JPS62154076A - Picture processing method - Google Patents

Picture processing method

Info

Publication number
JPS62154076A
JPS62154076A JP60292731A JP29273185A JPS62154076A JP S62154076 A JPS62154076 A JP S62154076A JP 60292731 A JP60292731 A JP 60292731A JP 29273185 A JP29273185 A JP 29273185A JP S62154076 A JPS62154076 A JP S62154076A
Authority
JP
Japan
Prior art keywords
pattern
window
feature
inspected
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60292731A
Other languages
Japanese (ja)
Inventor
Kenji Nakada
健二 中田
Yutaka Yoshida
豊 吉田
Masashi Nosaka
野坂 正志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60292731A priority Critical patent/JPS62154076A/en
Priority to GB8630579A priority patent/GB2184879B/en
Priority to KR1019860011368A priority patent/KR910004781B1/en
Publication of JPS62154076A publication Critical patent/JPS62154076A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/24Aligning, centring, orientation detection or correction of the image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V30/00Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
    • G06V30/10Character recognition
    • G06V30/14Image acquisition
    • G06V30/146Aligning or centring of the image pick-up or image-field
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • G06T1/0007Image acquisition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V30/00Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
    • G06V30/10Character recognition

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)

Abstract

PURPOSE:To shorten an arithmetic time of a quantity of the feature of a pattern by reducing automatically a preset window according to the size of a pattern in the window or the position to obtain a quadrangle enveloping the pattern. CONSTITUTION:The preset window is made into a quadrangle and set to a little larger in size in considering of position shift of the pattern. Before the quantity of feature is operated, four sides of the set window are moved in parallel until the respective sides contact the pattern, and a rectangular area enveloping the pattern is obtained to make a new window. With respect to the pattern in the newly obtained window, the operation of the quantity of feature is performed. The window is made the rectangular, the four sides of the window are respectively moved in parallel until the respective sides contact the pattern to obtain the rectangular area enveloping the pattern, thereby, among the areas indicated by the preset window, an area which is not required for calculating the quantity of feature of the pattern is deleted and only a required area is left. Since the area for calculating the quantity of feature of the pattern can be deleted, a processing time for the calculation processing of the quantity of feature can be shortened.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、物代に印字された文字の読取りあるいは物体
の外観検査装置に係り、特にあらかじめ設定したウィン
ドウ内のパターンの特徴量等を算出して目的を実現する
装置に好適なウィンドウの自動縮小方法に関するもので
ある。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an apparatus for reading characters printed on a material or for inspecting the appearance of an object, and particularly for calculating feature values of patterns within a preset window. The present invention relates to an automatic window reduction method suitable for an apparatus that achieves a purpose by

〔従来の技術〕[Conventional technology]

従来、簡易形の画像処理gt置は、特開昭59−9 (
1177号に記載のようGこ処理領域を全画面とせずに
、ウィンドウと呼ばれる小領域の集合により構成し、処
理時間のかかる特徴量の演算等の処理はこのウィンドウ
内にのみに対して行い、処理時間の短縮化を図っていた
。しかし、上記手法はパターンの存在場所があらかじめ
明確にわかっている場合にはウィンドウをパターンに対
して適切に設定でき処理時間の短縮を図ることができる
が、パターンの位置ずれが大きい場合には、必然的にあ
らかじめウィンドウの大きさを大きくする必要かあり、
この結果、処理時間をそれはと短縮できないという欠点
があった。
Conventionally, a simplified image processing gt system has been proposed in Japanese Patent Application Laid-Open No. 1986-9 (
As described in No. 1177, the processing area is not made up of the entire screen, but is made up of a collection of small areas called windows, and processing such as calculation of feature quantities, which requires processing time, is performed only within this window. The aim was to shorten processing time. However, with the above method, when the location of the pattern is clearly known in advance, the window can be set appropriately for the pattern and the processing time can be shortened, but when the positional shift of the pattern is large, It is necessary to increase the size of the window in advance,
As a result, there was a drawback that the processing time could not be reduced significantly.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術はパターンの位置ずれ対策の点について配
慮がされておらず、そのため必然的にウィンドウを大き
くしなければならないことからあまり処理時間を短縮で
きないという問題かあつた。
The above-mentioned conventional technology does not take into account measures against pattern positional deviation, and as a result, the window must necessarily be made larger, resulting in the problem that the processing time cannot be reduced much.

本元明の目的は、画面内(こおいてパターンが大きく位
置ずれしてもパターンの位置に応じてウィンドウを修正
し、パターンの位置ずれの影響を受けずに特徴】の演算
を高速に行えるようにパターンに適したウィンドウを自
動作成する方法を提供することにある。
The purpose of Akira Hongen is to perform high-speed calculations on the screen (even if the pattern is significantly misaligned, the window is corrected according to the pattern position, and the features are not affected by the pattern misalignment). The objective is to provide a method to automatically create windows suitable for patterns.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、以下の手順を実行することにより達成され
る。
The above objective is achieved by performing the following steps.

1)あらかじめ設定するウィンドウは矩形とし、かつ、
パターンの位置ずれを:s!慮して大きめに設定する。
1) The window to be set in advance should be rectangular, and
Misalignment of pattern: s! Set it to a larger value.

2)特徴量を演算する前に、あらかじめ設定したウィン
ドウの四辺をそれぞれの辺がパターンに接触するまで平
行移動させ、パターンを包絡する矩形領域を求め、これ
を新たなウィンドウとする。
2) Before calculating the feature amount, translate the four sides of the preset window until each side touches the pattern, find a rectangular area that envelops the pattern, and use this as a new window.

3)新たに求めたウィンドウ内のパターンに対して特徴
量の演算を行う。
3) Perform feature calculations on the pattern within the newly obtained window.

〔作  用〕[For production]

ウィンドウを足形とし、ウィンドウの四辺をそれぞれの
辺がパターンに接触するまで平行移動させパターンを包
絡する矩形領域を求めることは、あらかじめ設定したウ
ィンドウにて示される領域のうち、パターンの特徴量算
出に必要のない領域を削除し、必要な領域のみを残す作
用がある。それによって、パターンの特徴ffi算出領
域を削減できるため特徴量算出処理の処理時間を短縮す
ることができる。
Using the window as a footprint, finding a rectangular area that envelops the pattern by moving the four sides of the window in parallel until each side touches the pattern is a method to calculate the feature amount of the pattern out of the area shown in the preset window. It has the effect of deleting unnecessary areas and leaving only the necessary areas. As a result, the feature ffi calculation area of the pattern can be reduced, so that the processing time for the feature value calculation process can be shortened.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面を用いて説明する。第2
図において、1は被検査物、2は被検査物1を搬送する
コンベヤ、3は被検査物の到着を検出する検出器、4は
被検査物1を撮像するTVカメラ、5はTVカメラ4か
らの信号を所定のレベルまで増幅する増幅回路、6は増
幅回路5からの信号を所定のしきい値レベルで2値化し
所定の信号によって量子化または画素化する2値化回路
、7はTVカメラ4からの信号の中から垂直同期信号お
よび水平同期信号を抽出し2値化回路6における量子化
および量子化した信号を記憶するアドレス作成時に使用
する信号を作成する同期信号検出回路、8は2値化回路
6からの量子化信号を記憶するメモリに対するアドレス
を作成するアドレス発生回路、9は2値化回路6からの
量子化された信号を記憶する画像メモリ、10は中央処
理部(CPU)、11は処理手順等を記憶するためのメ
モリ(ROM )、部は一時記憶用メモリ(RAM)、
13は検出器3からの信号を入力するための入力回路、
14は処理結果を出力するための出力回路、15はシス
テムバスである。
An embodiment of the present invention will be described below with reference to the drawings. Second
In the figure, 1 is an object to be inspected, 2 is a conveyor that conveys the object to be inspected, 3 is a detector that detects the arrival of the object to be inspected, 4 is a TV camera that images the object to be inspected 1, and 5 is a TV camera 4. 6 is an amplifier circuit that amplifies the signal from the amplifier circuit 5 to a predetermined level; 6 is a binarization circuit that binarizes the signal from the amplifier circuit 5 at a predetermined threshold level and quantized or pixelized it according to the predetermined signal; 7 is a binarization circuit that amplifies the signal from the amplifier circuit 5 to a predetermined level; A synchronization signal detection circuit 8 extracts a vertical synchronization signal and a horizontal synchronization signal from the signal from the camera 4, quantizes the signal in the binarization circuit 6, and creates a signal used when creating an address to store the quantized signal; 9 is an image memory that stores the quantized signal from the binarization circuit 6; 10 is a central processing unit (CPU); ), 11 is a memory (ROM) for storing processing procedures, etc.; 11 is a temporary storage memory (RAM);
13 is an input circuit for inputting the signal from the detector 3;
14 is an output circuit for outputting processing results, and 15 is a system bus.

本装置の動作はまず、コンベヤ2が被検査物1を搬出し
て鳴る。TVカメラ4の視野内に被検査物1が入ると検
出器3が被検査物1を検出し、信号を入力回路13に出
力する。ここで、検出器3の検出精度はあらいもので良
(、被検査物lがTVカメラ4の視野内に入っていると
いうことを検出できる程度のもので良いものとする。C
P U 10は、入力回路13を介して検出器3からの
信号を入力するとTVカメラ4により被検査物1の像を
撮像する。ここで、被検査物1と背景であるコンベラ2
等はコントラストが十分にあるものとする。TVカメラ
4によって撮像された被検査物1のパターンは電気信号
に変換され、増幅回路5により所定のレベルまで増幅さ
れ2値化回路6において所定のしきい値レベルで2値化
されるとともに、同期信号検出回路7からの信号によっ
て量子化または画素化される。
In the operation of this apparatus, first, the conveyor 2 carries out the object 1 to be inspected and a sound is heard. When the inspected object 1 enters the field of view of the TV camera 4, the detector 3 detects the inspected object 1 and outputs a signal to the input circuit 13. Here, the detection accuracy of the detector 3 may be rough (it is sufficient that it can detect that the object to be inspected l is within the field of view of the TV camera 4.C)
When the P U 10 receives a signal from the detector 3 via the input circuit 13 , the TV camera 4 captures an image of the object 1 to be inspected. Here, the object to be inspected 1 and the conveyor 2 which is the background
etc. shall have sufficient contrast. The pattern of the inspected object 1 captured by the TV camera 4 is converted into an electrical signal, amplified to a predetermined level by an amplifier circuit 5, and binarized at a predetermined threshold level by a binarization circuit 6. The signal from the synchronization signal detection circuit 7 is quantized or pixelized.

2値化回路6により量子化された信号は、同期信号検出
回路7からの信号をもとにアドレス発生回路8により作
り出した画像メモリ9のアドレスへ記憶される。CP 
U toは、被検査物1のパターンを画像メモリ9へ記
憶した後に、ROM 11へあらかじめ設定しておいた
ウィンドウ情報を参照し、画像メモリ9内のパターンの
状態に応じてウィンドウを縮小し、その後、縮小したウ
ィンドウ内に対して特徴値の算出を行う。CP U 1
0は、求めた特徴量をROM 11内に設定している標
準値と比べ良否の判定を行い、結果を出力装置14を介
して外部へ出力する。
The signal quantized by the binarization circuit 6 is stored at an address in the image memory 9 generated by the address generation circuit 8 based on the signal from the synchronization signal detection circuit 7. C.P.
After storing the pattern of the inspected object 1 in the image memory 9, U to refers to the window information set in advance in the ROM 11 and reduces the window according to the state of the pattern in the image memory 9. After that, feature values are calculated within the reduced window. CPU 1
0 compares the obtained feature amount with a standard value set in the ROM 11 to determine whether it is good or bad, and outputs the result to the outside via the output device 14.

第1図を用いてウィンドウの縮小手順を説明する。第1
図において、画像データはTVカメラ4の走査に対応し
た画像メモリ9の中に記憶される。
The window reduction procedure will be explained using FIG. 1st
In the figure, image data is stored in an image memory 9 corresponding to the scanning of the TV camera 4.

第1図には、被検査物1のパターンが口中斜線にて示す
ように黒レベルにて記憶された状態を示している。第1
図において、一点鎖線で示す16はあらかじめ設定する
設定ウィンドウであり、二点鎖線で示す17は、設定ウ
ィンドウ16に対してウィンドウ縮小処理を行った後の
修正ウィンドウである。
FIG. 1 shows a state in which the pattern of the object to be inspected 1 is stored at a black level, as indicated by diagonal lines inside the mouth. 1st
In the figure, 16 indicated by a chain line is a setting window that is set in advance, and 17 indicated by a chain double dot line is a modified window after window reduction processing is performed on the setting window 16.

ここで、画像メモリ9の始点すなわち図中、画像メモリ
9の左上端を原点とし、同図に示すようにXItbY軸
を定める。設定ウィンドウ16を構成する点P、Q、R
,Sの座標をそれぞれ(xl、 Yl) +(X2+)
’I L  (X1+)’2L  (X2+72)とし
、修正ウィンドウ17を構成する点P’、 Q’、  
R’、  S’の座標をそれぞれ(X3+ Y3 L 
 (X4. y3 )y (X3. y4L(X4+y
、)とする。以下、設定ウィンドウ16を修正ウィンド
ウ17へ変換する手順をステップにて示す。
Here, the origin is the starting point of the image memory 9, that is, the upper left end of the image memory 9 in the figure, and the XItbY axes are determined as shown in the figure. Points P, Q, and R that make up the settings window 16
, S coordinates as (xl, Yl) + (X2+)
'I L (X1+)'2L (X2+72), and the points P', Q', which constitute the correction window 17,
The coordinates of R' and S' are (X3 + Y3 L
(X4.y3)y (X3.y4L(X4+y
, ). Below, the procedure for converting the setting window 16 into the modification window 17 will be shown in steps.

ステップl:画像メモリ9へ被検査物1のパターンを入
力する。
Step 1: Input the pattern of the inspected object 1 into the image memory 9.

ステップ2:初期値として修正ウィンドウ17の座標値
を設定ウィンドウ16の座標値に一致させる。
Step 2: Make the coordinate values of the correction window 17 coincide with the coordinate values of the setting window 16 as initial values.

すなわち、x3=xII X4=X21 Y3=Yxr
 X4=X2とする。
That is, x3=xII X4=X21 Y3=Yxr
Let X4=X2.

ステップ3:Y座標値=y3でかつX座標値がx3から
x4の範囲の画素において、それらの画素が全て白レベ
ルならば上辺P’Q’が被検査物lのパターンに接触し
ていないとし、ステップ4に移る。さもなければ、すな
わちY座標値=y3  でかつX座標値がx3からx4
の範囲の画素において一つでも黒画素が存在するならば
上辺P’Q’が被検査物1のパターンと接触したとして
ステップ5に移る。
Step 3: For pixels with Y coordinate value = y3 and X coordinate value in the range of x3 to x4, if all of those pixels are at white level, it is assumed that the upper side P'Q' is not in contact with the pattern of the object to be inspected l. , move on to step 4. Otherwise, i.e. Y coordinate value = y3 and X coordinate value is from x3 to x4
If there is at least one black pixel in the pixel range, it is assumed that the upper side P'Q' is in contact with the pattern of the object 1 to be inspected, and the process moves to step 5.

ステップ4 : Y3=y3+ 1とし、ステップ3に
移る。
Step 4: Set Y3=y3+1 and move on to step 3.

ステップ5:Y座標値=y4でかつX座標値がx3から
x4の範囲の画素において、それらの画素が全て白レベ
ルならば下辺R’ S’ が被検査物1のパターンに接
触していないとし、ステップ6に移る。さもなければ、
すなわちY座標値=y4でかつX座標値がx3からx4
の範囲の画素において一つでも黒画素が存在するならば
下辺R’ S’が被検査物lのパターンと接触したとし
てステップ7に移る。
Step 5: If all of the pixels in the range of Y coordinate value = y4 and X coordinate value from x3 to x4 are at white level, it is assumed that the lower side R'S' is not in contact with the pattern of the object to be inspected 1. , move on to step 6. Otherwise,
In other words, Y coordinate value = y4 and X coordinate value is from x3 to x4
If there is even one black pixel in the range of pixels, it is assumed that the lower side R'S' is in contact with the pattern of the object to be inspected l, and the process moves to step 7.

ステップ6:X4=X4 1とし、ステップ5に移る。Step 6: Set X4=X4 to 1 and proceed to Step 5.

ステップ7:X座標値=x3でかつX座標値がy3から
y4の範囲の画素において、それらの画素が全て白レベ
ルならば左辺P/ R’が被検査物1のパターンに接触
していないとし、ステップ8に移る。さもなければ、す
なわちX座標値=x3でかつX座標値がy3からy4の
範医の画素において一つでも黒画素が存在するならば左
辺P’ R’が被検査物1のパターンと接触したとして
ステ、プ9に移る。
Step 7: If the X coordinate value = x3 and the pixels in the range of X coordinate values from y3 to y4 are all at white level, it is assumed that the left side P/R' is not in contact with the pattern of the object to be inspected 1. , move on to step 8. Otherwise, if the X coordinate value = x3 and there is at least one black pixel among the pixels with the X coordinate value from y3 to y4, then the left side P'R' is in contact with the pattern of the object to be inspected 1. As a result, move on to Step 9.

ステップ3:x3=x3+1とし、ステップ7に移る。Step 3: Set x3=x3+1 and move to step 7.

ステップ9:X座標値=X4でかつX座標値がy3から
y4の範囲の画素において、それらの画素が全て白レベ
ルならば右辺Q′S′が被検査物1のパターンに接触し
ていないとし、ステップlOに移る。さもなければ、す
なわちX座標値=X 4でかつX座標値がy3からy4
の範囲の画素において一つでも黒画素が存在するならば
右辺Q′S′が被検査物1のパターンと接触したとして
ステップ11に移る。
Step 9: If the X coordinate value = X4 and the pixels in the range of X coordinate values from y3 to y4 are all at white level, it is assumed that the right side Q'S' is not in contact with the pattern of the object to be inspected 1. , move to step lO. Otherwise, i.e. the X coordinate value = X 4 and the X coordinate value is from y3 to y4
If there is even one black pixel in the range of pixels, it is assumed that the right side Q'S' is in contact with the pattern of the object to be inspected 1, and the process moves to step 11.

ステップ10 :X4=X4 1 とし、ステップ9へ
移る。
Step 10: Set X4=X4 1 and proceed to step 9.

ステップll:上記処理により求めた座標値X3゜X4
+ )’31 Y4に対して以下の補正を行う。
Step ll: Coordinate value X3°X4 obtained by the above process
+ )'31 The following corrections are made to Y4.

X3:X3 1  、   x4=x4+1y3=Y3
 1  p   y4=y<+1これは、2×2あるい
は3×3等の近傍演算処理をウィンドウ全域にほどこす
ことにより特徴量を求めるという処理に対する配慮であ
る。
X3:X3 1, x4=x4+1y3=Y3
1 p y4=y<+1 This is a consideration for the process of determining the feature amount by applying neighborhood calculation processing such as 2×2 or 3×3 to the entire window.

すなわち、上記補正により被検査物lのパターンは、そ
の回りを全て白レベルの画素で囲まれた状態で修正ウィ
ンドウ17の中に存在することになる。この様子を第1
図に示す。
That is, as a result of the above correction, the pattern of the object to be inspected 1 exists in the correction window 17 in a state where it is completely surrounded by pixels of the white level. This situation is the first
As shown in the figure.

以後の処理、すなわちパターンの特徴量の演算は上記手
順により求めた修正ウィンドウエアに対して行う。修正
ウィンドウ17の面積は、設定ウィンドウ16に比べか
なり小さくなりうるので特徴量の演算を高速に行うこと
ができる。
The subsequent processing, that is, the computation of the feature amount of the pattern, is performed on the corrected window air obtained by the above procedure. Since the area of the modification window 17 can be considerably smaller than that of the setting window 16, feature values can be calculated at high speed.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、設定ウィンドウ16を修正ウィンドウ
17へ縮小することができ、これによりソフトウェアで
実行する際に長い処理時間を特徴とする特徴量の演算を
設定ウィンドウ16に比べはるかに小さい修正ウィンド
ウ17に対して行えば良いことから、被検査物1の位置
ずれがあるような場合にも適切な大きさのウィンドウを
自動設定でき、処理時間が矩かくなるという効果がある
。処理時間の短縮の度合いは、ウィンドウ縮小処理が特
徴量の演算に比べはるかに短かい時間ですむことから、
設定ウィンドウ16に比べ修正ウィンドウの面積がl/
Nになった場合には、約1/rV+になると考えられる
According to the present invention, the setting window 16 can be reduced to the correction window 17, and thereby feature calculations, which are characterized by long processing times when executed by software, can be performed in a much smaller correction window than the setting window 16. 17, it is possible to automatically set a window of an appropriate size even when there is a positional shift of the inspected object 1, which has the effect of reducing the processing time. The degree of reduction in processing time is due to the fact that window reduction processing takes much less time than feature calculations.
The area of the correction window is l/ compared to the setting window 16.
When it becomes N, it is thought that it becomes about 1/rV+.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はウィンドウ縮小方法の説明因、第2図は外観検
査装置のブロック図を示す。 1・・・・・・被検査物、2・・・・・・コンベヤ、3
・・・・・・検出器、4・・・・・・TVカメラ、5・
・・・・・増幅回路、6・・叩2値化回路、7・・・・
・・同期信号検出回路、8・・−・・アドレス発生回路
、9・・・・・・画像メモリ、lO・・・・・・CPU
、11・・・・・・ROM、12・・−・・RAM、1
3・・四入力回路、14・・・・・・出力回路、ts・
曲・システムバス、16・・・オl因
FIG. 1 shows an explanation of the window reduction method, and FIG. 2 shows a block diagram of the appearance inspection device. 1...Object to be inspected, 2...Conveyor, 3
...Detector, 4...TV camera, 5.
...Amplification circuit, 6.. Beating binarization circuit, 7..
... Synchronization signal detection circuit, 8 ... Address generation circuit, 9 ... Image memory, IO ... CPU
, 11...ROM, 12...RAM, 1
3...4 input circuit, 14...output circuit, ts...
Song/system bus, 16...Ol cause

Claims (1)

【特許請求の範囲】[Claims] 1、被認識物を撮像し、該撮像した画像情報に対してウ
ィンドウを発生し、該ウィンドウ内の特徴を求め、該特
徴と標準値とを比較することによって、該被認識物の認
識または良否判定を行うものにおいて、あらかじめ設定
したウィンドウを、ウィンドウ内部のパターンの大きさ
あるいは位置に応じて自動的に縮小してパターンを包絡
する四辺形にすることによりパターンの特徴量の演算時
間を短くすることを特徴とする画像処理方法。
1. Recognize or reject the object by capturing an image of the object, generating a window for the image information, determining the features within the window, and comparing the features with standard values. In devices that perform judgment, the time required to calculate pattern feature quantities is shortened by automatically reducing a preset window to a quadrilateral that envelops the pattern according to the size or position of the pattern inside the window. An image processing method characterized by:
JP60292731A 1985-12-27 1985-12-27 Picture processing method Pending JPS62154076A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60292731A JPS62154076A (en) 1985-12-27 1985-12-27 Picture processing method
GB8630579A GB2184879B (en) 1985-12-27 1986-12-22 Method of processing image
KR1019860011368A KR910004781B1 (en) 1985-12-27 1986-12-27 Image processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60292731A JPS62154076A (en) 1985-12-27 1985-12-27 Picture processing method

Publications (1)

Publication Number Publication Date
JPS62154076A true JPS62154076A (en) 1987-07-09

Family

ID=17785591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60292731A Pending JPS62154076A (en) 1985-12-27 1985-12-27 Picture processing method

Country Status (3)

Country Link
JP (1) JPS62154076A (en)
KR (1) KR910004781B1 (en)
GB (1) GB2184879B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63201785A (en) * 1987-02-17 1988-08-19 Mazda Motor Corp Article discriminating method for picture processing
JPH01180076A (en) * 1988-01-11 1989-07-18 Agency Of Ind Science & Technol Apex detecting method for pattern recognition

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2212961A (en) * 1987-11-23 1989-08-02 Gen Electric Co Plc Target recognition
US5199084A (en) * 1991-08-16 1993-03-30 International Business Machines Corporation Apparatus and method for locating characters on a label

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB917574A (en) * 1960-11-25 1963-02-06 Solartron Electronic Group Improvements in or relating to automatic reading apparatus
US4403340A (en) * 1981-01-06 1983-09-06 Caere Corporation OCR Matrix extractor
US4457015A (en) * 1981-12-17 1984-06-26 Ncr Corporation Matrix character preprocessing system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63201785A (en) * 1987-02-17 1988-08-19 Mazda Motor Corp Article discriminating method for picture processing
JPH01180076A (en) * 1988-01-11 1989-07-18 Agency Of Ind Science & Technol Apex detecting method for pattern recognition

Also Published As

Publication number Publication date
KR870006485A (en) 1987-07-11
GB2184879B (en) 1989-10-18
GB2184879A (en) 1987-07-01
GB8630579D0 (en) 1987-02-04
KR910004781B1 (en) 1991-07-13

Similar Documents

Publication Publication Date Title
JPH0789063A (en) Printed matter inspecting system
JP3265595B2 (en) Image processing method and apparatus
JPS62154076A (en) Picture processing method
JP2002207996A (en) Method and device for detecting pattern defect
JPS58222382A (en) Correcting system for inclination of picture
JPH02125375A (en) Position detecting device
JPS642218B2 (en)
JPS5830645A (en) Pattern inspecting system
JP3586761B2 (en) Image binarization processing method and image processing apparatus equipped with this processing method
JPH061247B2 (en) Defect inspection method by image processing
JPS58129888A (en) Position detector
JPS60200375A (en) Template matching system
JPH11328409A (en) Device for inspecting sheet material defect
JP2841373B2 (en) Pattern inspection equipment
JPH0490078A (en) Centroid detector
JPS63167980A (en) Method and device for defect inspection of printed wiring pattern or the like
JP3216767B2 (en) Image processing device capable of level fluctuation correction
JPH06325156A (en) Method and device for character shape inspection
JPH0690144B2 (en) Image processing method
JPS63229570A (en) Pattern inspecting device
JPH1011579A (en) Defect inspecting method and its device
JPH0738224B2 (en) Model determination device
JPH11184967A (en) Character segment device
JPS619765A (en) Picture image processor
JPH03165205A (en) Inspecting device for appearance of lead frame