JPS62152597A - Waste water treatment - Google Patents

Waste water treatment

Info

Publication number
JPS62152597A
JPS62152597A JP60297805A JP29780585A JPS62152597A JP S62152597 A JPS62152597 A JP S62152597A JP 60297805 A JP60297805 A JP 60297805A JP 29780585 A JP29780585 A JP 29780585A JP S62152597 A JPS62152597 A JP S62152597A
Authority
JP
Japan
Prior art keywords
treatment
wastewater
liquid
mlss
carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60297805A
Other languages
Japanese (ja)
Other versions
JPH0134677B2 (en
Inventor
Masateru Akasaki
赤崎 正照
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAIGAI KAGAKU SEIHIN KK
Original Assignee
NAIGAI KAGAKU SEIHIN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAIGAI KAGAKU SEIHIN KK filed Critical NAIGAI KAGAKU SEIHIN KK
Priority to JP60297805A priority Critical patent/JPS62152597A/en
Publication of JPS62152597A publication Critical patent/JPS62152597A/en
Publication of JPH0134677B2 publication Critical patent/JPH0134677B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To separate treatment water at a high rate of separation by mixing surplus sludge consisting of Ca and Ng carbonate and activated sludge with waste water containing said component, turning the same into soluble salt and treating a treatment liquid biologically. CONSTITUTION:Surplus sludge consisting of CaCO3 and MLSS and Ca(OH)2 as neutralizing agent are added and mixed with HNO3 waste water. By the reaction, Ca content generates CO2 and is solved into the liquid, and only MLSS is separated and removed as solid content during solid-liquid separation process. The separation liquid is led to the denitration process of biological treatment, and denitrated in the presence of CaCO3, MLSS and hydrogen donor of slightly more than theoretical amount. Then, NO3 and organic substances are cracked biologically to generate CO2 and N2, and Ca content is separated out as CaCO3. The liquid after treatment is exposed to air and released after separating from solid content. By said process, energy saving is achieved.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、例えば硝酸や有機酸を含有する酸廃水、一
般有機物含有廃水等を浄化するのに利用される生物処理
を含む廃水処理方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a wastewater treatment method including biological treatment used to purify acid wastewater containing nitric acid or organic acids, general organic matter-containing wastewater, etc. .

(従来の技術とその問題点) 近年、ステンレスやシリコンのエツチング工程あるいは
排煙脱硝等の各種脱硝装置から高濃度の硝酸含有廃水が
多量に製出されるようになっている。ところが、このよ
うな硝酸含有廃水は、これを単独で浄化する手段として
処理効率や設備および運転コスト等の面で満足できる有
効な処理方法が確立されていないため、中和処理を施し
ただけで池の廃水に混合して一律に処理されているのが
現伏であり、その処理水中の窒素による栄養富化および
塩公害が大きな問題点となっている。
(Prior art and its problems) In recent years, a large amount of highly concentrated nitric acid-containing wastewater has been produced from various denitrification devices such as stainless steel and silicon etching processes and flue gas denitrification. However, since no effective treatment method has been established to independently purify nitric acid-containing wastewater that is satisfactory in terms of processing efficiency, equipment, and operating costs, it is not possible to treat wastewater that contains nitric acid by simply performing neutralization treatment. Currently, it is uniformly treated by mixing it with pond wastewater, and nutrient enrichment due to nitrogen in the treated water and salt pollution have become major problems.

一方、下水等の通常の有機物音を廃水あるいは有機酸含
有廃水では、一般に好気的条件下で活性tη泥による生
物処理を行って801)を除去している。
On the other hand, in the case of ordinary organic wastewater such as sewage or wastewater containing organic acids, 801) is generally removed by biological treatment using activated teta mud under aerobic conditions.

しかしながら、このような好気的生物処理では、@素供
給が律速であるために活性汚泥の高濃度化をめざした高
負萄運転には曝気速度の面より限界があり、また汚泥濃
度が高くなるとバルキング等の膨化現象が発生し易いと
いう問題があった。
However, in this type of aerobic biological treatment, since the rate-limiting element supply is rate-limiting, there is a limit to high-load operation aimed at increasing the concentration of activated sludge due to the aeration rate, and the sludge concentration is high. This poses a problem in that swelling phenomena such as bulking are likely to occur.

C問題点を解決するための手段) この発明は、上記情況に鑑みてなされたもので、生物処
理により、硝酸含有廃水(以下、HNO3廃水と称する
)の良好な脱硝および脱塩が可能で、有機物含有廃水お
よび有機酸含有廃水(以下、有機物廃水、有機酸廃水と
称する)の高汚泥濃度下での高負荷運転ができ、しがも
これら廃水の効率のよい併合処理も行え、かつ設備およ
び処理コストが低い廃水処理方法を提供することを目的
とする。
Means for Solving Problem C) This invention was made in view of the above circumstances, and enables good denitrification and desalination of nitric acid-containing wastewater (hereinafter referred to as HNO3 wastewater) by biological treatment. It is possible to perform high-load operation under high sludge concentration of organic matter-containing wastewater and organic acid-containing wastewater (hereinafter referred to as organic matter wastewater and organic acid wastewater), and it is also possible to perform efficient combined treatment of these wastewaters. The purpose is to provide a wastewater treatment method with low treatment cost.

すなわち、この発明に係る廃水処理方法は、上記目的に
おいて、CaまたはMgの炭酸塩と活性汚泥とからなる
余剰汚泥を酸成分含有廃水と混合してCaまたはMgを
可溶性塩として溶解させる溶解工程と、この溶解後に活
性汚泥を分離除去する固液分離工程と、この分離液を上
記炭酸塩と活性汚泥の存在下で生物学的に処理すると共
に上記可溶性塩より上記炭酸塩を副生させる生物処理工
程と、生物処理後の処理水を上記炭酸塩と活性汚泥から
分離する固液分離工程と、分離された余剰汚泥を上記溶
解工程へ送る返送工程とを有するものである。
That is, the wastewater treatment method according to the present invention, for the above purpose, includes a dissolving step of mixing excess sludge consisting of Ca or Mg carbonate and activated sludge with acid component-containing wastewater to dissolve Ca or Mg as a soluble salt. , a solid-liquid separation step in which the activated sludge is separated and removed after this dissolution, and a biological treatment in which the separated liquid is biologically treated in the presence of the carbonate and activated sludge, and the carbonate is produced as a by-product from the soluble salt. a solid-liquid separation step for separating treated water after biological treatment from the carbonate and activated sludge, and a return step for sending the separated excess sludge to the dissolution step.

(発明の作用) この発明における生物処理はCaまたはMgの炭酸塩と
活性汚泥(以下、MLSSと称する)の存在下で行う。
(Action of the Invention) The biological treatment in this invention is carried out in the presence of Ca or Mg carbonate and activated sludge (hereinafter referred to as MLSS).

すなわち上記炭酸塩はMLSSの生物キャリヤーとして
機能し、該炭酸塩の粒子表面にMLSSの生物相が発達
するため、生物処理工程でMLSSを高1度に維持でき
、その結果として有機物の高負荷運転が可能となり、し
かも沈降性に優れることがら高濃度MLSSであっても
バルキング等の膨化現象を生じず、固液分離工程におい
て処理水を高効率で分離できる。
In other words, the above-mentioned carbonate functions as a biological carrier of MLSS, and since the biota of MLSS develops on the particle surface of the carbonate, MLSS can be maintained at a high level in the biological treatment process, and as a result, high-load operation of organic matter is possible. Furthermore, since it has excellent sedimentation properties, it does not cause swelling phenomena such as bulking even with high concentration MLSS, and the treated water can be separated with high efficiency in the solid-liquid separation process.

また固液分離後の余剰汚泥を酸成分含有廃水に添加混合
することにより、Caまたは?1gが可溶性塩として溶
解して液相側に移行するため、この溶解後の固液分離に
よって増殖骨に相当する余剰MLSSを除去できる。し
かして上記可溶性塩が生物処理工程で自動的に炭酸塩に
転化されるから、CaまたはMg分はその溶解度の面よ
り放流処理水中に溶出して失われる僅かな量を除いて循
環再利用される。
In addition, by adding and mixing excess sludge after solid-liquid separation to acid component-containing wastewater, Ca or ? Since 1 g is dissolved as a soluble salt and transferred to the liquid phase side, surplus MLSS corresponding to proliferated bone can be removed by solid-liquid separation after this dissolution. Since the above-mentioned soluble salts are automatically converted into carbonates in the biological treatment process, the Ca or Mg content can be recycled and reused except for a small amount that is eluted and lost in the effluent treatment water due to its solubility. Ru.

初期の生物処理工程のCaまたはMgの炭酸塩は酸成分
含有廃水の中和剤としてCaまたはMgの水酸化物を使
用することによってこのCaまたはM、分より生物処理
時に自動的に副生させる。しかして生物処理工程におい
て上記炭酸塩とMLSSの比が平衡に達した後では、上
記中和剤の使用量は前記した放流処理水中に逃げるCa
またはMg分に対応する少量の添加量で済む。また、こ
の処理方法では、廃水の酸濃度が高いつまりPHが低い
場合でも、生物処理工程に導入された際に該工程中に多
量に存在する上記炭酸塩によって中和されるから、何ら
処理上に支障がない。
Ca or Mg carbonate in the initial biological treatment process is automatically produced as a by-product during biological treatment from Ca or Mg by using Ca or Mg hydroxide as a neutralizing agent for wastewater containing acid components. . Therefore, after the ratio of carbonate to MLSS reaches equilibrium in the biological treatment process, the amount of neutralizing agent used will be reduced by the amount of Ca escaping into the effluent treated water.
Alternatively, a small amount of addition corresponding to the Mg content is sufficient. In addition, in this treatment method, even if the acid concentration of the wastewater is high, that is, the pH is low, when it is introduced into the biological treatment process, it is neutralized by the carbonates that are present in large quantities in the process, so there is no problem with the treatment. There is no problem.

ここで生物処理工程での上記炭酸塩とMLSSの平衡時
の濃度比は、該炭酸塩と有機物の汚泥転化率によって規
制されるが、例えばcacO3の場合で11NO3廃水
の脱硝−脱塩処理ではMLSS : CaCO3#1:
10(重量比)であることが判明している。こノ濃度比
の場合、MLSSを10,000〜13.OOO+w/
 1 ニて運転する時、全固形分<SS>は110,0
00〜143.000■/lの濃度に達するが、汚泥の
膨化は全く観察されず、SvIが常にグ以下になること
が判明しており、CaCO3が生物キャリヤーとして非
常に有効に機能していることが実証されている。
Here, the concentration ratio of the carbonate and MLSS at equilibrium in the biological treatment process is regulated by the sludge conversion rate of the carbonate and organic matter. : CaCO3#1:
10 (weight ratio). In the case of this concentration ratio, the MLSS is 10,000 to 13. OOO+w/
1 When operating at 2, the total solid content <SS> is 110.0
Although the concentration reached 00 to 143.000 ■/l, no swelling of the sludge was observed, and it was found that the SvI was always below 0.00 - 143.000 ■/l, indicating that CaCO3 functions very effectively as a biological carrier. This has been proven.

この発明で処理対象となる廃水としてはHNO3廃水、
HNO3と共に他の酸成分を含む酸廃水、有機酸廃水、
一般有機物廃水等の種々のものが挙げられるが、酸成分
を含まない有機物廃水の場合は余剰汚泥のCaまたはM
g分を溶解させる酸成分含有廃水と併合処理すればよい
The wastewater to be treated in this invention is HNO3 wastewater,
Acid wastewater containing other acid components along with HNO3, organic acid wastewater,
Various types of wastewater such as general organic wastewater can be mentioned, but in the case of organic wastewater that does not contain acid components, excess sludge containing Ca or M
What is necessary is to combine the wastewater with acid component-containing wastewater that dissolves the acid component.

生物処理としては、廃水の種類に応して脱硝処理、硝化
脱窒処理、好気的生物処理等の既存の処理手段およびそ
の組み合わせを選択すればよいが、特に脱硝処理を含む
処理手段が有用である。すなわち脱硝処理においては好
気的生物処理に比較して有機物分解能力が大きいという
利点があり、加えてこの利点が前記炭酸塩を生物キャリ
ヤーとしたMLSSの高濃度化によってさらに高められ
るため、HNO3を含まない有機酸廃水や一般有機物廃
水の場合にもHNO3廃水と併合して脱硝処理に供する
ことによって高効率のBOD除去が可能である。なお、
この脱硝処理後には残余の水素供与体などの残存有機物
を分解する好気的生物処理を施すことが好適であるが、
この場合の残存有機物が極めて少量であることから曝気
量は僅かでよい。
As biological treatment, existing treatment methods such as denitrification treatment, nitrification-denitrification treatment, aerobic biological treatment, and combinations thereof can be selected depending on the type of wastewater, but treatment means that include denitrification treatment are particularly useful. It is. In other words, denitrification treatment has the advantage of higher organic matter decomposition ability than aerobic biological treatment, and this advantage is further enhanced by increasing the concentration of MLSS using carbonate as a biological carrier. Even in the case of organic acid wastewater or general organic wastewater that does not contain HNO3, highly efficient BOD removal is possible by combining it with HNO3 wastewater and subjecting it to denitration treatment. In addition,
After this denitrification treatment, it is preferable to perform aerobic biological treatment to decompose residual organic matter such as residual hydrogen donors.
Since the residual organic matter in this case is extremely small, the amount of aeration may be small.

(実施例) 以下、この発明の実施例を第1図、第2図で示す工程図
に基づいて説明する。なお、以下においては生物処理工
程の炭酸塩をCaCO3で代表された力側gco3であ
ってもよい。
(Example) Hereinafter, an example of the present invention will be described based on process diagrams shown in FIGS. 1 and 2. In addition, in the following, the carbonate in the biological treatment process may be a force side gco3 represented by CaCO3.

第1図はHNO3廃水の処理工程を示す。まずHNO3
廃水に溶解工程においてCaCO3とMLSSとからな
る余剰汚泥および中和剤としての少量のCa (01(
) 2が添加混合される。この時、CaC0+ +2H
NO3→Ca (NO3) 2 + N20 +CO2
↑Ca (OH) 2  +2HNO3Ca (NO3
) 2  +2H20の反応によってCa分がCO2の
発生を伴って液中に溶解するので、次の固液分離工程に
おいてMLSSのみが固形分として分離除去される。続
いてこの分離液は生物処理の脱硝工程に導かれ、CaC
O3およびMLSSと理論發より若干番目の水素供与体
の存在下で無分子状酸素条件(密閉)のちとに所要時間
攪拌されて脱硝処理される。この場合の反応は、8Ca
 (NO3) 2 + 5 (CH3COO) 2 C
a −一→13CaCO3+ 15H20+ 7CO2
↑ +8N2↑のように示され、NO3−および有機物
が生物学的に分解されてCO2およびN2を発生すると
共に、Ca分がCaCO3として析出する。
Figure 1 shows the treatment process for HNO3 wastewater. First, HNO3
In the wastewater dissolution process, surplus sludge consisting of CaCO3 and MLSS and a small amount of Ca (01(
) 2 is added and mixed. At this time, CaC0+ +2H
NO3→Ca (NO3) 2 + N20 +CO2
↑Ca (OH) 2 +2HNO3Ca (NO3
) 2 +2H20 reaction, Ca content is dissolved in the liquid with the generation of CO2, so in the next solid-liquid separation step, only MLSS is separated and removed as a solid content. This separated liquid is then led to the denitrification step of biological treatment to remove CaC.
In the presence of O3, MLSS, and a hydrogen donor a little higher than the theory, the mixture is denitrified by stirring for a required period of time under non-molecular oxygen conditions (closed). The reaction in this case is 8Ca
(NO3) 2 + 5 (CH3COO) 2 C
a -1→13CaCO3+ 15H20+ 7CO2
It is shown as ↑ +8N2↑, and NO3- and organic matter are biologically decomposed to generate CO2 and N2, and Ca content is precipitated as CaCO3.

この水素供与体としては、CH3CO0HのほかCH3
0H等も使用されるが、他の廃水のBOD物質を利用し
てもよい。すなわち、有機酸廃水や一般有機物廃水を脱
硝工程に導入することにより、その有機物が水素供与体
として作用しかつ分解されるから、HNO3廃水とこれ
ら廃水の併合処理が可能となる。
As this hydrogen donor, in addition to CH3CO0H, CH3
Although 0H etc. are used, other wastewater BOD substances may also be used. That is, by introducing organic acid wastewater or general organic wastewater into the denitration process, the organic substances act as hydrogen donors and are decomposed, making it possible to combine HNO3 wastewater and these wastewaters.

上記脱硝処理後の液は好気的生物処理工程に導かれ、曝
気されることにより残余の水素供与体が生物学的に分解
される。この生物処理後の液は固液分離工程でCaCO
3およびMLSSからなる固形分と処理水とに分離され
、増殖に対応する余剰汚泥は溶解工程へ返送され、処理
水はほぼ完全に脱硝。
The liquid after the above-mentioned denitrification treatment is led to an aerobic biological treatment step, and the residual hydrogen donor is biologically decomposed by aeration. The liquid after this biological treatment is converted into CaCO in a solid-liquid separation process.
The solid content consisting of 3 and MLSS is separated from the treated water, and the excess sludge corresponding to growth is returned to the dissolution process, and the treated water is almost completely denitrified.

脱塩されてBODもOに近いため放流可能である。Since it has been desalinated and the BOD is close to O, it can be discharged.

第2図は有機酸廃水の処理工程を示す。まず、廃水には
溶解工程においてHNO3廃水と同様に余剰汚泥と少量
のCa (OH) 2が添加混合され、Ca分がco2
の発生を伴って有機酸Ca塩として溶解する。
Figure 2 shows the treatment process for organic acid wastewater. First, surplus sludge and a small amount of Ca (OH) 2 are added and mixed to the wastewater in the dissolution process, similar to HNO3 wastewater, and the Ca content is changed to CO2.
It is dissolved as an organic acid Ca salt with the generation of .

しかして次の固液分離工程におてMLSSのみが分離除
去され、分離液は生物処理の脱硝工程に導かれる。この
脱硝工程にはHNO3廃水が導入されているため、Ca
CO3およびMLSSの存在下で無分子状酸素条件のも
とに所要時間保持することにより、有機酸根およびNO
3−が分解されてCO2およびN2を発生すると共に、
Ca分がCaCO3として析出する。
In the next solid-liquid separation step, only the MLSS is separated and removed, and the separated liquid is led to the denitrification step of biological treatment. Since HNO3 wastewater is introduced into this denitrification process, Ca
Organic acid radicals and NO
3- is decomposed to generate CO2 and N2, and
Ca content precipitates as CaCO3.

次に好気的処理工程において残余の有機酸Ca塩が生物
学的に分解されてそのCa分がCaCO3として析出す
る。生物処理後の液は固液分離によって放流処理水と固
形分に分離され、余剰汚泥は溶解工程に返送される。
Next, in an aerobic treatment step, the remaining organic acid Ca salt is biologically decomposed and the Ca content is precipitated as CaCO3. The liquid after biological treatment is separated into effluent treated water and solids by solid-liquid separation, and excess sludge is returned to the dissolution process.

なお、この有機酸廃水の処理にあっては、生物処理とし
て上述した脱硝処理を施す代わりに、第2図の一点鎖線
内で示すように好気的生物処理を施してもよい、この好
気的処理においても有機酸Ca塩が分解されてCa分が
CaCO3として析出し、後の固液分離にて得られた余
剰汚泥が溶解工程へ返送される。ただし、有機酸濃度が
高い場合は前記脱硝処理を含む生物処理が望ましい。
In addition, in the treatment of this organic acid wastewater, instead of performing the above-mentioned denitrification treatment as biological treatment, aerobic biological treatment may be performed as shown within the dashed-dotted line in Figure 2. Even in the conventional treatment, the organic acid Ca salt is decomposed and the Ca content is precipitated as CaCO3, and the excess sludge obtained in the subsequent solid-liquid separation is returned to the dissolution step. However, if the organic acid concentration is high, biological treatment including the above-mentioned denitrification treatment is preferable.

(処理試験例) 試験例l HNO3廃水の処理効果を次の条件で調べた。(Processing test example) Test example l The treatment effect of HNO3 wastewater was investigated under the following conditions.

く生物処理槽〉 30 X 30 X 30cm+の透明塩ビ製容器に天
蓋、攪拌機、散気管を付設したもので、有効容積は17
e0く原 水) 硝酸カルシウム(Ca (NO3) 2  ・4H20
Biological treatment tank> A transparent PVC container measuring 30 x 30 x 30 cm with a canopy, a stirrer, and an aeration pipe, and the effective volume is 17 cm.
e0kuhara water) Calcium nitrate (Ca (NO3) 2 ・4H20
.

特級品〕を純水に溶解してCa (NOs ) 2とし
て132.250s/ 1の濃度とし、その340m 
j!を分取して水素供与体としてのCH3C0OHをN
O3−との重量比がl:1となる量で添加し、更に栄養
剤を加え、最後に純水を加えて全量を34001a 1
とした。
Special grade product] was dissolved in pure water to give a concentration of 132.250 s/1 as Ca (NOs) 2, and 340 m
j! is separated and CH3C0OH as a hydrogen donor is converted into N
Add in an amount such that the weight ratio with O3- is 1:1, then add nutrients, and finally add pure water to make the total amount 34001a 1
And so.

く活性汚泥〉 下水処理場から入手したMLSSを用い、長期間にわた
って馴養テストを行い、l’1LssとCaCO3の濃
度が平衡(測定結果では肚SS : CaC0+の重量
比=l:10)に達したもの。
Activated sludge〉 Using MLSS obtained from a sewage treatment plant, an acclimatization test was conducted over a long period of time, and the concentration of l'1Lss and CaCO3 reached equilibrium (in the measurement results, the weight ratio of SS: CaC0+ = l:10). thing.

〈処理操作) 活性汚泥(MLSS+CaCO3)が沈降した生物処理
槽の上澄み成約4000m lを抜き取り、原水340
0w Ilを導入し、上記の抜き取った上澄み液を加え
ることによって全量をillとした。なお、MLSS濃
度は10,000+w/ j!である。続いて密閉下で
攪拌機を回転して脱硝処理を行った後、曝気して好気的
条件として未分解のを搬物を処理し、次いで静置して固
液分離を行った。以降、上記工程を処理サイクル24時
間/日にて繰り返した。
<Treatment operation) Approximately 4000ml of the supernatant of the biological treatment tank in which the activated sludge (MLSS + CaCO3) has settled was extracted, and 340ml of raw water was extracted.
0w Il was introduced, and the total amount was made up to ill by adding the supernatant liquid extracted above. In addition, the MLSS concentration is 10,000+w/j! It is. Subsequently, a stirrer was rotated under closed conditions to perform denitrification treatment, followed by aeration to treat undecomposed material under aerobic conditions, and then left to stand to perform solid-liquid separation. Thereafter, the above steps were repeated at a treatment cycle of 24 hours/day.

なお、上記脱硝処理の終了時点は酸化還元電位の変化か
ら検知したが、その結果から脱硝に要する時間はダル6
時間であることが判明した。
The end point of the denitrification process was detected from the change in the oxidation-reduction potential, and the time required for denitrification was estimated to be 6.
It turned out that it was time.

またSVIは常にダ以下であった。Also, the SVI was always below Da.

上記処理の結果を表1に示す。また各処理サイクルでの
NO3−濃度、NO2−濃度、BOD、、Con 。
The results of the above treatment are shown in Table 1. Also, NO3-concentration, NO2-concentration, BOD, , Con in each treatment cycle.

酸化還元電位(ORP )の経時変化の平均値を第3図
に示す。なお第3図中のtは曝気開示時点である。また
処理水のBODはほぼ0であった。
The average value of the change in the oxidation-reduction potential (ORP) over time is shown in FIG. Note that t in FIG. 3 is the time point at which aeration starts. Moreover, the BOD of the treated water was almost 0.

表  1 〈※)電気伝導度は原水では無限希釈時の数値、処理水
では実測値である。また処理水のN03−とCaCO3
から計算される電気伝導度は255μ37Gであるが、
この理論値との差295μ/口は栄養剤に起因している
Table 1 (*) Electrical conductivity is the value at infinite dilution for raw water, and the actual value for treated water. In addition, N03- and CaCO3 of the treated water
The electrical conductivity calculated from is 255μ37G,
The difference from this theoretical value of 295 μ/mouth is due to the nutritional supplement.

この試験結果から、この発明方法の適用によって1(N
O3廃水の脱硝・脱塩が高度に行われることが判る。ま
た脱硝処理によるCH3C001分解能力が極めて大き
いため、CH3CO0Hに代えて一般有機物廃水や有機
酸廃水を導入して高度の併合処理が可能となることが明
らかである。
From this test result, it was found that by applying the method of this invention, 1(N
It can be seen that the O3 wastewater is highly denitrified and desalted. Furthermore, since the ability to decompose CH3C001 by denitrification treatment is extremely large, it is clear that a high degree of combined treatment becomes possible by introducing general organic wastewater or organic acid wastewater in place of CH3CO0H.

試験例2 シリコンエツチング工程より排出される酸廃水(IF、
  HNO3、CH3CO0Hを含む)は、現状では消
石灰で中和してF−イオンを難溶性のCaF2として固
液分離にて除去した上で、分離液(Ca(NO3) 2
 、  (CH3COO) 2 Caを含む〕を他の廃
水に混合して処理されている。
Test Example 2 Acid wastewater (IF,
At present, HNO3, CH3CO0H) is neutralized with slaked lime, F- ions are removed as poorly soluble CaF2 by solid-liquid separation, and separated liquid (Ca(NO3) 2
, (CH3COO) 2 Ca] is mixed with other wastewater for treatment.

ここでは、上記混合廃水を処理対象として、前記試験例
1と同様にして2ケ月間の連続処理実験を行った。その
結果を表2に示す。
Here, a two-month continuous treatment experiment was conducted in the same manner as in Test Example 1, using the mixed wastewater as the treatment target. The results are shown in Table 2.

表2 また、上記酸廃水を直接処理する場合の適用性を濶べる
ために、上記酸廃水(l(P濃度2000Qr/lに試
験例1で用いたものと同じ活性汚泥(MLSS + C
aC03)を加えてPH6とし、この処理上澄み液中の
F−イオンを測定したところ、5.7■F/1であった
。この結果、上記酸廃水を直接にこの発明方法にて処理
するのに支障がないことが実証された。
Table 2 In addition, in order to increase the applicability in the case of directly treating the acid wastewater, the same activated sludge (MLSS + C
aC03) was added to adjust the pH to 6, and the F- ion in the treated supernatant was measured and found to be 5.7 F/1. As a result, it was demonstrated that there is no problem in directly treating the acid waste water using the method of the present invention.

(発明の効果) この発明に係る廃水処理方法によれば、生物処理工程に
おける活性汚泥が副生ずるCaまたはMgの炭酸塩を生
物キャリヤーとして高濃度に保持されるため、有機物の
高負荷運転が可能であり、HNO3廃水、有機酸廃水、
一般有搬物廃水等の各種廃水を効率よく浄化でき、これ
ら廃水の併合処理も可能であり1、かつ従来方法に比較
して上記高負荷運転により設備の縮小ならびに電気/!
!i費量の大幅な低減を図ることができ、しかも副生ず
る上記炭酸塩が再利用されてCaまたはMg分の処理水
への溶出が極めて少ないことから、中和剤の使用量を非
常に少なくでき、優れた脱硝および脱塩効果が達成され
る。
(Effects of the Invention) According to the wastewater treatment method of the present invention, activated sludge in the biological treatment process maintains a high concentration of Ca or Mg carbonate as a by-product as a biological carrier, so operation with a high load of organic matter is possible. , HNO3 wastewater, organic acid wastewater,
It is possible to efficiently purify various kinds of wastewater, such as general wastewater, and it is also possible to process these wastewaters in combination1.In addition, compared to conventional methods, the above-mentioned high-load operation reduces equipment and electricity/!
! The amount of neutralizing agent used can be greatly reduced, and the amount of neutralizing agent used can be significantly reduced because the above-mentioned by-product carbonate is reused and elution of Ca or Mg into the treated water is extremely small. Excellent denitrification and desalination effects are achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はこの発明に係る廃水処理方法の実
施例を示す工程図、第3図は処理試験例1における各種
処理指標の経時変化を示す特性図である。 出願人  内外化学製品株式会社 第1図
FIGS. 1 and 2 are process diagrams showing an example of the wastewater treatment method according to the present invention, and FIG. 3 is a characteristic diagram showing changes over time in various treatment indicators in treatment test example 1. Applicant Naigai Chemical Products Co., Ltd. Figure 1

Claims (1)

【特許請求の範囲】 1、CaまたはMgの炭酸塩と活性汚泥とからなる余剰
汚泥を酸成分含有廃水と混合してCaまたはMgを可溶
性塩として溶解させる溶解工程と、この溶解後に活性汚
泥を分離除去する固液分離工程と、この分離液を上記炭
酸塩と活性汚泥の存在下で生物学的に処理すると共に上
記可溶性塩より上記炭酸塩を副生させる生物処理工程と
、生物処理後の処理水を上記炭酸塩と活性汚泥から分離
する固液分離工程と、分離された余剰汚泥を上記溶解工
程へ送る返送工程とを有してなる廃水処理方法。 2、酸成分含有廃水が硝酸含有廃水からなり、生物処理
工程が生物学的脱硝処理を含む特許請求の範囲第1項記
載の廃水処理方法。
[Claims] 1. A dissolution step of mixing excess sludge consisting of Ca or Mg carbonate and activated sludge with acid component-containing wastewater to dissolve Ca or Mg as a soluble salt; and after this dissolution, activated sludge is dissolved. a solid-liquid separation step for separating and removing; a biological treatment step for biologically treating the separated liquid in the presence of the carbonate and activated sludge; and a biological treatment step for producing the carbonate as a by-product from the soluble salt; A wastewater treatment method comprising: a solid-liquid separation step for separating treated water from the carbonate and activated sludge; and a return step for sending the separated excess sludge to the dissolution step. 2. The wastewater treatment method according to claim 1, wherein the acid component-containing wastewater is nitric acid-containing wastewater, and the biological treatment step includes biological denitrification treatment.
JP60297805A 1985-12-25 1985-12-25 Waste water treatment Granted JPS62152597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60297805A JPS62152597A (en) 1985-12-25 1985-12-25 Waste water treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60297805A JPS62152597A (en) 1985-12-25 1985-12-25 Waste water treatment

Publications (2)

Publication Number Publication Date
JPS62152597A true JPS62152597A (en) 1987-07-07
JPH0134677B2 JPH0134677B2 (en) 1989-07-20

Family

ID=17851394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60297805A Granted JPS62152597A (en) 1985-12-25 1985-12-25 Waste water treatment

Country Status (1)

Country Link
JP (1) JPS62152597A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2087833A1 (en) * 1995-01-13 1996-07-16 Hernandez Ernesto Garcia Biological chemical activator for the purification of wastewater
WO1997008105A1 (en) * 1995-08-29 1997-03-06 Degremont Method for removing nitrogen compounds and for remineralizing weakly mineralized water

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6054784A (en) * 1983-09-05 1985-03-29 Kurita Water Ind Ltd Treatment of organic waste water containing fluorine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6054784A (en) * 1983-09-05 1985-03-29 Kurita Water Ind Ltd Treatment of organic waste water containing fluorine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2087833A1 (en) * 1995-01-13 1996-07-16 Hernandez Ernesto Garcia Biological chemical activator for the purification of wastewater
WO1997008105A1 (en) * 1995-08-29 1997-03-06 Degremont Method for removing nitrogen compounds and for remineralizing weakly mineralized water
FR2738234A1 (en) * 1995-08-29 1997-03-07 Degremont PROCESS FOR REMOVAL OF NITROGEN COMPOUNDS AND REMINERALIZATION OF LOWLY MINERALIZED WATER
AU698344B2 (en) * 1995-08-29 1998-10-29 Degremont Method for removing nitrogen compounds and for remineralizing weakly mineralized water

Also Published As

Publication number Publication date
JPH0134677B2 (en) 1989-07-20

Similar Documents

Publication Publication Date Title
Cheung et al. Ammonia stripping as a pretreatment for landfill leachate
US7135116B2 (en) Process for recovery of nutrients from wastewater
BRPI0515105B1 (en) process for the simultaneous removal of bod and phosphate from a liquid containing ammonium, bod, phosphate and magnesium, and apparatus for the simultaneous removal of bod and phosphate from a liquid
KR850005378A (en) Active sludge
JP2002166293A (en) Method to remove nitrogen and phosphor simultaneously from waste water
CN103588361B (en) A kind of chemical/biological reaction synergy removes the method for total phosphorus in waste water
JPS6384696A (en) Dephosphorization device
JPS60206494A (en) Simultaneous removal of nitrogen and phosphorus in waste water by sulfur replenishing aerobic-anaerobic activated sludge method
JP2007196172A (en) Liquid extract of humic substance, solidifying agent, concentrating agent and method for treating organic waste water by using them
JPH0788500A (en) Method for treating sewage countercurrent water
JPS62152597A (en) Waste water treatment
JP3919651B2 (en) Method for removing anions by formation of chemical precipitates under electric field and method for continuous anion removal
CN212269808U (en) Reverse osmosis strong brine processing system
JPS62152593A (en) Treatment of organic waste water
KR100453484B1 (en) Method of wasetwater treatment
JP2003071487A (en) Method and apparatus for treating organic wastewater
JP2000140893A (en) Treatment of sludge and equipment therefor
JP2004174386A (en) Treatment method for phosphoric acid-containing wastewater
JP2003311279A (en) Apparatus and method for treating waste water
JP5873744B2 (en) Organic wastewater and organic waste treatment method and treatment equipment
JPS54108458A (en) Method of decoloring and purifying night-soil
JP2007319835A (en) Wastewater treatment method
JPH1015591A (en) High-degree treatment of waste water
JPS6232994B2 (en)
KR100513428B1 (en) Treatment system and Method for Purifying Wastewater using Media Separator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees