JPS621527B2 - - Google Patents

Info

Publication number
JPS621527B2
JPS621527B2 JP58105437A JP10543783A JPS621527B2 JP S621527 B2 JPS621527 B2 JP S621527B2 JP 58105437 A JP58105437 A JP 58105437A JP 10543783 A JP10543783 A JP 10543783A JP S621527 B2 JPS621527 B2 JP S621527B2
Authority
JP
Japan
Prior art keywords
hydrogen sulfide
sulfur
gas
composite metal
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58105437A
Other languages
Japanese (ja)
Other versions
JPS59230618A (en
Inventor
Kazuo Shindo
Taisuke Nishida
Masanori Itagaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP58105437A priority Critical patent/JPS59230618A/en
Publication of JPS59230618A publication Critical patent/JPS59230618A/en
Publication of JPS621527B2 publication Critical patent/JPS621527B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Industrial Gases (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Description

【発明の詳細な説明】 本発明は、ガス中の硫化水素を除去する方法の
改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in methods for removing hydrogen sulfide from gases.

石油危機以来、石油代替エネルギーとして石炭
が注目され、各種の石炭利用技術の研究が行なわ
れている。その中で比較的早期に実用化すると思
われるものに石炭のガス化があり、電力、化学工
業等種々の分野での利用が期待されている。しか
し石炭ガスは、石炭中の硫黄成分が転換して硫化
水素を数千ppm〜数%含んでいる。このため石
炭ガスを使用する場合、装置の腐食および公害を
防止するために硫化水素を予めガス中から除去し
て使用する必要がある。
Since the oil crisis, coal has attracted attention as an energy alternative to oil, and various coal utilization technologies are being researched. Among these, coal gasification is expected to be put into practical use relatively soon, and is expected to be used in various fields such as electric power and the chemical industry. However, coal gas contains several thousand ppm to several percent of hydrogen sulfide due to conversion of the sulfur component in the coal. Therefore, when using coal gas, it is necessary to remove hydrogen sulfide from the gas in advance to prevent equipment corrosion and pollution.

なおかつ、石炭ガス化複合発電システムでは、
石炭ガス化ガスをガスタービン燃焼室で燃焼させ
てガスタービンを作動させた後、その排熱でスチ
ームタービンを作動させている。そして、省エネ
ルギー、省資源の要請から、ガス化炉で発生した
ガスを高温のままでガスタービンの燃焼室に送り
込み熱効率を向上させることが望まれている。こ
のため、石炭ガス化ガス中の硫化水素の除去も
700〜1200℃という高温状態で行なうことが要求
されている。
Furthermore, in the coal gasification combined cycle system,
After combusting coal gasification gas in a gas turbine combustion chamber to operate a gas turbine, the exhaust heat is used to operate a steam turbine. In response to demands for energy and resource conservation, it is desired to improve thermal efficiency by sending the gas generated in the gasifier to the combustion chamber of the gas turbine while maintaining its high temperature. Therefore, removal of hydrogen sulfide from coal gasification gas is also possible.
It is required that the process be carried out at a high temperature of 700 to 1200°C.

ガス中の硫化水素除去方法には、湿式法と乾式
法の2つの方法がある。しかし湿式法は、アルカ
リ水溶液とガスとを接触させるもので、ガスの温
度が常温付近まで降下してしまう。このため、上
述のような要求にこたえるためには乾式法によら
ざるを得ない。更に、ガスの温度が700〜1200℃
と高いことを考慮すると、硫化水素の吸収剤は、
酸化カルシウム、酸化鉄、酸化銅、酸化亜鉛等の
金属酸化物の中より選択せざるを得ない。
There are two methods for removing hydrogen sulfide from gas: a wet method and a dry method. However, the wet method involves bringing an alkaline aqueous solution into contact with a gas, and the temperature of the gas drops to around room temperature. Therefore, in order to meet the above-mentioned requirements, a dry method has to be used. Furthermore, the gas temperature is 700 to 1200℃
Considering that the hydrogen sulfide absorbent is
The metal oxide must be selected from among metal oxides such as calcium oxide, iron oxide, copper oxide, and zinc oxide.

これらの金属酸化物は硫化水素と反応し下記の
ように金属硫化物を生成する。
These metal oxides react with hydrogen sulfide to produce metal sulfides as described below.

MO+H2S→MS+H2O ここでMはCa、Zn、Fe、Cuなどである硫化水
素と反応し硫化物となつた金属酸化物は、再生さ
れ繰り返し使用される。金属硫化物を金属酸化物
にもどす方法として一般に行なわれるのが、金属
硫化物を空気中で焙焼し金属酸化物とする方法で
ある。
MO+H 2 S→MS+H 2 O where M is Ca, Zn, Fe, Cu, etc. Metal oxides that react with hydrogen sulfide to become sulfides are recycled and used repeatedly. A commonly used method for converting metal sulfides into metal oxides is to roast the metal sulfides in air to convert them into metal oxides.

MS+3/2O2→MO+SO2 この際、硫化物中の硫黄分はガス状の二酸化硫
黄あるいは三酸化硫黄に転化するが、これは通常
アルカリ水溶液で洗浄し、硫酸カルシウム、硫酸
ナトリウム等のアルカリ硫酸塩として回収され
る。
MS+3/2O 2 →MO+SO 2 At this time, the sulfur content in the sulfide is converted to gaseous sulfur dioxide or sulfur trioxide, but this is usually washed with an alkaline aqueous solution and converted into an alkali sulfate such as calcium sulfate or sodium sulfate. will be collected as.

ところが、このようにして回収されたアルカリ
硫酸塩は用途が限られており、廃棄物と同等に取
り扱われ、有効に利用されない場合が多い。
However, the alkali sulfates recovered in this way have limited uses, are treated as waste, and are often not used effectively.

そこで、硫化水素の吸収した硫黄分を用途の広
い単体硫黄として回収し、有効に利用する方法の
開発が望まれている。
Therefore, it is desired to develop a method for recovering the sulfur content absorbed by hydrogen sulfide as elemental sulfur, which has a wide range of uses, and effectively utilizing it.

本発明者らは、このようなことから硫化水素の
吸収剤と反応した硫黄分を単体硫黄として回収す
る方法を開発するために、種々の物質について研
究を重ねた。その結果、700〜1200℃において硫
化水素吸収能力があり、しかも、反応吸収した硫
黄分を単体硫黄として回収することのできる物質
として下記の式で表わされる複合金属酸化物を見
出し、本発明を完成するに至つた。
In view of this, the present inventors have conducted extensive research on various substances in order to develop a method for recovering the sulfur component that has reacted with the hydrogen sulfide absorbent as elemental sulfur. As a result, they discovered a composite metal oxide represented by the following formula as a substance that has the ability to absorb hydrogen sulfide at temperatures of 700 to 1200°C and can recover the sulfur content absorbed by reaction as elemental sulfur, and completed the present invention. I came to the conclusion.

XY2〓O4 …(1) ここで、Xは亜鉛又はマンガン Y〓はアルミニウム、クロムである。 XY 2 〓O 4 ...(1) Here, X is zinc or manganese, Y〓 is aluminum or chromium.

すなわち本発明は、硫化水素含有ガスを複合金
属酸化物XY2〓O4(Xは亜鉛又はマンガン、Y〓
はアルミニウム又はクロム)と反応させ、生成し
た複合金属硫化物XS・Y2〓O3を系外に取出して
二酸化硫黄含有ガスと1000〜1200℃において反応
させ、XY2〓O4を再生するとともにガス状硫黄を
生成し、しかる後生成したガス状硫黄を冷却して
固体硫黄として回収することを特徴とする。
That is, the present invention converts hydrogen sulfide-containing gas into composite metal oxide XY 2 〓O 4 (X is zinc or manganese, Y〓
is reacted with aluminum or chromium), and the generated composite metal sulfide XS・Y 2 〓O 3 is taken out of the system and reacted with a sulfur dioxide-containing gas at 1000-1200℃ to regenerate XY 2 〓O 4 . It is characterized by generating gaseous sulfur, and then cooling the generated gaseous sulfur and recovering it as solid sulfur.

以下本発明を詳細に説明する。 The present invention will be explained in detail below.

まず上記(1)式で表わされる複合金属酸化物と硫
化水素とを接触させ次式のように反応させる。
First, the composite metal oxide represented by the above formula (1) and hydrogen sulfide are brought into contact and reacted as shown in the following formula.

XY2〓O4+H2S→XS・X2〓O3+H2O …(2) 上記の反応により生成した複合金属硫化物
XS・Y2〓O3を系外に取出して二酸化硫黄と次式
のように反応させる。このことにより複合金属硫
化物は、もとの複合金属酸化物XY2〓O4にもどる
とともに、ガス状の硫黄S2を生成する。
XY 2 〓O 4 +H 2 S→XS・X 2 〓O 3 +H 2 O …(2) Composite metal sulfide produced by the above reaction
XS・Y 2 〓O 3 is taken out of the system and reacted with sulfur dioxide as shown in the following formula. As a result, the composite metal sulfide returns to the original composite metal oxide XY 2 〓O 4 and generates gaseous sulfur S 2 .

XS・Y2〓O3+1/2SO2→XY2〓O4+3/4S2 …(3) この場合複合金属硫化物XS・Y2〓O3と二酸化
硫黄とを1000〜1200℃で反応させる。この理由
は、この温度範囲外では下式第(3)式の再生反応が
生じないためである。また二酸化硫黄含有ガス中
には、酸素をほとんど含まないものが好ましい。
酸素が多く含まれるとSO2が多く発生するためで
ある。
XS・Y 2 〓O 3 +1/2SO 2 →XY 2 〓O 4 +3/4S 2 …(3) In this case, the composite metal sulfide XS・Y 2 〓O 3 and sulfur dioxide are reacted at 1000 to 1200℃ . The reason for this is that the regeneration reaction of formula (3) below does not occur outside this temperature range. Moreover, it is preferable that the sulfur dioxide-containing gas contains almost no oxygen.
This is because when a large amount of oxygen is included, a large amount of SO 2 is generated.

ここで発生したガス状の硫黄を、120℃以下に
冷却し、このことにより固体状の単体硫黄として
回収する。
The gaseous sulfur generated here is cooled to below 120°C and thereby recovered as solid elemental sulfur.

ここで本発明の方法に用いる複合金属酸化物
は、当該複合金属酸化物を構成する2種の金属の
酸化物、硝酸塩、しゆう酸塩あるいは炭酸塩を十
分に混合した後1000〜1200℃において加熱するこ
とにより作ることができる。この場合活性を保持
するために必要ならば酸素を断つて加熱する。
Here, the composite metal oxide used in the method of the present invention is prepared by sufficiently mixing the oxides, nitrates, oxalates, or carbonates of the two metals constituting the composite metal oxide, and then heating the composite metal oxide at 1000 to 1200°C. It can be made by heating. In this case, oxygen is cut off and heated if necessary to maintain activity.

またこの複合金属酸化物は、ベントナイト、ケ
イソウ土等のバインダーを用いて粒状など適当な
形状、寸法に成形、造粒して使用してもよい。
Further, this composite metal oxide may be used after being formed into a suitable shape and size, such as granules, and granulated using a binder such as bentonite or diatomaceous earth.

また、硫化水素吸収剤再生用の二酸化硫黄は、
例えば回収した単体硫黄の一部を空気中で燃焼し
て作ることができる。あるいは金属酸化物(銅、
マンガン、ランタン、亜鉛、鉄等の酸化部)を使
用して、一部の硫化水素を吸収せしめ、これと硫
化水素との反応によつて生成する金属硫化物を空
気中で焙焼することによつても作ることができ
る。
In addition, sulfur dioxide for hydrogen sulfide absorbent regeneration is
For example, it can be made by burning part of recovered elemental sulfur in air. or metal oxides (copper,
Oxidized parts of manganese, lanthanum, zinc, iron, etc.) are used to absorb some hydrogen sulfide, and the metal sulfide produced by the reaction with hydrogen sulfide is roasted in the air. You can make it even if it is twisted.

本発明の方法によれば、後述の実施例からも明
らかなように、700〜1200℃という高温のガス中
に含まれる硫化水素を効率よく反応除去できるの
みならず、吸収剤である複合金属酸化物と反応し
た硫黄分を用途の広い単体硫黄として回収し、有
効に利用することが可能となる。
According to the method of the present invention, as is clear from the examples described later, not only can hydrogen sulfide contained in gas at a high temperature of 700 to 1200°C be efficiently removed by reaction, but also the composite metal oxide used as an absorbent can It becomes possible to recover the sulfur content that has reacted with substances and use it effectively as elemental sulfur, which has a wide range of uses.

次に具体的な硫化水素除去システムの一例につ
き第1図にもとづいて説明する。
Next, an example of a specific hydrogen sulfide removal system will be explained based on FIG. 1.

このシステムは2段の脱硫塔1,2と、同じく
2段の再生塔3,4、そして、加熱炉5、単体硫
黄回収装置6から成る。
This system consists of two-stage desulfurization towers 1 and 2, two-stage regeneration towers 3 and 4, a heating furnace 5, and a unit sulfur recovery device 6.

まず硫化水素を含むガスを1段目の脱硫塔1に
導入し、複合金属酸化物により硫化水素濃度を1/
3にまで低減する。次に2段目の脱硫塔2で金属
酸化物により残りの硫化水素を除去し硫化水素を
ほとんど含まないクリーンガスとして脱硫塔2か
ら排気する。
First, gas containing hydrogen sulfide is introduced into the first-stage desulfurization tower 1, and the hydrogen sulfide concentration is reduced to 1/2 by the composite metal oxide.
Reduce to 3. Next, remaining hydrogen sulfide is removed by metal oxide in the second-stage desulfurization tower 2, and the gas is exhausted from the desulfurization tower 2 as a clean gas containing almost no hydrogen sulfide.

一方、硫化水素を吸収し硫化物となつた金属酸
化物を1段目の再生塔3に送り、ここで吹き込ま
れる空気中の酸素によりもとの金属酸化物に再生
して脱硫塔2に戻す。この際硫化物から発生する
二酸化硫黄と空気中の窒素との混合ガスを加熱炉
5で必要な温度まで昇温した後、2段目の再生塔
4に送り、複合金属酸化物の再生に使用する。
On the other hand, metal oxides that have absorbed hydrogen sulfide and become sulfides are sent to the first-stage regeneration tower 3, where they are regenerated into the original metal oxides by the oxygen in the air blown in and returned to the desulfurization tower 2. . At this time, the mixed gas of sulfur dioxide generated from sulfide and nitrogen in the air is heated to the required temperature in the heating furnace 5, and then sent to the second stage regeneration tower 4, where it is used to regenerate the composite metal oxide. do.

硫化水素を吸収した複合金属酸化物を2段目の
再生塔4に送り、ここで1段目の再生塔3で発生
した二酸化硫黄によりもとの複合金属酸化物に再
生して脱硫塔1に戻す。この際に発生するガス状
の硫黄を含むガスを硫黄回収装置6で冷却し単体
硫黄を回収する。硫黄を回収された窒素を主成分
とするガスの一部を必要に応じて酸素濃度を低下
させるために空気に混合して使用する。
The composite metal oxide that has absorbed hydrogen sulfide is sent to the second-stage regeneration tower 4, where it is regenerated into the original composite metal oxide by the sulfur dioxide generated in the first-stage regeneration tower 3 and sent to the desulfurization tower 1. return. The gas containing gaseous sulfur generated at this time is cooled by a sulfur recovery device 6 to recover elemental sulfur. A part of the nitrogen-based gas from which sulfur has been recovered is used by mixing it with air to reduce the oxygen concentration, if necessary.

次の本発明の実施例につき説明する。 The following embodiments of the present invention will be described.

実施例 1 酸化アルミニウム粉末と酸化亜鉛粉末とを
100:80の重量比で配合し、乳ばち中で十分に混
合した後、1000℃で2時間焼成しアルミン酸亜鉛
ZnAl2O4(本発明に係る複合金属酸化物)を得
た。これを粉砕し微粉末としたものを皿型造粒機
で16〜32メツシユの球状に造粒したものを実験用
試料とした。この試料15gを反応管(内径30mmの
石英管)の中央部に充填し、反応管上部から硫化
水素を含む合成ガス(H2S2000ppm、H220%、
O20.5%、N279.3%(%は容量基準))を500ml/m
inの流量で8時間流した。反応管および試料の温
度は、管状電気炉により800℃に保つた。このと
き反応管入口および出口で測定した硫化水素濃度
の変化を第2図に示す。
Example 1 Aluminum oxide powder and zinc oxide powder
After blending at a weight ratio of 100:80 and thoroughly mixing in a mortar, it was baked at 1000℃ for 2 hours to form zinc aluminate.
ZnAl 2 O 4 (composite metal oxide according to the present invention) was obtained. This was ground into a fine powder, which was granulated into 16 to 32 mesh spheres using a dish granulator, and used as an experimental sample. 15 g of this sample was filled in the center of a reaction tube (quartz tube with an inner diameter of 30 mm), and synthesis gas containing hydrogen sulfide (H 2 S 2000 ppm, H 2 20%,
O 2 0.5%, N 2 79.3% (% is based on volume)) at 500ml/m
It was run for 8 hours at a flow rate of in. The temperature of the reaction tube and sample was maintained at 800°C using a tubular electric furnace. Figure 2 shows the changes in hydrogen sulfide concentration measured at the inlet and outlet of the reaction tube at this time.

合成ガスを8時間流した後、温度を1000℃に上
げ、二酸化硫黄ガス(SO220%、N280%)を500
ml/minの流量で2時間流して、硫化水素を吸収
したアルミン酸亜鉛の再生を行なつた。二酸化硫
黄ガスを2時間流した後、冷却し、反応管および
トラツプに付着した単体硫黄を二硫化炭素で洗
浄、回収し、乾燥後秤量したところ617mgあつ
た。これは、アルミン酸亜鉛に吸収した硫黄分重
量の約90%に相当するものである。
After flowing syngas for 8 hours, the temperature was raised to 1000℃ and sulfur dioxide gas (SO 2 20%, N 2 80%) was
The zinc aluminate that had absorbed hydrogen sulfide was regenerated by flowing at a flow rate of ml/min for 2 hours. After flowing sulfur dioxide gas for 2 hours, the reactor was cooled, and the elemental sulfur adhering to the reaction tube and trap was washed with carbon disulfide, recovered, dried, and weighed to yield 617 mg. This corresponds to approximately 90% of the weight of sulfur absorbed by zinc aluminate.

実施例 2 酸化クロム()粉末と酸化亜鉛粉末とを
100:54の重量比で配合し、さらにこの混合物の
1重量%に相当する重量のベントナイトを加え乳
ばち中で十分に混合した後、押し出し成形機を用
いて直径2mm、長さ3mmの円筒形粒子に成形し
た。これを1100℃で2時間焼成し、亜鉛クロマイ
トZnCr2O4(本発明に係る複合金属酸化物)を得
た。焼成後の粒子の大きさは直径1mm長さ1.5mm
程度になつていた。この粒子15gを実施例1で使
用したものと同じ反応管に充填し、反応管上部よ
り実施例1で使用した硫化水素を含む合成ガスを
500ml/minの流量で4時間流した。反応管および
試料の温度は管状電気炉により800℃に保持し
た。このとき反応管入口および出口で測定した硫
化水素濃度の変化を第3図に示す。
Example 2 Chromium oxide powder and zinc oxide powder
The mixture was mixed at a weight ratio of 100:54, and bentonite was added in an amount equivalent to 1% by weight of this mixture. After thoroughly mixing in a mortar, it was molded into a cylinder with a diameter of 2 mm and a length of 3 mm using an extrusion molding machine. molded into shaped particles. This was fired at 1100° C. for 2 hours to obtain zinc chromite ZnCr 2 O 4 (composite metal oxide according to the present invention). The size of the particles after firing is 1 mm in diameter and 1.5 mm in length.
It had gotten to a point. 15g of these particles were filled into the same reaction tube as used in Example 1, and the synthesis gas containing hydrogen sulfide used in Example 1 was introduced from the top of the reaction tube.
It was run for 4 hours at a flow rate of 500 ml/min. The temperature of the reaction tube and sample was maintained at 800°C using a tubular electric furnace. Figure 3 shows the changes in hydrogen sulfide concentration measured at the inlet and outlet of the reaction tube at this time.

合成ガスを4時間流した後、冷却して試料を取
り出し、次に内径30mmで二段式の反応管の上段に
これをそのまま移した。下段には、硫化銅15gを
充填し、反応管下部から空気を100ml/minの流量
で2時間流した。温度は管状電気炉により1000℃
に保持した。空気を2時間流した後、冷却し反応
管およびトラツプに付着した単体硫黄を二硫化炭
素で洗浄、回収し、乾燥後秤量したところ274mg
あつた。これは亜鉛クロマイトに吸収した硫黄分
重量の約80%に相当する。
After flowing synthesis gas for 4 hours, the sample was taken out after cooling, and then transferred as it was to the upper stage of a two-stage reaction tube with an inner diameter of 30 mm. The lower stage was filled with 15 g of copper sulfide, and air was flowed from the bottom of the reaction tube at a flow rate of 100 ml/min for 2 hours. The temperature is 1000℃ using a tubular electric furnace.
was held at After flowing air for 2 hours, it was cooled, and the elemental sulfur adhering to the reaction tube and trap was washed with carbon disulfide, collected, dried, and weighed to find 274 mg.
It was hot. This corresponds to approximately 80% of the weight of sulfur absorbed by zinc chromite.

実施例 3 しゆう酸マンガン(二水塩)粉末と酸化クロム
()粉末とを118:100の重量比で配合し、乳ば
ち中で十分に混合した後、窒素雰囲気下、1100℃
で2時間焼成しマンガンクロマイトMnCr2O4
(本発明に係る複合金属酸化物)を得た。このマ
ンガンクロマイトを粉砕し微粉末とし、これを皿
型造粒機で16〜32メツシユの球状に造流して、実
験用試料とした。この試料15gを実施例1で使用
したものと同じ反応管に充填し、実施例1で使用
した硫化水素を含む合成ガスを反応管上部から
500ml/minの流量で3時間流した。反応管および
試料の温度は管状電気炉により800℃に保持し
た。このとき反応管入口および出口で測定した硫
化水素濃度の変化を第4図に示す。
Example 3 Manganese oxalate (dihydrate) powder and chromium oxide () powder were blended at a weight ratio of 118:100, thoroughly mixed in a milk mold, and then heated at 1100°C under a nitrogen atmosphere.
Manganese chromite MnCr 2 O 4 was fired for 2 hours at
(Composite metal oxide according to the present invention) was obtained. This manganese chromite was crushed into a fine powder, which was then cast into spheres of 16 to 32 meshes using a dish-type granulator to form experimental samples. Fill 15 g of this sample into the same reaction tube used in Example 1, and feed the synthesis gas containing hydrogen sulfide used in Example 1 from the top of the reaction tube.
It was run for 3 hours at a flow rate of 500ml/min. The temperature of the reaction tube and sample was maintained at 800°C using a tubular electric furnace. Figure 4 shows the changes in hydrogen sulfide concentration measured at the inlet and outlet of the reaction tube at this time.

合成ガスを3時間流した後、温度を1000℃に上
げ実施例1で使用したものと同じ二酸化硫黄ガス
を500ml/minお流量で1.5時間流して、硫化水素
を吸収したマンガンクロマイトの再生を行つた。
二酸化硫黄ガスを1.5時間流した後、冷却し、反
応管およびトラツプに付着した単体硫黄を二硫化
炭素で洗浄、回収し、乾燥後秤量したところ90mg
であつた。これはマンガンクロマイトに吸収した
硫黄分の約40%に相当するものである。
After flowing synthesis gas for 3 hours, the temperature was raised to 1000°C and the same sulfur dioxide gas used in Example 1 was flowed at a flow rate of 500 ml/min for 1.5 hours to regenerate the manganese chromite that had absorbed hydrogen sulfide. Ivy.
After flowing sulfur dioxide gas for 1.5 hours, it was cooled, and the elemental sulfur adhering to the reaction tube and trap was washed with carbon disulfide, recovered, dried, and weighed to yield 90 mg.
It was hot. This corresponds to approximately 40% of the sulfur content absorbed by manganese chromite.

以上の如く本発明によれば複合金属酸化物を利
用することにより硫化水素を効率よく除去でき、
しかも単体硫黄を回収して有効利用を図ることが
できる顕著な効果を奏する。
As described above, according to the present invention, hydrogen sulfide can be efficiently removed by using a composite metal oxide,
Moreover, it has the remarkable effect of recovering and effectively utilizing elemental sulfur.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を行なうシステムの一例を
示すブロツク図、第2図は実施例1の反応管入
口、出口における硫化水素濃度の時間的変化を示
す説明図、第3図は、実施例2の反応管入口、出
口における硫化水素濃度の時間的変化を示す説明
図、第4図は実施例3の反応管入口、出口におけ
る硫化水素濃度の時間的変化を示す図である。 1,2…脱硫塔、3,4…再生塔、5…加熱
炉、6…単体硫黄回収装置。
FIG. 1 is a block diagram showing an example of a system for carrying out the method of the present invention, FIG. 2 is an explanatory diagram showing temporal changes in hydrogen sulfide concentration at the inlet and outlet of the reaction tube of Example 1, and FIG. 3 is an illustration of the example of the present invention. FIG. 4 is an explanatory diagram showing the temporal change in the hydrogen sulfide concentration at the inlet and outlet of the reaction tube in Example 3. FIG. 1, 2... Desulfurization tower, 3, 4... Regeneration tower, 5... Heating furnace, 6... Single sulfur recovery device.

Claims (1)

【特許請求の範囲】 1 硫化水素含有ガスを複合金属酸化物XY2〓O4
(Xは亜鉛又はマンガン、X〓はアルミニウム又
はクロム)と反応させ、生成した複合金属硫化物
XS・Y2〓O3を系外に取出して二酸化硫黄含有ガ
スと1000〜1200℃において反応させ、XY2〓O4
再生するとともにガス状硫黄を生成し、しかる後
生成したガス状硫黄を冷却して固体硫黄として回
収することを特徴とする硫化水素の除去方法。 2 二酸化硫黄ガスは、硫化水素ガスを金属酸化
物と反応させ、生成した硫化物を焙焼して生成す
ることを特徴とする特許請求の範囲第1項記載の
硫化水素の除去方法。
[Claims] 1 Hydrogen sulfide-containing gas is mixed into composite metal oxide XY 2 〓O 4
(X is zinc or manganese, X is aluminum or chromium) and the composite metal sulfide produced
XS・Y 2 〓O 3 is taken out of the system and reacted with sulfur dioxide-containing gas at 1000 to 1200℃ to regenerate XY 2 〓O 4 and generate gaseous sulfur. A method for removing hydrogen sulfide, characterized by cooling and recovering it as solid sulfur. 2. The method for removing hydrogen sulfide according to claim 1, wherein the sulfur dioxide gas is produced by reacting hydrogen sulfide gas with a metal oxide and roasting the generated sulfide.
JP58105437A 1983-06-13 1983-06-13 Removal of hydrogen sulfide Granted JPS59230618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58105437A JPS59230618A (en) 1983-06-13 1983-06-13 Removal of hydrogen sulfide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58105437A JPS59230618A (en) 1983-06-13 1983-06-13 Removal of hydrogen sulfide

Publications (2)

Publication Number Publication Date
JPS59230618A JPS59230618A (en) 1984-12-25
JPS621527B2 true JPS621527B2 (en) 1987-01-14

Family

ID=14407565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58105437A Granted JPS59230618A (en) 1983-06-13 1983-06-13 Removal of hydrogen sulfide

Country Status (1)

Country Link
JP (1) JPS59230618A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5891415A (en) * 1995-05-17 1999-04-06 Azerbaidzhanskaya Gosudarstvennaya Neftianaya Academiya Process for selective oxidation of hydrogen sulfide to elemental sulfur
US5603913A (en) * 1995-05-17 1997-02-18 Azerbaidzhanskaya Gosudarstvennaya Neftianaya Academiya Catalysts and process for selective oxidation of hydrogen sulfide to elemental sulfur
PL1843840T3 (en) 2005-01-06 2019-11-29 Res Triangle Inst Zinc oxide-based sorbents and process for preparing and using same
KR20070019428A (en) * 2005-08-12 2007-02-15 에스케이 주식회사 Desulfurizing agent for removing organic sulfides, method of preparing thereof and method for removing organic sulfur compounds using the same
CN107694321B (en) * 2017-10-27 2020-05-26 常州大学 Normal-temperature loaded manganese hydrogen sulfide fine remover, and preparation method and application thereof
CN108329954B (en) * 2018-04-28 2021-02-02 洛阳师范学院 Multi-valence metal oxide desulfurizer and preparation method thereof

Also Published As

Publication number Publication date
JPS59230618A (en) 1984-12-25

Similar Documents

Publication Publication Date Title
Swisher et al. Review of metals and binary oxides as sorbents for removing sulfur from coal-derived gases
US4884396A (en) Desulfurizing agent and process for treating hydrogen sulfide containing gas, coal gasification system and power generation system based on coal gasification using the desulfurizing agent
US3754074A (en) Removal of nitrogen oxides and other impurities from gaseous mixtures
US3880618A (en) Simultaneously removing sulfur and nitrogen oxides from gases
US3438728A (en) Two-stage regeneration of absorbent for sulfur oxides
US3574543A (en) Carbonaceous process for recovering sulfur values
US3931390A (en) Catalytic process for removing sulfur dioxide from gas streams
Ye et al. Feasibility of flue-gas desulfurization by manganese oxides
US3855386A (en) Catalytic fused salt extraction process for removal of sulfur oxides from flue or other gases
US5271907A (en) High temperature regenerable hydrogen sulfide removal agents
US4091076A (en) Method of removing sulfur emissions from a fluidized-bed combustion process
US5000930A (en) Method and installation for the purification of combustion gas from domestic heatings, combustion engines or similar heatings
JPS621527B2 (en)
CN107321165A (en) A kind of method based on fused salt recycling recovery hydrogen sulfide, cos
US6297189B1 (en) Sulfide catalysts for reducing SO2 to elemental sulfur
EP0377483B1 (en) Method for purifying high-temperature reducing gas
CN103301744B (en) Desulfurization device and method for preparing sulfur particles by removing SO2 from flue gas
WO1994019102A1 (en) Catalyst and method for the reduction of sulfur dioxide to elemental sulfur
Flytzani-Stephanopoulos et al. Novel sorbents for high temperature regenerative H2S removal
AU596705B2 (en) Process for conversion or reduction of sulfer dioxide to elemental sulfur
Lau et al. Rice husk ash sorbent doped with copper for simultaneous removal of SO2 and NO: Optimization study
US4022870A (en) Catalytic process for removing sulfur dioxide from gas streams
JPS621526B2 (en)
JP2633886B2 (en) Desulfurizing agent and method for treating hydrogen sulfide-containing gas using it
CN112642396B (en) Modified activated carbon and composite material as well as preparation method and application thereof