JPS62152545A - Removal of vanadium adhered to catalyst - Google Patents

Removal of vanadium adhered to catalyst

Info

Publication number
JPS62152545A
JPS62152545A JP29188285A JP29188285A JPS62152545A JP S62152545 A JPS62152545 A JP S62152545A JP 29188285 A JP29188285 A JP 29188285A JP 29188285 A JP29188285 A JP 29188285A JP S62152545 A JPS62152545 A JP S62152545A
Authority
JP
Japan
Prior art keywords
catalyst
vanadium
solid absorbent
contact
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29188285A
Other languages
Japanese (ja)
Other versions
JPH0124541B2 (en
Inventor
Ryuichi Tsurumi
鶴見 隆一
Akira Sugimoto
明 杉本
Masamitsu Ogata
政光 緒方
Tatsuo Masuda
増田 立男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Corp
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp, Catalysts and Chemicals Industries Co Ltd filed Critical JGC Corp
Priority to JP29188285A priority Critical patent/JPS62152545A/en
Publication of JPS62152545A publication Critical patent/JPS62152545A/en
Publication of JPH0124541B2 publication Critical patent/JPH0124541B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently remove adhered vanadium, by contacting a catalyst to which vanadium was adhered by the catalytic cracking of a hydrocarbon stock material with a solid adsorbent at 650-850 deg.C in an atmosphere where vanadium is held to an oxide state. CONSTITUTION:A solid adsorbent is prepared by compounding two or more of compounds having compatibility with a vanadium compound held to an oxide state, for example, selected from aluminum oxide, magnesium oxide and calcium oxide. A catalyst to which vanadium was adhered by the catalytic cracking of a vanadium-containing hydrocarbon stock material is contacted with the aforementioned solid adsorbent at 650-850 deg.C in an atmosphere where vanadium is held to the oxide state to remove vanadium. A means of a fluidized bed for together fluidizing the catalyst and the solid adsorbent can be adapted to the contact of the catalyst with the solid adsorbent.

Description

【発明の詳細な説明】 本発明はバナジウムを含有する炭化水素原料を接触分解
することにより触媒に付着した重金属、特にバナジウム
を触媒から除去する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for removing heavy metals, particularly vanadium, adhering to a catalyst from a catalyst by catalytically cracking a vanadium-containing hydrocarbon raw material.

従来の技術 )焚化水素原料、特に毛質原料の接触分解において、原
料中に存在するニッケル、バナジウム、鉄などの重金属
が触媒」−に徐々に付着し、触媒活性および選択性を低
下させ、更に触媒のノミ命にも悪影響をもたらすという
ことが知られており、特に重金属の中でもバナジウムが
触媒の劣化に大きく影響を及ぼすとされている。
Prior art) In the catalytic cracking of hydrogen combustion raw materials, especially hairy raw materials, heavy metals such as nickel, vanadium, and iron present in the raw materials gradually adhere to the catalyst, reducing catalyst activity and selectivity, and further It is known that it has an adverse effect on the life of the catalyst, and among heavy metals, vanadium is said to have a particularly large effect on the deterioration of the catalyst.

このため流動接触分解法では一部のト衡触媒を系外に抜
き出して新触媒を追加することにより、触媒中の正金属
の濃度が一定値以上にならないような運転方法が採用さ
れている。
For this reason, in the fluid catalytic cracking method, an operating method is adopted in which a part of the balanced catalyst is extracted from the system and new catalyst is added to prevent the concentration of positive metal in the catalyst from exceeding a certain value.

近年、重金属を多く含む重質油をも接触分解の原料とし
て用いる傾向にあり、これに伴い触媒への重金属付着速
度が増し、触媒の消費弔が増大する。
In recent years, there has been a trend to use heavy oil containing a large amount of heavy metals as a raw material for catalytic cracking, and as a result, the rate of heavy metal deposition on the catalyst increases and the consumption of the catalyst increases.

付着した金属による触媒劣化を低減する方法として、付
着金属を不活性化(不動態化)する方法も提案されてい
るが、不動態化剤が触媒再生時に飛散したり、また付着
金属の種類によっては、特にバナジウムに関しては、適
当な不動態化法がない。
A method of inactivating (passivating) the deposited metal has been proposed as a method to reduce catalyst deterioration due to deposited metal, but the passivating agent may scatter during catalyst regeneration, or depending on the type of deposited metal. There is no suitable passivation method, especially for vanadium.

一力触媒上の/ヘナジウムを除去する方法としては。As a method for removing /henadium on a single-strength catalyst.

■触媒を空気酸化した後、アンモニア水で処理しN H
a V Oaとして除去する方法(Edison R,
R,。
■After the catalyst is oxidized in the air, it is treated with aqueous ammonia and NH
a Method for removing as V Oa (Edison R,
R.

et al  ; Hydrocarbon Proc
essing、 55.(5)、 133(197B)
 )、 q)触媒を還元処理した後、四塩化炭素で化学処理して
、VCl* 、VOCl3として除去する方法(特開昭
58−202049号)などがあるが1、プロセスが複
雑で、その上触媒に薬品が残留する場合には、触媒の再
生段階でガスとして排出される恐れもあり問題がある。
et al; Hydrocarbon Proc
essing, 55. (5), 133 (197B)
), q) There is a method of reducing the catalyst and then chemically treating it with carbon tetrachloride to remove it as VCl* and VOCl3 (Japanese Patent Application Laid-Open No. 58-202049), but 1, the process is complicated, and If chemicals remain on the catalyst, there is a risk that they will be emitted as gas during the catalyst regeneration stage, which poses a problem.

発明が解決しようとする問題点 本発明は、接触分解において触媒上に付着した触媒類と
なるバナジウムを触媒から取り除くことによって、触媒
活性の低下を極力避け、新触媒の補給驕を減少しようと
するものである。
Problems to be Solved by the Invention The present invention attempts to avoid a decrease in catalytic activity as much as possible and reduce the need to replenish new catalyst by removing vanadium, which forms a catalyst adhering to the catalyst, from the catalyst during catalytic cracking. It is something.

発明の構成 問題点を解決するための手段 本発明に係る触媒に付着したバナウムの除去法は、バナ
ジウムを含有する炭化水素原料を接触分解することによ
りバナジウムが付着した触媒を、バナジウムが酸化状態
に保持される雰囲気rで、650℃〜850℃の温度で
固体吸収剤に接触させてバナジウムを固体吸収剤に吸収
させることからなる。
Means for Solving the Constituent Problems of the Invention The method for removing vanium attached to a catalyst according to the present invention is to catalytically crack a vanadium-containing hydrocarbon raw material to convert the vanadium-attached catalyst into an oxidized state. It consists of adsorbing the vanadium onto the solid absorbent by contacting it with the solid absorbent at a temperature of 650 DEG C. to 850 DEG C. in a maintained atmosphere r.

なおここでバナジウムというのは、バナジウム元十のほ
か、酸化物その他の化合物の形態のものを総称したもの
である。
Note that vanadium here is a general term for vanadium elements as well as oxides and other compound forms.

これを詳細に説明すると1本発明が適用される対象とし
ては、バナジウムを含有する炭化水素原料を接触分解す
ることによりバナジウムが付着した触媒であり、特に流
動接触分解(FCC)触媒への適用が好ましい。
To explain this in detail, 1. The present invention is applied to a catalyst to which vanadium is attached by catalytically cracking a vanadium-containing hydrocarbon raw material, and it is particularly applicable to a fluid catalytic cracking (FCC) catalyst. preferable.

触媒へのバナジウムの付着度合としは8000PPM程
度の高いt:であっても充分処理できるが、触媒活性の
維持の面からは出来るだけ付着!、1の少ないうちに本
発明を実施することが好ましい。
The degree of adhesion of vanadium to the catalyst can be sufficiently treated even if it is as high as 8,000 PPM, but from the viewpoint of maintaining catalyst activity, adhesion should be as much as possible! , 1. It is preferable to implement the present invention while there are fewer than 1.

固体吸収剤としては、醇化状態にあるバナジウム化合物
との親和性のある化合物5例えば酸化ア/L/ ミニラ
ム、酸化マグネシウム、酸化カルシウムのうちの一種あ
るいは二種以りを含むものが適する。二種以上を含むも
のとしては、例えば焼成ドロマイト(CaO−MgO)
などがよい。また固体吸収剤の形状は特に制限はないが
、流動層、移動層の場合には粒状のものが操作性の点か
ら適している。固定層の場合は充填密度の小さくなる形
状が好ましい。
As the solid absorbent, one containing one or more of compounds 5 which have an affinity with the vanadium compound in the liquefied state, such as a/L/minilum oxide, magnesium oxide, and calcium oxide, is suitable. Examples of materials containing two or more types include calcined dolomite (CaO-MgO)
etc. is good. The shape of the solid absorbent is not particularly limited, but in the case of a fluidized bed or a moving bed, a granular one is suitable from the viewpoint of operability. In the case of a fixed layer, a shape that reduces the packing density is preferred.

バナジウムが付着した触媒を固体吸収剤に接触ぎせる手
段としては、固体吸収剤と触媒のうち少なくともそのど
ちらか一方が常時移動して固体吸収剤と触媒との間での
衝突が起るような手段であれば良い、そのL段としては
、触媒と固体吸収剤とを共に流動化させる流動層、触媒
と固体吸収剤とをロータリーキルン等で接触、攪拌及び
移動させる移動層、あるいは固定層等の種々の方法が適
用できる。
A method for bringing the vanadium-attached catalyst into contact with the solid absorbent is to use a method in which at least one of the solid absorbent and the catalyst constantly moves, causing a collision between the solid absorbent and the catalyst. The L stage may be a fluidized bed in which both the catalyst and solid absorbent are fluidized, a moving bed in which the catalyst and solid absorbent are brought into contact with each other in a rotary kiln, stirred, and moved, or a fixed bed. Various methods can be applied.

流動層を採用する場合には、Ift動接触分解(FCC
)装置の再生塔を/へナジウムの吸収除去処理に兼用さ
せてもよい。また再生塔とは別に処理装置を設け、再生
塔からバナジウムの付着した触媒の一部を処理装置に連
続的に導入し、該処理装置で固体吸収剤と接触させてバ
ナジウムを固体吸収剤に吸収させ、バナジウムの除去さ
れた触媒を再生塔に連続的に戻すようにしてもよい。
If a fluidized bed is used, Ift dynamic catalytic cracking (FCC
) The regeneration tower of the apparatus may also be used for the absorption and removal treatment of henadium. In addition, a treatment device is installed separately from the regeneration tower, and a part of the catalyst with vanadium attached is continuously introduced from the regeneration tower into the treatment device, and the treatment device contacts the solid absorbent to absorb vanadium into the solid absorbent. The catalyst from which vanadium has been removed may be continuously returned to the regeneration tower.

固体吸収剤の粒径としては、小さい程幾何表面積が大と
なるのでバナジウムの除去効率がよい。
The smaller the particle size of the solid absorbent, the larger the geometric surface area, which improves vanadium removal efficiency.

例えばFCC触媒の処理において、流動層で接触を行う
場合の固体吸収剤の粒径は20〜200体、ロータリー
キルンで接触を行う場合の固体吸収剤の粒径は150I
L〜5mmとするのが好ましい。固体吸収剤を固定層と
し、この固定層に触媒を通過させるようにした場合にお
ける固体吸収剤の粒径はFCC触媒の粒径より大きい方
がよく。
For example, in the treatment of FCC catalyst, the particle size of the solid absorbent is 20 to 200 particles when contact is carried out in a fluidized bed, and the particle size of solid absorbent is 150 particles when contact is carried out in a rotary kiln.
It is preferable to set it as L~5mm. When a solid absorbent is used as a fixed bed and the catalyst is passed through the fixed bed, the particle size of the solid absorbent is preferably larger than the particle size of the FCC catalyst.

触媒にもよるが、通常1mm以上のものが用いられる。Although it depends on the catalyst, a diameter of 1 mm or more is usually used.

次に吸収反応条件としてはバナジウムが酸化状態に保持
される雰囲気下で行う。
Next, the absorption reaction is carried out under an atmosphere in which vanadium is maintained in an oxidized state.

例えば触媒と固体吸収剤との接触を酸素含有ガスの存在
下で高温で行うようにする。
For example, the contact between the catalyst and the solid absorbent is carried out at an elevated temperature in the presence of an oxygen-containing gas.

あるいは固体吸収剤と接触させる前に触媒を予め酸素含
有ガスの存在下で高温で処理してバナジウムを酸化状態
にしておき、その酸化状態が維持される非還元性雰囲気
下で高温で固体吸収剤と接触させてもよい。
Alternatively, the catalyst may be previously treated at high temperature in the presence of an oxygen-containing gas to bring the vanadium into an oxidized state before being brought into contact with the solid sorbent, and then the solid sorbent may be heated to an oxidized state in a non-reducing atmosphere where the oxidation state is maintained. It may be brought into contact with.

高温でしかも酸化状態に保持される雰囲気では一度堆積
したバナジウムが粒子間で移動し易くなるのでバナジウ
ムの固体吸収剤への移動が効果的に行われる。V20S
の融点は670℃で、これ以トの温度では液状となって
移動が容易となりバナジウムとの親和性の高い固体吸収
剤の方へ移動することが考えられる。一方還元雰囲気で
はv203又はv02 (融点が約1900℃)となっ
てバナジウムが移動しにくくなるので適切でない。
In an atmosphere maintained at a high temperature and in an oxidizing state, once deposited vanadium moves easily between particles, so vanadium is effectively transferred to the solid absorbent. V20S
The melting point of vanadium is 670°C, and at temperatures higher than this, it becomes liquid and can be easily moved, and it is thought that it will move towards a solid absorbent that has a high affinity for vanadium. On the other hand, a reducing atmosphere is not suitable because it becomes v203 or v02 (melting point is about 1900° C.), making it difficult for vanadium to move.

反応温度は高温であるほどバナジウムの除去率は高くな
るが、高過ぎると触媒の劣化を促進することになるので
、温度範囲としては650〜850℃が適当である。水
蒸気の存在下では650〜750℃程度が好ましい。
The higher the reaction temperature is, the higher the vanadium removal rate will be, but if it is too high, it will accelerate the deterioration of the catalyst, so a temperature range of 650 to 850°C is appropriate. In the presence of water vapor, the temperature is preferably about 650 to 750°C.

接触後の触媒と固体吸収剤との分離は、比重差を利用す
る方法や、サイクロンやフィルターを利用する方法など
、触媒や固体吸収剤の比重や形状に応じて適宜方法を選
択して用いればよい。
The catalyst and solid absorbent can be separated after contact by selecting an appropriate method depending on the specific gravity and shape of the catalyst and solid absorbent, such as using a difference in specific gravity or using a cyclone or filter. good.

見亙匝」 バナジウム8000ppmを付着したFCC触媒(比重
<2 、6)と粒径40〜150ルのアルミナ(比重>
3.0)とを1:l(重賃比)の比率で処理容器に入れ
、750℃で16時間空気を吹き込んで流動化し接触処
理した。処理後FCC触媒と固体吸収剤(アルミナ)を
比重分離した。
FCC catalyst with 8000 ppm of vanadium (specific gravity <2,6) and alumina with a particle size of 40 to 150 l (specific gravity >
3.0) at a ratio of 1:1 (weight ratio) into a processing container, air was blown in at 750° C. for 16 hours to fluidize and contact treatment was carried out. After treatment, the FCC catalyst and solid absorbent (alumina) were separated by specific gravity.

脱バナジウム処理後のFCC触媒の金属分析及び活性試
験(脱硫した常圧残油を接触分解したときの210℃以
下の留分収率の測定)を行った。
A metal analysis and an activity test (measurement of the yield of the fraction below 210° C. when desulfurized atmospheric residual oil is catalytically cracked) of the FCC catalyst after vanadium removal treatment were conducted.

バナジウム除去率及び活性試験結果を、バナジウムを付
着していないFCC触媒(基準例)及びバナジウム80
00ppmを付着し脱バナジウム処理していないFCC
触媒(比較例)の活性試験結果と共に第1表に示す。
The vanadium removal rate and activity test results were compared to the FCC catalyst without vanadium (standard example) and vanadium 80.
FCC with 00ppm attached and not subjected to vanadium removal treatment
The results are shown in Table 1 along with the activity test results of the catalyst (comparative example).

実施例2 実施例1で用いたバナジウム付着FCC触媒(粒径15
0延以下)と粒径300〜600斗のアルミナとを空気
の存在下でロータリーキルンで接触処理した。処理後F
CC触媒とアルミナを篩で分別した。FCC触媒のバナ
ジウム除去率及び活性試験結果を第1表に示す。
Example 2 The vanadium-attached FCC catalyst used in Example 1 (particle size 15
(0 or less) and alumina having a particle size of 300 to 600 tons were contacted in a rotary kiln in the presence of air. After processing F
The CC catalyst and alumina were separated using a sieve. Table 1 shows the vanadium removal rate and activity test results of the FCC catalyst.

実施例3 実施例1で用いたバナジウム付着FCC触媒と粒径2m
mのアルミナとを酸素含有ガスの存在下でロータリーキ
ルンで接触処理した。処理後FCC触媒とアルミナを篩
で分別した。FCC触媒のバナジウム除去率を第1表に
示す。
Example 3 Vanadium-attached FCC catalyst used in Example 1 and particle size of 2 m
m of alumina was contact-treated in a rotary kiln in the presence of an oxygen-containing gas. After the treatment, the FCC catalyst and alumina were separated using a sieve. Table 1 shows the vanadium removal rate of the FCC catalyst.

第  1  表 バナジウムを付着していないFCC触媒(基準例)の活
性(210℃以下の留分収率)が36゜6%であるのに
対し、バナジウム8000ppmを付着したFCC触媒
(比較例)の活性は24゜5%まで低下しているが、本
発明により脱バナジウム処理したFCC触媒の活性は回
復していることが認められる。
Table 1 The activity (distillate yield below 210°C) of the FCC catalyst to which no vanadium is attached (standard example) is 36.6%, while that of the FCC catalyst to which 8000 ppm of vanadium is attached (comparative example) is 36.6%. Although the activity has decreased to 24.5%, it is recognized that the activity of the FCC catalyst devanadated according to the present invention has been recovered.

また実施例2及び3より、固体吸収剤は粒径が小さいも
のの方が効果的であることがわかる。
Furthermore, from Examples 2 and 3, it can be seen that the solid absorbent having a smaller particle size is more effective.

実施例4,5 バナジウムが2710ppm付着した実装置から抜き出
されたFCC触媒(粒径63ル以Lバナジウムは酸化状
態にある)を実施例4の原料として、またバナジウムを
5200ppm付着させたFCC触媒(粒径63島以と
予め酸化処理してバナジウムは酸化状態にある)を実施
例5の原料として用いた。
Examples 4 and 5 An FCC catalyst extracted from an actual device with 2710 ppm of vanadium attached (vanadium with a particle size of 63 L or more is in an oxidized state) was used as the raw material for Example 4, and an FCC catalyst with 5200 ppm of vanadium attached was used as the raw material for Example 4. (The particle size was 63 islands or larger and the vanadium was in an oxidized state after being oxidized in advance) was used as a raw material in Example 5.

それぞれを固体吸収剤(粒径63IL以下のアルミナ・
リン)とを1 : 1 (Iffi比)の比率で730
℃、6Hr、100%スチームを吹き込んで流動化し、
接触処理した。接触後触媒と固体吸収剤を篩で分離し、
脱バナジウム処理後のFCC触媒の金属分析及びAST
M法による活性試験(Micr。
Solid absorbent (alumina with a particle size of 63IL or less)
phosphorus) and 730 at a ratio of 1:1 (Iffi ratio).
℃, 6 hours, fluidize by blowing 100% steam,
Contact treated. After contact, the catalyst and solid absorbent are separated using a sieve.
Metal analysis and AST of FCC catalyst after vanadium removal treatment
Activity test by M method (Micr.

Activity Te5t)を行った。結果を:52
表に示す。
Activity Te5t) was performed. Result: 52
Shown in the table.

730℃、スチーム存在下で脱バナジウムを行わせた場
合も、脱バナジウム処理により活性が回復していること
がわかる。
It can be seen that even when vanadium was removed at 730°C in the presence of steam, the activity was recovered by the vanadium removal treatment.

第  2  表 木lニライトサイクルオイル 実施例6 バナジウム7000ppmを付着したFCC触媒と粒径
710〜1680.のアルミナとを空気の存在下でロー
タリーキルンで接触処理した。750℃で1.3.12
.5.及び16時間、ならびに670℃で12.5時間
接触処理した場合のバナジウム除去率を第3表に示す。
2nd Table Nirite cycle oil Example 6 FCC catalyst with 7000 ppm of vanadium attached and particle size 710-1680. of alumina in a rotary kiln in the presence of air. 1.3.12 at 750℃
.. 5. Table 3 shows the vanadium removal rates when contact treatment was carried out for 16 hours and 12.5 hours at 670°C.

接触時間の増加と共に、<ナジウム除去率は向トするが
、この場合は12.5時間でほぼ平衡イ1に達し、それ
以ト継続しても除去率向上の度合は小さい。
As the contact time increases, the sodium removal rate decreases; however, in this case, almost equilibrium is reached in 12.5 hours, and even if the contact time is continued beyond that, the degree of improvement in the removal rate is small.

また処理温度は高い方が効果的であることがわかる。It is also understood that the higher the treatment temperature, the more effective it is.

11口1ヱ 固体吸収剤として粒径130〜2oogの焼成ドロマイ
ト(CaO・Mg0)を使用し、バナジウム7000p
pmを付着したFCC触媒と750℃で1時間接触処理
した。処理後FCC触媒と焼成ドロマイトを比毛分離し
た。
11 mouths 1) Calcined dolomite (CaO/Mg0) with a particle size of 130-20og is used as a solid absorbent, and vanadium 7000p is used as the solid absorbent.
Contact treatment was carried out at 750° C. for 1 hour with the FCC catalyst to which pm was attached. After the treatment, the FCC catalyst and calcined dolomite were separated by centrifugation.

友ム璽J 固体吸収剤として粒径710−16804の焼成ドロマ
イト(CaO−MgO)を使用し、バナジウム7000
ppmを付着したFCC触媒と750℃で1時間接触処
理した。処理後FCC触媒と焼成ドロマイトを篩で分別
した。
Yumu Seal J Calcined dolomite (CaO-MgO) with a particle size of 710-16804 is used as a solid absorbent, and vanadium 7000 is used as a solid absorbent.
A contact treatment was carried out at 750° C. for 1 hour with the FCC catalyst to which ppm was attached. After treatment, the FCC catalyst and calcined dolomite were separated using a sieve.

実施例9 固体吸収剤として粒径710〜1680gの酸化ブグネ
シウム(M g O)を使用し、バナジウム7000p
pmを付着したFCC触媒と750℃で16時間接触処
理した。処理後FCC触媒と酸化マグネシウムを篩で分
別した。
Example 9 Bugnesium oxide (M g O) with a particle size of 710 to 1680 g was used as a solid absorbent, and vanadium 7000 p
Contact treatment was carried out at 750° C. for 16 hours with the FCC catalyst to which pm was attached. After the treatment, the FCC catalyst and magnesium oxide were separated using a sieve.

実施例7〜9における/<ナジウム除去率を第4表に示
す。
Table 4 shows the /<Nadium removal rates in Examples 7 to 9.

実施例7及び8より、固体吸収剤は粒径が小さいものの
方が効果的であることがわかる。
From Examples 7 and 8, it can be seen that solid absorbents with smaller particle sizes are more effective.

第4表 ■FCC再生塔条件丁(酸累雰囲気650〜800℃)
で触媒をそのまま処理でき、また固体吸収剤が触媒に少
埴混入しても反応に悪影響を!j−えないので、バナジ
ウム除去プロセスが簡便となる。
Table 4 ■ FCC regeneration tower conditions (acid cumulative atmosphere 650-800°C)
The catalyst can be treated as is, and even if a small amount of solid absorbent is mixed into the catalyst, it will have an adverse effect on the reaction! The vanadium removal process is simplified.

■効果的にバナジウム除去を行うことができるので、炭
化水素原料の接触分解触媒の寿命を延ばし、新触媒の追
加量を少なくできる。
■Since vanadium can be effectively removed, the life of the catalyst for catalytic cracking of hydrocarbon raw materials can be extended and the amount of new catalyst added can be reduced.

Claims (1)

【特許請求の範囲】 1 バナジウムを含有する炭化水素原料を接触分解する
ことによりバナジウムが付着した触媒を、バナジウムが
酸化状態に保持される雰囲気下で、650℃〜850℃
の温度で固体吸収剤に接触させてバナジウムを固体吸収
剤に吸収させることからなる触媒に付着したバナジウム
の除去法。 2 固体吸収剤が酸化アルミニウム、酸化マグネシウム
及び酸化カルシウムのうちから選ばれる少なくとも一種
を含むものである特許請求の範囲第1項記載の方法。 3 触媒が流動接触分解用触媒である特許請求の範囲第
1項記載の方法。 4 触媒と固体吸収剤との接触を酸素含有ガスの存在下
で行う特許請求の範囲第1項記載の方法。 5 触媒と固体吸収剤との接触を水蒸気の存在下650
〜750℃の温度で行う特許請求の範囲第1項又は第4
項記載の方法。 6 触媒と固体吸収剤との接触を流動層で行う特許請求
の範囲第1項記載の方法。 7 流動層が流動接触分解装置用の再生塔である特許請
求の範囲第6項記載の方法。 8 触媒と固体吸収剤との接触を移動層で行う特許請求
の範囲第1項記載の方法。 9 移動層がロータリーキルンである特許請求の範囲第
8項記載の方法。
[Claims] 1. A catalyst to which vanadium is attached by catalytic cracking of a hydrocarbon raw material containing vanadium is heated at 650°C to 850°C in an atmosphere where vanadium is maintained in an oxidized state.
A method for removing vanadium attached to a catalyst, which comprises bringing vanadium into contact with a solid absorbent at a temperature of . 2. The method according to claim 1, wherein the solid absorbent contains at least one selected from aluminum oxide, magnesium oxide, and calcium oxide. 3. The method according to claim 1, wherein the catalyst is a catalyst for fluid catalytic cracking. 4. The method according to claim 1, wherein the catalyst and the solid absorbent are brought into contact in the presence of an oxygen-containing gas. 5 Contact between the catalyst and the solid absorbent in the presence of water vapor
Claim 1 or 4 carried out at a temperature of ~750°C
The method described in section. 6. The method according to claim 1, wherein the contact between the catalyst and the solid absorbent is carried out in a fluidized bed. 7. The method according to claim 6, wherein the fluidized bed is a regeneration tower for a fluidized catalytic cracker. 8. The method according to claim 1, wherein the catalyst and the solid absorbent are brought into contact in a moving bed. 9. The method according to claim 8, wherein the moving bed is a rotary kiln.
JP29188285A 1985-12-26 1985-12-26 Removal of vanadium adhered to catalyst Granted JPS62152545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29188285A JPS62152545A (en) 1985-12-26 1985-12-26 Removal of vanadium adhered to catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29188285A JPS62152545A (en) 1985-12-26 1985-12-26 Removal of vanadium adhered to catalyst

Publications (2)

Publication Number Publication Date
JPS62152545A true JPS62152545A (en) 1987-07-07
JPH0124541B2 JPH0124541B2 (en) 1989-05-12

Family

ID=17774662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29188285A Granted JPS62152545A (en) 1985-12-26 1985-12-26 Removal of vanadium adhered to catalyst

Country Status (1)

Country Link
JP (1) JPS62152545A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5213523A (en) * 1975-07-18 1977-02-01 Ciba Geigy Ag Azo compounds*process for producing same and method for using
JPS52155102A (en) * 1976-06-18 1977-12-23 Taiwa Kk Process for recovery of valuable metal from spent catalyst
US4465779A (en) * 1982-05-06 1984-08-14 Gulf Research & Development Company Modified cracking catalyst composition
GB2138314A (en) * 1983-04-21 1984-10-24 Grace W R & Co Catalytic cracking catalyst and process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5213523A (en) * 1975-07-18 1977-02-01 Ciba Geigy Ag Azo compounds*process for producing same and method for using
JPS52155102A (en) * 1976-06-18 1977-12-23 Taiwa Kk Process for recovery of valuable metal from spent catalyst
US4465779A (en) * 1982-05-06 1984-08-14 Gulf Research & Development Company Modified cracking catalyst composition
GB2138314A (en) * 1983-04-21 1984-10-24 Grace W R & Co Catalytic cracking catalyst and process

Also Published As

Publication number Publication date
JPH0124541B2 (en) 1989-05-12

Similar Documents

Publication Publication Date Title
AU607829B2 (en) Method of producing an adsorbent for separation and recovery of co
US4980045A (en) Heavy oil pretreatment process with reduced sulfur oxide emissions
JPH08119620A (en) Refining of fine silica
JPH08266851A (en) Method for desulfurization of gas flow and absorbent being suitable for said method
US4377396A (en) Process of purifying exhaust air laden with organic pollutants
JPH0332743A (en) Method for reactivation of cracking catalyst contaminated by metal
US3193494A (en) Progressive flow cracking of contaminated hydrocarbon feedstocks
US5188995A (en) Reactivation and passivation of spent cracking catalysts
JPS5925616B2 (en) How to remove gaseous sulfur compounds from gas mixtures
JPS62152545A (en) Removal of vanadium adhered to catalyst
US3150103A (en) Method for removing vanadium and nickel from a silica based catalyst
EP0187506A2 (en) Treatment of a zeolite-containing catalyst contaminated with vanadium
US4234452A (en) High pressure oxygen aqueous phase catalyst demetallization
EP0208868B1 (en) Catalytic cracking catalyst and process
US3122511A (en) Cracking catalyst demetallization
US4267032A (en) Demetallization process for a conversion catalyst
US3147209A (en) Catalyst demetallization
JPS61204042A (en) Vanadium resistant zeolite fluidized cracking catalyst
CN111097271B (en) Method and device for removing SOx and NOx in catalytic cracking flue gas
JPH0316642A (en) Treatment of arsine removing catalyst
MXPA02007007A (en) Catalyst support material and use thereof.
JPS57135890A (en) Cracking and conversion into light oil of heavy oil and preparation of hydrogen
US3182025A (en) Catalyst demetallization
EP0077044B1 (en) Method to passivate metals deposited on a cracking catalyst during reduced crude processing
US3150074A (en) Catalyst demetallization effluent treating