ10が吐出孔6の径
方向に進退する。なお、同図において、その他の
符号は第1図と同じである。このように構成され
た弁装置においては、ガス流量の多い低圧縮比運
転時には、吐出ガス温度が比較的低いために、ブ
ロツク11の熱膨張は小さく、スライダ10は吐
出孔6の内側に侵入せず、従つて吐出孔6は充分
なガス通路面積を確保できる。逆に、ガス流量の
少ない高圧縮比運転時には一般に吐出ガス温度が
上昇するために、ブロツク11の温度も上昇し、
熱膨張により第4図に示すようにスライダ10を
吐出孔6の中心方向に押出す。このような状態で
は、スライダ10の侵入により吐出孔6は小さく
せばめられ、結果的にすき間6cが減少すること
になり、体積効率は向上する。なお、本考案にお
ける体積効率ηVは理論的に次式によつて表すこ
とができる。 FIG. 3 shows a discharge part of a valve device of a compressor showing an embodiment of the present invention. In the figure, 10 is a slider fitted into the inner wall of the discharge hole 6, and 11 is a back of the slider 10 and tightly attached to the valve plate 3. These two members 10 and 11 constitute a throttling mechanism, which causes the block 11 to deform due to heat. The slider 10 moves forward and backward in the radial direction of the discharge hole 6. Note that in this figure, other symbols are the same as in FIG. 1. In the valve device configured in this way, during low compression ratio operation with a large gas flow rate, the temperature of the discharged gas is relatively low, so the thermal expansion of the block 11 is small, and the slider 10 cannot enter the inside of the discharge hole 6. First, the discharge hole 6 can ensure a sufficient gas passage area. Conversely, during high compression ratio operation with a small gas flow rate, the temperature of the discharged gas generally rises, so the temperature of the block 11 also rises.
Thermal expansion pushes the slider 10 toward the center of the discharge hole 6, as shown in FIG. In such a state, the discharge hole 6 is narrowed due to the intrusion of the slider 10, and as a result, the gap 6c is reduced, and the volumetric efficiency is improved. Note that the volumetric efficiency η V in the present invention can be theoretically expressed by the following equation.
ΔηV =(v2/V2)(1−E1/n)(1−α)
ここで、V2はピストンの行程容積、v2は元の
トツプクリアランス(第1図の2cおよび6
c)、Eは圧縮比、nはポリトロープ指数、αは
トツプクリアランスv2の縮小率である。Δη V = (v 2 /V 2 ) (1-E 1/n ) (1-α) where V 2 is the stroke volume of the piston, and v 2 is the original top clearance (2c and 6 in Figure 1).
c), E is the compression ratio, n is the polytropic index, and α is the reduction rate of the top clearance v 2 .
また、本実施例においては、絞り機構にブロツ
ク11を使用する例を示したが、本考案はこれに
限定されるものではなく、温度変化により伸縮す
るばね状のものあるいはバイメタルであつてもよ
い。 Further, in this embodiment, an example is shown in which the block 11 is used in the aperture mechanism, but the present invention is not limited to this, and the block 11 may be made of a spring-like material or a bimetal that expands and contracts with temperature changes. .
以上説明したように本考案によれば、吐出孔の
内壁に設けた凹部に膨張係数が大きいブロツク
と、このブロツクの熱変形によつて吐出孔の径方
向に進退するスライダとからなる絞り機構を設け
たので、低圧縮比運転時には吐出孔のガス通路面
積を充分に確保することができ、また高圧縮比運
転時には吐出孔のガス通路面積を小さくすること
ができる。したがつて、第2図に破線で示すよう
に低圧縮比運転時において体積効率の低下がなけ
れば圧縮機仕事量の増加もなく、高圧縮比運転時
において体積効率の向上を可能にすることができ
る。 As explained above, according to the present invention, a throttling mechanism is provided which includes a block having a large expansion coefficient in a recess provided in the inner wall of the discharge hole, and a slider that advances and retreats in the radial direction of the discharge hole by thermal deformation of this block. Because of this provision, a sufficient gas passage area of the discharge hole can be ensured during low compression ratio operation, and the gas passage area of the discharge hole can be reduced during high compression ratio operation. Therefore, as shown by the broken line in FIG. 2, if there is no decrease in volumetric efficiency during low compression ratio operation, there will be no increase in compressor work, making it possible to improve volumetric efficiency during high compression ratio operation. Can be done.
第1図は、従来の弁装置の断面図、第2図は、
圧縮比に対する体積効率の変化を示す曲線図で、
実線は従来の装置、破線は本考案による装置を示
す。第3図、第4図は、本考案の一実施例を示す
弁装置の吐出孔部の部分断面図である。
図において、3は弁板、6は吐出孔、7は吐出
弁、10はスライダ、11は熱膨張係数の大きい
ブロツクである。なお、図中、同一符号は同一ま
たは相当部分を示す。
Fig. 1 is a sectional view of a conventional valve device, and Fig. 2 is a sectional view of a conventional valve device.
A curve diagram showing changes in volumetric efficiency with respect to compression ratio.
The solid line shows the conventional device and the broken line shows the device according to the invention. FIGS. 3 and 4 are partial sectional views of a discharge hole portion of a valve device showing an embodiment of the present invention. In the figure, 3 is a valve plate, 6 is a discharge hole, 7 is a discharge valve, 10 is a slider, and 11 is a block with a large coefficient of thermal expansion. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.
Claims (1)
と、シリンダトツプにパツキンを介して取付けら
れた弁板とから圧縮部を構成し、弁板には吸入孔
と吐出孔が穿設され、その各々を開閉するように
弁板に接して吸入弁および吐出弁を設けた往復動
圧縮機の弁装置において、前記吐出孔の内壁に設
けた凹部に、膨張係数が大きいブロツクと、この
ブロツクの熱変形によつて吐出孔の径方向に進退
するスライダとからなる絞り機構を設けたことを
特徴とする圧縮機の弁装置。 The compression section consists of a cylinder, a piston that reciprocates within the cylinder, and a valve plate attached to the top of the cylinder via a gasket.The valve plate has a suction hole and a discharge hole, each of which can be opened or closed. In a reciprocating compressor valve device in which a suction valve and a discharge valve are provided in contact with a valve plate, a block with a large expansion coefficient and a block with a large coefficient of expansion are formed in a recess formed in the inner wall of the discharge hole. 1. A valve device for a compressor, comprising a throttle mechanism comprising a slider that moves forward and backward in the radial direction of a discharge hole.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19080880U JPS6215503Y2 (en) | 1980-12-26 | 1980-12-26 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19080880U JPS6215503Y2 (en) | 1980-12-26 | 1980-12-26 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57110372U JPS57110372U (en) | 1982-07-08 |
JPS6215503Y2 true JPS6215503Y2 (en) | 1987-04-20 |
Family
ID=29995243
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19080880U Expired JPS6215503Y2 (en) | 1980-12-26 | 1980-12-26 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6215503Y2 (en) |
-
1980
- 1980-12-26 JP JP19080880U patent/JPS6215503Y2/ja not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS57110372U (en) | 1982-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4642037A (en) | Reed valve for refrigeration compressor | |
US6206655B1 (en) | Electrically-operated sealed compressor | |
JP2955023B2 (en) | Axial flow valve system for linear compressor | |
JPH0335899Y2 (en) | ||
US5720601A (en) | Valve apparatus of hermetic type compressor | |
JPH07293440A (en) | Compressor | |
JPS63309787A (en) | Airtight refrigerating compressor | |
JPH10502151A (en) | Free piston end position limiter | |
US4352377A (en) | Compressor discharge valve | |
EP0371407A2 (en) | Ring valve type air compressor | |
US5577901A (en) | Compressor with valve unit for controlling suction and discharge of fluid | |
JPS6347669Y2 (en) | ||
JPS6215503Y2 (en) | ||
KR100421965B1 (en) | Cylinder assembly of hermetic compressor | |
US5775887A (en) | Spacer configuration for a discharge reed valve of a hermetic type compressor | |
JPH1061554A (en) | Valve device of compressor | |
JPH0418148B2 (en) | ||
JPH07208334A (en) | Enclosed type compressor | |
JPS63190579U (en) | ||
JPH06264869A (en) | Sealed electric compressor | |
JPH0481582A (en) | Discharge valve gear for rotary compressor | |
KR880001459Y1 (en) | Hermetic compressor | |
JPH02275073A (en) | Intake valve device for compressor | |
JPS62147057A (en) | Enclosed type reciprocating compressor | |
JPH10159736A (en) | Sealed type compressor |