JPS62154620A - Plasma processor - Google Patents

Plasma processor

Info

Publication number
JPS62154620A
JPS62154620A JP29413685A JP29413685A JPS62154620A JP S62154620 A JPS62154620 A JP S62154620A JP 29413685 A JP29413685 A JP 29413685A JP 29413685 A JP29413685 A JP 29413685A JP S62154620 A JPS62154620 A JP S62154620A
Authority
JP
Japan
Prior art keywords
plasma
infrared
light source
spectrometer
infrared light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29413685A
Other languages
Japanese (ja)
Inventor
Chikakuni Yabumoto
薮本 周邦
Masaharu Oshima
正治 尾嶋
Yasushi Muramatsu
村松 康司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP29413685A priority Critical patent/JPS62154620A/en
Publication of JPS62154620A publication Critical patent/JPS62154620A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To measure at good S/N ratio in a plasma processor by mounting an infrared spectroscope on one side and an independent plasma diagnosing infrared ray source on the other of a bell-jar for performing a plasma reaction of a plasma chemical vapor-phase deposition unit to obtain infrared rays having strong intensity. CONSTITUTION:A known infrared spectroscope body 9 and an independent infrared ray source 1 opposed through a bell-jar 12 to the body 9 are mounted on an elevationally movable trestle 11 on both sides of the bell-jar 12 for performing a plasma reaction. The light emitted from the source 1 is transmitted through a mirror system in a cover 4 and a slit 2 into a plasma in the bell-jar 12, and introduced by a mirror system in a cover 5 into the spectroscope 9. The optical path length from the source 1 to the spectroscope 9 can be shortened to approx. 1/2 by mounting the source 1. Thus, light having strong intensity can be introduced to measure at good S/N ratio.

Description

【発明の詳細な説明】 (発明の属する技術分野) 本発明は、プラズマ化学気相蒸着法によって、非晶質シ
リコンをはじめとする各種材料を作製する際、あるいは
、プラズマエツチング法によって各種材料をエツチング
する際のプラズマ状態を診断し、プラズマプロセスをコ
ントロールするプラズマプロセス装置に関するものであ
る。
Detailed Description of the Invention (Technical field to which the invention pertains) The present invention relates to the production of various materials including amorphous silicon by plasma chemical vapor deposition, or the production of various materials by plasma etching. This invention relates to a plasma processing apparatus that diagnoses the plasma state during etching and controls the plasma process.

(従来の技術) 従来、プラズマ診断法として、fR量分析法、あるいは
、発光分光法、レーザ誘起螢光法、コヒーレント・反ス
トークス・ラマン分光性等を利用した装置などがある。
(Prior Art) Conventionally, plasma diagnostic methods include devices using fR quantity analysis, emission spectroscopy, laser-induced fluorescence, coherent anti-Stokes Raman spectroscopy, and the like.

質量分析法を用いた装置は、ブラズーマ中の各分子のイ
オン化効率が異なるため、プラズマの状態を正しく反映
しないと言う欠点があった。発光分光法を用いた装置は
、プラズマ中の発光化学種を直接に検出できるものの、
発光化学種はプラズマ中の少数成分であるため、プラズ
マの全体像をとらえKくいと言う欠点があった。レーザ
ー誘起螢光法を用いた装置は、プラズマ中にレーザーを
照射し、プラズマ中の分子を一度励起させるため、プラ
ズマの状態ヲ変化させると言う欠点があった。
Devices using mass spectrometry have the disadvantage that they do not accurately reflect the state of the plasma because the ionization efficiency of each molecule in the plasma differs. Although devices using emission spectroscopy can directly detect luminescent species in plasma,
Since the luminescent species are a minority component in the plasma, they have the disadvantage of being difficult to capture the entire image of the plasma. Devices using laser-induced fluorescence have the disadvantage that the state of the plasma changes because the plasma is irradiated with a laser and the molecules in the plasma are excited once.

マタ、コヒーレント・反ストークス・ラマン分光法を用
いた装置は、上記の点では勝れているが、極めて高価で
、かつ、2種類のレーザーの光路を揃えなければならな
込ため測定が難しいと言う欠点があった。
Although devices using coherent anti-Stokes Raman spectroscopy are superior in the above points, they are extremely expensive and difficult to measure because the optical paths of two types of lasers must be aligned. There was a drawback.

一方、赤外分光法を用いた測定装置も存在したが、モデ
ル装置の域をでなかった。
On the other hand, there were measurement devices using infrared spectroscopy, but they were limited to model devices.

(1)  ドライプロセスシンポジウム(J、 Nis
hlN15hlza N、 Hayasaka+ Pr
oc、 Jnd Symp on DryProces
ses+  /910  Ploり)(2)  イオン
源七イオンを基礎とした応用技術シンポジウム(H,H
amasaki+ M、Hirose and Y。
(1) Dry Process Symposium (J, Nis
hlN15hlza N, Hayasaka+ Pr
oc, Jnd Symp on DryProces
ses+ /910 Plo) (2) Applied technology symposium based on seven ion sources (H, H
amasaki+ M, Hirose and Y.

0saka+ Proc、 lr th Symp o
n Ion 5ources and Ion−Ass
isted Technology+  Tokyo+
  /りIr2.P2乙3)これらの装置の概要を第1
図に示す。
0saka+ Proc, lr th Symp o
n Ion 5 sources and Ion-Ass
isted Technology+ Tokyo+
/riIr2. P2 Otsu 3) Outline of these devices in Part 1.
As shown in the figure.

/は赤外線光源、2は試料測定室、3は分光器、≠は気
体セル、夕は高周波発生電極である。すなわち、従来装
置は赤外線分光装置に付随する気体セルに高周波発生用
の電極ヲ組込み、プラズマを発生させる構造としたもの
である。この構造では、光学系の制約のため、弘の試料
用気体セルと、参照用気体セルを離すことができず、λ
の試料測定室の大きさが決まってしまう。従って、気体
セルは設置できるものの、実用に値するプラズマ化学気
相蒸着装置等のプラズマ反応を行なわせるベルシアを設
置することができないと言う欠点があった・ また、この構造のまま、試料用気体セル側の赤外線をミ
ラーを用いて外部に取出し、プラズマ化学気相蒸着装置
等のベルシア内を透過後、再び3の分光器に導く方法で
は、光路長が長くなるため、赤外吸収分析に必要な赤外
線強度が得られないと言う欠点があった。
/ is an infrared light source, 2 is a sample measurement chamber, 3 is a spectrometer, ≠ is a gas cell, and evening is a high frequency generation electrode. That is, the conventional device has a structure in which an electrode for generating high frequency waves is built into a gas cell attached to an infrared spectrometer to generate plasma. In this structure, due to optical system constraints, it is not possible to separate Hiro's sample gas cell from the reference gas cell, and λ
The size of the sample measurement chamber is determined. Therefore, although a gas cell could be installed, there was a drawback in that it was not possible to install a Versier that performs a plasma reaction such as a practical plasma chemical vapor deposition device. In the method of extracting the side infrared rays to the outside using a mirror, transmitting them through the Verscia of a plasma chemical vapor deposition device, etc., and then guiding them back to the spectrometer in step 3, the optical path length becomes long, so the infrared rays required for infrared absorption analysis are The drawback was that infrared intensity could not be obtained.

(発明の目的) 本発明は、赤外線光源を赤外線分光器とペルジャをはさ
んで対向して設けることによってこれらの欠点を解決し
たもので、実用のプラズマ化学気相蒸着装置内で発生す
るプラズマの診断に、赤外分光法を利用して薄膜形成並
びにエツチング加工を行なうことを特徴としたものであ
る。
(Objective of the Invention) The present invention solves these drawbacks by providing an infrared light source and an infrared spectrometer facing each other with a Pelger in between. This method is characterized by the use of infrared spectroscopy to form a thin film and perform etching processing for diagnosis.

(発明の構成) 本発明は、プラズマ化学気相蒸着装置のプラズマ反応を
行なわせるベルシアをはさんで一方に赤外分光器、他方
に独立したプラズマ診断用赤外線光源を設置することを
主要な特徴とする。従来の技術とは、対向した赤外光源
を設置することKよって、実際にプラズマを利用した化
学気相蒸着やエツチングを行つている装置内のプラズマ
を診断できる点が異なる。また、この独立した赤外光源
の設置によって、光源を発した赤外線が試料を透過して
分光器に入射するまでの光路長を短かくすることができ
るので、強い強度の赤外線を得ることができ、S/Nの
良い測定をできると言う特徴を有する。
(Structure of the Invention) The main feature of the present invention is that an infrared spectrometer is installed on one side and an independent infrared light source for plasma diagnosis is installed on the other side, sandwiching the Vercia that performs the plasma reaction of the plasma chemical vapor deposition apparatus. shall be. This method differs from the conventional technology in that by installing opposed infrared light sources, it is possible to diagnose plasma in an apparatus that actually performs chemical vapor deposition or etching using plasma. In addition, by installing this independent infrared light source, it is possible to shorten the optical path length of the infrared light emitted from the light source until it passes through the sample and enters the spectrometer, making it possible to obtain strong infrared light. , it has the characteristic of being able to perform measurements with good S/N ratio.

(実施例) 第2図は本発明の実施例であって、lは赤外線光源、コ
はスリット、3は赤外線透過用窓、弘。
(Embodiment) FIG. 2 shows an embodiment of the present invention, in which l is an infrared light source, C is a slit, and 3 is an infrared transmitting window.

!はカバー、6,7は弘、J′のカバー内へのチッ素ガ
ス導入口、♂は平面ミラー、りは赤外分光器本体、?−
/は赤外線分光器の赤外線光源、ター2は分光器、IO
はプロセス制御装置、10−/は測定系信号線、io−
コはプロセス系制御信号線、IIは可動架台、lコはプ
ラズマ化学気相蒸着装置のベルシア、13はベローズで
ある。
! is the cover, 6 and 7 are Hiro, the nitrogen gas inlet into the J' cover, ♂ is the plane mirror, and ri is the infrared spectrometer body. −
/ is the infrared light source of the infrared spectrometer, ter2 is the spectrometer, IO
is the process control device, 10-/ is the measurement system signal line, io-
1 is a process system control signal line, 1 is a movable stand, 1 is a Versia of a plasma chemical vapor deposition apparatus, and 13 is a bellows.

本発明は12のプラズマ反応を行なわせるベルシアの両
側に既製の赤外分光器本体りと/、2のペルジャをはさ
んで対向し独立した赤外線光源/を上下動可能な可動架
台1/の上に設置した構造となっている。lの赤外線光
源から出た元は、カバー≠内のミラー系、コのスリット
を通って、/、2のベルシア内のプラズマ中t!過し、
カバー!内のミラー系によって、赤外分光器りに導かれ
る。
In the present invention, a ready-made infrared spectrometer main body is placed on both sides of a Versia for carrying out 12 plasma reactions, and an independent infrared light source is placed on a movable mount 1 that can be moved up and down. The structure is set up in The source emitted from the infrared light source at l passes through the mirror system inside the cover≠ and the slit at, and enters the plasma inside Bersia at /,2. passed,
cover! A system of internal mirrors guides the beam to an infrared spectrometer.

ここで、どのミラーは赤外線分光器内蔵の赤外線光源タ
ーlからの光と、lからの光を切換えるためのものであ
り、赤外線分光器りの調整はターlの赤外線光源を使っ
て行う。
Here, which mirror is used to switch between light from the infrared light source Tar 1 with a built-in infrared spectrometer and light from Tar 1, and the infrared spectrometer is adjusted using the infrared light source of Tar 1.

lに赤外線光源を設置したことKより、従来の測定系の
ようにターlの赤外線光源から取り出した元を/、2の
ベルシア内を透過させた後、再び、ター2の分光器に導
く場合に比べて、赤外光源lから赤外分光器りまでの光
路長をほぼ十に短かくすることができる。従つて、強度
の強い光を分光器に導くことができるので、8/Nの良
い測定が可能となる。
Since an infrared light source has been installed at 1, when the source extracted from the infrared light source at 1 is transmitted through the Versier at 2 and then guided back to the spectrometer at 2, as in the conventional measurement system. Compared to this, the optical path length from the infrared light source l to the infrared spectrometer can be made approximately ten times shorter. Therefore, since high-intensity light can be guided to the spectrometer, good measurement of 8/N is possible.

また本実施例は光学系1Fc≠、jの気密構造カバ一部
材内に設置し、プラズマ化学気相蒸着装置のベルシア/
2と、/3のベローズで接続しているので、6.7より
チッ素ガス、または、乾燥空気を流入することにより、
光路中での二酸化炭素や水による赤外線の吸収を防ぐこ
とができる。
Further, in this embodiment, the optical system 1Fc≠,j is installed inside the airtight structure cover member, and
2 and /3 are connected by bellows, so by introducing nitrogen gas or dry air from 6.7,
It is possible to prevent infrared rays from being absorbed by carbon dioxide and water in the optical path.

また、本冥施例ではコに横長スリット(例えば高さ、2
■、幅titom)を入れ、llの架台を上下すること
によって、プラズマ化学気相蒸着装置の上下電極間に存
在するプラズマ化学種の分布を調べることができる。
In addition, in this example, a horizontally long slit (for example, height, 2
The distribution of plasma chemical species existing between the upper and lower electrodes of the plasma enhanced chemical vapor deposition apparatus can be investigated by moving the 11 frame up and down.

本装置を用いて、例えば5iH4−Ht系プラズマの診
断を試みると、第3図に示すような放電によるSiH4
量の変化や、@μ図に示す気相中の新たな生成物である
5in)16の生成を調べることができる。第3図では
、2/r’?儂−1に現われるS i H4の吸光度の
変化を、反応ガスを閉じこめた時の放電(1)と、反応
ガスをフローさせながらの放1! (2)について示し
た。第μ図では、lに実線で木製fifKよって生成が
確認された8 i 1 Haの吸光度と、2に破線で従
来の装置では、8/Nが悪いためSi、H,の存在が検
出できなかった結果を示した。また、上記のように、横
長スリットと上下動可能架台との組合わせによシ、これ
ら検出されるプラズマ成分の空間分布を測定することが
できる。12はプラズマ状態を診断したデータをもとに
、プラズマ化学気相蒸着装置やプラズマエツチング装置
の反応ガス供給系統等をコントロールするだめの制御装
置であり、/2−1は測定系の信号線、12−2はプロ
セス系の制御信号線である。これら装置を用いることに
よジペルジャ中で発生するプラズマ化学種の同定やプラ
ズマ中の化学種の分布を薄膜製造や加工プロセス中同時
に適格に診断出来るので、これら診断値を利用してプラ
ズマプロセス装置の反応ガス供給系統のコントロールを
行なうことにより、良好なOVD薄膜やエツチング加工
が容易に得られる。
For example, when attempting to diagnose 5iH4-Ht plasma using this device, SiH4 due to discharge as shown in Figure 3.
Changes in the amount and the formation of a new product 5in)16 in the gas phase shown in the @μ diagram can be investigated. In Figure 3, 2/r'? The changes in the absorbance of S i H4 appearing in I-1 are shown in the discharge (1) when the reaction gas is confined and the discharge (1) while the reaction gas is flowing. (2) was shown. In Figure μ, the solid line at 1 indicates the absorbance of 8 i 1 Ha, which was confirmed to be produced by a wooden fifK, and the broken line at 2 indicates that the presence of Si, H, cannot be detected with a conventional device due to poor 8/N. The results were shown. Furthermore, as described above, the combination of the horizontally elongated slit and the vertically movable mount makes it possible to measure the spatial distribution of these detected plasma components. 12 is a control device that controls the reaction gas supply system of the plasma chemical vapor deposition device and the plasma etching device based on the data obtained by diagnosing the plasma state; /2-1 is the signal line of the measurement system; 12-2 is a control signal line for the process system. By using these devices, it is possible to identify the plasma chemical species generated in Ziperger and to accurately diagnose the distribution of chemical species in the plasma simultaneously during thin film manufacturing and processing processes, so these diagnostic values can be used to improve plasma processing equipment. By controlling the reaction gas supply system, good OVD thin films and etching processes can be easily obtained.

(発明の効果) 以上説明したように、プラズマ診断に赤外分光法を利用
すれば、他の方法に比べて安価にプラズマプロセス装置
を構成でき、赤外吸収の原理に基づいて、プラズマ中の
化学9i’を同定することができる。また、スリットと
上下動可能架台を組合わせ、元学系部に乾燥チッ素をフ
ローさせる構成をとることによって、プラズマ中の化学
種の空間分布を二酸化炭素や水の妨害なく測定できると
言う利点がある。
(Effects of the invention) As explained above, if infrared spectroscopy is used for plasma diagnosis, plasma processing equipment can be constructed at a lower cost than other methods. Chemical 9i' can be identified. Another advantage is that by combining a slit and a vertically movable pedestal to allow dry nitrogen to flow through the source, the spatial distribution of chemical species in the plasma can be measured without interference from carbon dioxide or water. There is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の装置の構成図、第2図は本発明の実施例
の平面図、第3図はSiH,の吸光度の放電時間による
変化、第j図はS i H4の放電により生成する81
2H,の吸光度である。 第1図 l・・・赤外線光源、コ・・・試料測定室、3
・・・赤外線分光器、≠・・・気体セル、!・・・高周
波発生電極 WJλ図 7・・・赤外線光源、2・・・スリット、3
・・・赤外線透過用窓14.!・・・カバー、乙、7・
・・ガス導入口、r・・・平面ミラー、り・・・赤外分
光器本体、ター/・・・赤外線光源、ター!・・・赤外
線分光器 /θ・・・制御装置、1o−i・・・測定系
信号線、10−2・・・プロセス系制御信号線、//・
・・可動架台、/2・・・ペルジャ、/3・・・ベロー
ズ 第3図  l・・・S + H4f閉じこめた系での放
電時間に対する81八介の変化。 2・・・Si H4’<流している系での放電時間に対
するSiH,量の変化。 第μ図  l・・・本装置で測定した波数tttoct
n  付近の8 i H4−Htプラズマの吸光度。 λ・・・従来装置で測定した波数11AO(sr’付近
の8iH4−Hzプラズマの吸光度。
Fig. 1 is a configuration diagram of a conventional device, Fig. 2 is a plan view of an embodiment of the present invention, Fig. 3 is a change in the absorbance of SiH depending on the discharge time, and Fig. 81
It is the absorbance of 2H. Fig. 1 L...Infrared light source, K...Sample measurement chamber, 3
...Infrared spectrometer, ≠...Gas cell,! ...High frequency generation electrode WJλ diagram 7...Infrared light source, 2...Slit, 3
...Infrared transmission window 14. ! ...Cover, Otsu, 7.
...Gas inlet, r...plane mirror, r...infrared spectrometer body, ter/...infrared light source, ter! ...Infrared spectrometer /θ...Control device, 1o-i...Measurement system signal line, 10-2...Process system control signal line, //...
...Movable pedestal, /2...Perger, /3...Bellows Figure 3 l...S + H4f Changes in 81 eightsuke with respect to discharge time in a confined system. 2...Change in amount of SiH with respect to discharge time in a system where SiH4'< is flowing. Figure μ l... Wave number tttoc measured with this device
Absorbance of 8i H4-Ht plasma near n. λ: Absorbance of 8iH4-Hz plasma near wave number 11AO (sr') measured with a conventional device.

Claims (2)

【特許請求の範囲】[Claims] (1)プラズマを利用して薄膜形成並びにエッチング加
工を行なうプラズマ装置において、プラズマを発生させ
るペルジャ両側に対向した赤外線透過用窓部を介して、
該赤外線透過用窓部の一方から、プラズマ中を通過させ
る赤外線光源と、他方の赤外線透過用窓部から、プラズ
マ通過後の赤外線特性を測定しプラズマ状態を診断する
赤外線分光器と、該プラズマ診断値から薄膜形成並びに
加工プロセスをコントロールするため制御装置とからな
るプラズマプロセス装置。
(1) In a plasma device that performs thin film formation and etching using plasma, through infrared transmission windows facing both sides of the Pelger that generates plasma,
An infrared light source that passes through the plasma from one of the infrared transmission windows, an infrared spectrometer that measures the infrared characteristics after the plasma has passed through the other infrared transmission window and diagnoses the plasma state, and the plasma diagnosis. A plasma processing device consisting of a control device to control thin film formation and processing processes based on values.
(2)(1)項記載のプラズマプロセス装置において、
ペルジャ内のプラズマ分布を測定するため、赤外線光源
と赤外線分光器を一括同時に上下動させる可動架台と、
前記赤外線光源と赤外線分光器の周囲を覆い、ペルジャ
の赤外線透過用窓部に対向する部分のみ開口部を有する
気密構造のカバー部材と該カバー部材の開口部とペルジ
ャの赤外線透過用窓部を結合するベローズを具備するこ
とを特徴とするプラズマプロセス装置。
(2) In the plasma process apparatus described in (1),
In order to measure the plasma distribution inside Peljar, a movable mount that moves the infrared light source and infrared spectrometer up and down at the same time,
A cover member having an airtight structure that covers the periphery of the infrared light source and the infrared spectrometer and has an opening only in the portion facing the infrared transmission window of Pelger, and the opening of the cover member and the infrared transmission window of Pelger are combined. A plasma processing apparatus characterized by comprising a bellows that
JP29413685A 1985-12-26 1985-12-26 Plasma processor Pending JPS62154620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29413685A JPS62154620A (en) 1985-12-26 1985-12-26 Plasma processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29413685A JPS62154620A (en) 1985-12-26 1985-12-26 Plasma processor

Publications (1)

Publication Number Publication Date
JPS62154620A true JPS62154620A (en) 1987-07-09

Family

ID=17803770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29413685A Pending JPS62154620A (en) 1985-12-26 1985-12-26 Plasma processor

Country Status (1)

Country Link
JP (1) JPS62154620A (en)

Similar Documents

Publication Publication Date Title
McCurdy et al. A modified molecular beam instrument for the imaging of radicals interacting with surfaces during plasma processing
Hurle Line‐Reversal Studies of the Sodium Excitation Process Behind Shock Waves in N2
JP2000512757A (en) NDIR apparatus and method for measuring isotope ratios in gaseous samples
GB2416205A (en) Method and apparatus for determining the amount of impurity in a gas
US4140905A (en) Laser-induced mass spectrometry
CN110044824A (en) A kind of double spectroscopic gas detection devices and method based on quartz tuning-fork
CN110095248A (en) A kind of non-equilibrium property diagnostic system of high-frequency induction Flow Field in Wind Tunnel and method
CN106872402A (en) Gas-detecting device and method based on super continuous spectrums laser
Tiemann et al. Diode laser spectroscopy for monitoring the yield of metastable Cl from photodissociation of simple molecules
Dixon et al. State‐selected photodissociation dynamics of HONO (A ̃ 1 A ″): Characterization of the NO fragment
JP2001509596A (en) Method for calibration of spectroscopic sensors
JP2012504248A (en) Arrangement adapted for spectral analysis of high-concentration gases
Schmid et al. Molecular-beam/surface-science apparatus for state-resolved chemisorption studies using pulsed-laser preparation
CN110057779A (en) Method and apparatus based on temperature self-compensation TDLAS technology measurement gas concentration
CN117042273B (en) Two-dimensional plasma velocity measurement system and method based on super-resolution spectrometer
JPS62154620A (en) Plasma processor
US6795178B1 (en) Method and apparatus for analysis of gas compositions
JP2003264175A (en) Plasma treatment device and treatment method
JPH02229793A (en) Method and device for detecting gas species formed during synthesis of diamond
CN114280005A (en) Device and method for rapidly analyzing and detecting hydrogen and hydrogen isotopes
KR102600883B1 (en) Spatially resolved optical emission spectroscopy (OES) in plasma processing
Cox et al. Double beam-in-time photoacoustic spectrometer
JP2005520132A (en) Method and apparatus for polarization measurement of sample characteristic parameters
JPH05315095A (en) Plasma device provided with plasma evaluating device
Trautmann et al. Determination of the deuterium abundance in water using a cw chemical df laser