JPS62152539A - Catalyst for gaseous phase intramolecular dehydrating action of alkanolamines - Google Patents

Catalyst for gaseous phase intramolecular dehydrating action of alkanolamines

Info

Publication number
JPS62152539A
JPS62152539A JP60292540A JP29254085A JPS62152539A JP S62152539 A JPS62152539 A JP S62152539A JP 60292540 A JP60292540 A JP 60292540A JP 29254085 A JP29254085 A JP 29254085A JP S62152539 A JPS62152539 A JP S62152539A
Authority
JP
Japan
Prior art keywords
catalyst
silicon
alkanolamines
general formula
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60292540A
Other languages
Japanese (ja)
Other versions
JPH0513700B2 (en
Inventor
Yoshiharu Shimazaki
由治 嶋崎
Yoichi Hino
洋一 日野
Rikuo Uejima
植嶋 陸男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP60292540A priority Critical patent/JPS62152539A/en
Priority to AU66664/86A priority patent/AU591208B2/en
Priority to EP86310008A priority patent/EP0227461B1/en
Priority to DE8686310008T priority patent/DE3675751D1/en
Priority to CA000525996A priority patent/CA1276617C/en
Priority to CN86108813A priority patent/CN1014059B/en
Priority to KR1019860011138A priority patent/KR910005188B1/en
Publication of JPS62152539A publication Critical patent/JPS62152539A/en
Priority to US07/183,474 priority patent/US4841060A/en
Publication of JPH0513700B2 publication Critical patent/JPH0513700B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To prepare objective cyclic amines at high yield, by forming a catalyst of an oxide composition represented by a specific general formula prepared by adding one or more of an element selected from an alkali metal and/or an alkaline earth metal to silicon. CONSTITUTION:A minute amount or equal amount of one or more of an element selected from an alkali meal and/or an alkaline earth metal is added to silicon in a state dissolved or suspended in water and the resulting mixture is heated under stirring, conc., dried and molded to obtain a catalyst for the gaseous phase intramolecular dehydrating reaction of alkanolamines. This catalyst is an oxide composition represented by general formula SiaXbOc (wherein Si is silicon, X is one or more of an element selected from an alkali metal and/or an alkaline earth metal and a, b and c are an atomic ratio of each element and, when a=1, b=0.005-1 and c is a value determined by a and b).

Description

【発明の詳細な説明】 [技術的分野] 本発明は一般式(1)で表わされるアルカノールアミン
類を、一般式(]I)で表わされる環式アミン類へ転化
する際に用いる気相分子内脱水反応用触媒に関する。
Detailed Description of the Invention [Technical Field] The present invention relates to gas phase molecules used in converting alkanolamines represented by general formula (1) to cyclic amines represented by general formula (I). This invention relates to a catalyst for internal dehydration reaction.

RR (I)             (II)(式中、R
,R′は各々水素、メチル基およびエチル基からなる群
から選ばれ、nは2〜5の範囲の整数をとる。) 面記(IF)で表わされる環式アミン類は一般に、反応
性に富み、種々の官能基をもつ化合物と反応することか
ら、アミン基を有する各種誘導体を製造することができ
る。また、環保持反応も可能であることから、開環反応
性を有する誘導体を製造することもできる。更には、開
環重合反応によってポリアミン系ポリマーを製造するこ
ともでき、非常に利用度の高い化合物である。そして環
式アミン類の誘導体は、mN加工剤、帯電防止剤、医薬
・農薬原料等として、各種産業に広く利用される非常に
有用な化合物である。本発明は、この様な有用化合物で
ある環式アミン類を、生産性において非常に有利な気相
で、アルカノールアミン類の分子内脱水反応により製造
する際に用いる高性能な触媒を提供するものである。
RR (I) (II) (wherein, R
, R' are each selected from the group consisting of hydrogen, methyl group and ethyl group, and n is an integer in the range of 2 to 5. ) Cyclic amines represented by a surface (IF) are generally highly reactive and react with compounds having various functional groups, so that various derivatives having amine groups can be produced. Furthermore, since a ring-retaining reaction is also possible, derivatives having ring-opening reactivity can also be produced. Furthermore, polyamine-based polymers can also be produced by ring-opening polymerization reaction, making it a highly useful compound. Derivatives of cyclic amines are very useful compounds that are widely used in various industries as mN processing agents, antistatic agents, raw materials for pharmaceuticals and agricultural chemicals, and the like. The present invention provides a high-performance catalyst for producing cyclic amines, which are useful compounds, by intramolecular dehydration reaction of alkanolamines in the gas phase, which is extremely advantageous in terms of productivity. It is.

[従来の技術] アルカノールアミン類を脱水反応により、環式アミン類
に転化する方法としては、ハロゲン化アミンを濃アルカ
リにより分子内閉環する方法(G abriel法)、
アルカノールアミン硫酸エステルを熱濃アルカリにより
閉環する方法(W enker法)が公知であるが、こ
れらの方法は、アルカリを大量に濃厚溶液として用いる
ため生産性が低く、また原材料費に占めるアルカリの原
単位が大きいこと、更には利用度の低い無機塩が大量に
副生ずる等、工業的には多くの問題を有するものである
[Prior Art] Methods for converting alkanolamines into cyclic amines by dehydration include a method of intramolecular ring-closing of a halogenated amine with a concentrated alkali (Gabriel method);
A method of ring-closing an alkanolamine sulfate ester with a heated concentrated alkali (Wenker method) is known, but these methods use a large amount of alkali in the form of a concentrated solution, resulting in low productivity, and the cost of alkali is low in raw material costs. There are many problems from an industrial perspective, such as the large unit size and the production of large amounts of inorganic salts with low utilization.

近年、上記のような液相法に対し、アルカノールアミン
として、モノエタノールアミンを用い、これを触媒存在
下、気相で脱水反応せしめ、対応する環式アミンすなわ
ちエチレンイミンを連続的に製造する試みが幾つか報告
されている。それらの例として、例えば、特公昭50−
10593号には、酸化タングステン系触媒を用いる方
法が、記載されており、また、米国特許第4,301,
036号明tIa書には、酸化タングステンとケイ素よ
り成る触媒を用いる方法が、さらに米国特許第4,28
9,656号、同第4.337.175号、同第4.4
77□591号各明細書には、ニオブあるいはタンタル
系触媒を用いる方法が開示されている。しかしながら、
これら何れの方法もモノエタノールアミンの転化率が低
く、また比較的転化率が高い場合でも、脱アンモニア反
応および二吊化反応等の副反応による生成物の割合が高
いため、エチレンイミンの選択性は低いものとなってい
る。更には、本発明者らの検討によれば触媒の寿命に関
していえば、いずれの場合も短期間での活性低下が著し
く、工業的な観点からは、全く満足できるものではなか
った。
In recent years, attempts have been made to continuously produce the corresponding cyclic amine, ie, ethyleneimine, by using monoethanolamine as the alkanolamine and dehydrating it in the gas phase in the presence of a catalyst, in contrast to the liquid phase method described above. have been reported. As an example of these, for example,
No. 10593 describes a method using a tungsten oxide catalyst, and US Pat. No. 4,301,
No. 036 tIa further describes a method using a catalyst consisting of tungsten oxide and silicon, as disclosed in U.S. Pat.
No. 9,656, No. 4.337.175, No. 4.4
No. 77□591 discloses a method using a niobium or tantalum catalyst. however,
In both of these methods, the conversion rate of monoethanolamine is low, and even when the conversion rate is relatively high, the proportion of products due to side reactions such as deammonization reaction and dispensing reaction is high, so the selectivity of ethyleneimine is low. is low. Furthermore, according to the studies conducted by the present inventors, as far as the life of the catalyst is concerned, the activity decreases significantly in a short period of time in all cases, which is completely unsatisfactory from an industrial point of view.

[本発明の構成1 本発明者らはアルカノールアミン類の気相分子内脱水反
応用触媒について鋭意研究した結果、ケイ素に微量もし
くは等量のアルカリ金属および/またはアルカリ土類金
属から選ばれる1種またはそれ以上の元素を加えてなる
一般式 SiaXbOc(ここでSiはケイ素、Xはアルカリ金
属および/またはアルカリ土類金属から選ばれる1種ま
たはそれ以上の元素、0は酸素を表わす。添字a、 b
、 cはそれぞれの元素の原子比を示し、a=1のとき
、 b = 0.005〜1 (7)範囲(好ましくは
b = 0.01〜0.5の範囲)をとり、Cはaおよ
びbにより定まる値をとる。)で表わされる酸化物触媒
を用いることにより、アルカノールアミン類の気相分子
内脱水反応が極めて好都合に進行し、目的環式アミン類
を高選択的にかつ高収率をもって、しかも長期にわたり
安定的に製造しうることを見出し本発明を完成するに至
った。
[Configuration 1 of the present invention] As a result of intensive research into catalysts for gas-phase intramolecular dehydration reactions of alkanolamines, the present inventors found that a trace amount or an equivalent amount of one kind selected from alkali metals and/or alkaline earth metals is added to silicon. or the general formula SiaXbOc (where Si is silicon, X is one or more elements selected from alkali metals and/or alkaline earth metals, and 0 represents oxygen. Subscript a, b
, c indicates the atomic ratio of each element, and when a = 1, b = 0.005 to 1 (7) range (preferably b = 0.01 to 0.5 range), and C is a It takes a value determined by and b. ) By using the oxide catalyst represented by (), the gas phase intramolecular dehydration reaction of alkanolamines proceeds extremely favorably, and the target cyclic amines can be produced highly selectively and in high yields, and also stably for a long period of time. The present inventors have discovered that it is possible to produce the same, and have completed the present invention.

本発明の触媒は、気相分子内脱水反応に有効に作用し、
反応原料となるアルカノールアミン類としては (式中のR,R−は各々水素、メチル基およびエチル基
の中から選ばれる。またnは2〜5の範囲の整数をとる
。)で表わされるアルカノールアミン類が好適であり、
これらの例としては、(a)モノエタノールアミン、(
b)イソプロパツールアミン、(C)3−アミノ −1
−プロパツール、(d)5−アミノ −1−ペンタノー
ル、(e)2−アミノ −1−ブタノール等が挙げられ
るが、これらに限定されるものではない。
The catalyst of the present invention effectively acts on gas phase intramolecular dehydration reaction,
The alkanolamines used as reaction raw materials include alkanols represented by (in the formula, R and R- are each selected from hydrogen, methyl group, and ethyl group; n is an integer in the range of 2 to 5); Amines are preferred;
Examples of these include (a) monoethanolamine, (
b) Isopropanolamine, (C) 3-amino-1
-propanol, (d) 5-amino-1-pentanol, (e) 2-amino-1-butanol, and the like, but are not limited to these.

これらのアミン類は本発明に従い、 (式中、R,R′およびnは1式と同じである。)で表
わされる環式アミン類、すなわち上記化合物に対応し、
それぞれ (a′)エチレンイミン、(b12−メチル−エチレン
イミン、(a′)アゼチジン、(d′)ピペリジン、(
e”12−エチル−エチレンイミンに高転化率、高選択
率をもって、かつ長期にわたり安定的に転化される。
According to the invention, these amines correspond to cyclic amines represented by (wherein R, R' and n are the same as in formula 1), that is, the above compounds,
(a') ethyleneimine, (b12-methyl-ethyleneimine, (a') azetidine, (d') piperidine, (
It is stably converted to e''12-ethyl-ethyleneimine with high conversion rate and high selectivity over a long period of time.

本発明による触媒の調製法は特に限定されるものではな
く、通常おこなわれる調製法がとられる。
The method for preparing the catalyst according to the present invention is not particularly limited, and a commonly used preparation method can be used.

触媒原料のX成分であるアルカリ金属および/またはア
ルカリ土類金属元素源としては、それの酸化物、水酸化
物、ハロゲン化物、炭酸塩、硫酸塩。
Examples of the alkali metal and/or alkaline earth metal element source which is component X of the catalyst raw material include their oxides, hydroxides, halides, carbonates, and sulfates.

およ、び硝酸塩などが用いられ、またケイ素源としては
、酸化ケイ素、ハロゲン化ケイ素、ケイ酸。
Silicon sources include silicon oxide, silicon halides, and silicic acid.

ケイ酸塩類、酸化ケイ素ゾルおよび有機ケイ素化合物等
が用いられる。
Silicates, silicon oxide sols, organosilicon compounds, etc. are used.

本発明による触媒の調製方法の例をあげれば、各種触媒
原料を水中に溶解もしくは懸濁せしめ、撹拌下、加熱2
m縮し、乾燥後成型し、さらに焼成を経て触媒とする方
法、あるいは各種触媒原料を水中に溶解もしくは懸濁さ
せアンモニア水の添加により水酸化物にした後、濾過、
水洗を行ない、乾燥し、成型後、焼成を経て触媒とする
方法、さらには、各種元素の酸化物または水酸化物を粉
体のまま混合し、適当な成形助剤(例えば水、アルコー
ル等)を添加後成型し、乾燥後、焼成する方法などがあ
げられる。
An example of the method for preparing a catalyst according to the present invention is to dissolve or suspend various catalyst raw materials in water, heat the mixture under stirring, and heat the mixture.
A method of shrinking, drying, molding, and further calcination to make a catalyst, or dissolving or suspending various catalyst raw materials in water and making a hydroxide by adding ammonia water, followed by filtration,
A method of washing with water, drying, molding, and calcination to form a catalyst, or a method of mixing oxides or hydroxides of various elements in powder form and adding an appropriate molding aid (e.g., water, alcohol, etc.) Examples include a method in which the material is added, molded, dried, and then fired.

また、本発明による触媒は、公知の不活性な担体[例え
ば、シリカ、アルミナ、セライト(商品名)などが好ま
しいが、これらに限定されるものではない]に担持して
用いることもできる。
Further, the catalyst according to the present invention can also be used by being supported on a known inert carrier (for example, silica, alumina, Celite (trade name), etc. are preferable, but not limited to these).

なお、触媒の焼成温度については、用いる原料の種類に
もよるが、300℃〜800℃の広い範囲をとれ、好ま
しくは400℃〜700℃の範囲である。
The firing temperature of the catalyst may vary widely from 300°C to 800°C, preferably from 400°C to 700°C, depending on the type of raw materials used.

[作 用] 本発明による触媒をアルカノールアミン類の気相分子内
脱水反応に用いた場合、従来公知の触媒に比べ非常に高
い活性を示し、また目的環式アミンの選択率も著しく高
いものであった。
[Function] When the catalyst of the present invention is used in the gas phase intramolecular dehydration reaction of alkanolamines, it exhibits extremely high activity compared to conventionally known catalysts, and the selectivity for the target cyclic amine is also extremely high. there were.

しかも、この反応を長時間連続して行なった場合でも、
触媒の活性劣化現象は認められず、活性。
Moreover, even if this reaction is carried out continuously for a long time,
No deterioration of catalyst activity was observed and the catalyst remained active.

収率ともきわめて安定しており、工業化する上で最重要
とされる短期的劣化現象の克服という問題を十分に解決
しうるものであった。
The yield was extremely stable, and the problem of overcoming short-term deterioration, which is most important for industrialization, could be sufficiently solved.

なお、触媒性能を、公知のモノエタノールアミンからの
エチレンイミン合成用触媒(例えば特公昭50−105
93号公報、および米国特許第4.337.175号に
示されたWO’3−8i 02およびNb205−Ba
 Oなる組成物触媒。)と比較したところ、本発明によ
る触媒の性能は、活性1選択性共に、それらの触媒性能
を著しく上田るものであった。
The catalytic performance was evaluated using a known catalyst for ethyleneimine synthesis from monoethanolamine (for example, Japanese Patent Publication No. 50-105
No. 93, and WO'3-8i 02 and Nb205-Ba shown in U.S. Patent No. 4.337.175
O composition catalyst. ), the performance of the catalyst according to the present invention, both in terms of activity and selectivity, was significantly superior to those catalysts.

本発明による触媒が、アルカノールアミン類から環式ア
ミン類への気相脱水反応に非常に優れた性能を示すこと
の原因について詳細は明らかではないが、本発明者等は
、必須成分であるアルカリ金属および/またはアルカリ
土類金属元素の効果が大であると推察している。すなわ
ち、アルカリ金属およびアルカリ土類金属の酸化物は架
橋酸素原子あるいは表面水酸基などによる塩基性を有し
、■塩基点により生成1M式アミンの触媒表面からの脱
離をすみやかにし、逐次的な重合反応あるいは分解反応
を抑制する。■酸性成分元素であるケイ素の酸点の性質
を適度に制御し、強すぎる酸点による脱アンモニアある
いは分子間縮合反応等の副反応を抑制する。■塩基点に
より、アミノ基からの水素引き(友ぎ反応を促進し、活
性を向上させる効果を有するものと考えられ、それゆえ
、本発明による触媒上では、反応が酸塩基協同作用によ
り効果的に進むと同時に、生成物の脱離も円滑になり触
媒上への強吸着物質の被毒による失活が抑えられ、高転
化率でかつ高選択率で、しかも長期にわたり安定して目
的環式アミンを製造しうるちのと考えられる。
Although the details of the reason why the catalyst of the present invention exhibits extremely excellent performance in the gas-phase dehydration reaction from alkanolamines to cyclic amines are not clear, the present inventors have discovered that the essential component alkali It is surmised that metals and/or alkaline earth metal elements have a large effect. In other words, oxides of alkali metals and alkaline earth metals have basicity due to bridging oxygen atoms or surface hydroxyl groups, and the basic sites facilitate the rapid detachment of the 1M amine produced from the catalyst surface, leading to sequential polymerization. Inhibit reactions or decomposition reactions. (2) Appropriately control the properties of acid sites in silicon, which is an acidic component, to suppress side reactions such as deammonia or intermolecular condensation reactions caused by too strong acid sites. ■It is thought that the basic site promotes hydrogen withdrawal (friend-reaction) from amino groups and improves activity. Therefore, on the catalyst of the present invention, the reaction is more effective due to acid-base cooperation. At the same time, the desorption of the product is smooth, and deactivation due to poisoning of the strongly adsorbed substance on the catalyst is suppressed, resulting in a high conversion rate and high selectivity, as well as a stable long-term production of the target cyclic product. It is thought to be a source of amine production.

本発明の実施にあたり反応器は固定床流通型。In carrying out the present invention, the reactor is of a fixed bed flow type.

流動床型のいずれも使用できる。原料アルカノールアミ
ン類は必要に応じ窒素、ヘリウム、アルゴンなどの不活
性ガスでm度1〜80容量%、好ましくは2〜50%容
量に希釈して用いる。また、場合によっては、副反応を
抑える目的で、アンモニアあるいは水等をアルカノール
アミン類と共に供給することもできる。反応圧は通常常
圧で行なうが必要に応じて加圧または減圧下に行なうこ
ともできる。反応温度は原料の種類により異なり300
〜500℃の範囲であるが、原料ガスの空間速度は原料
の種類および原料ガス濃度により異なるが、100〜5
000hr”、好ましくは500〜3000hr−1の
範囲が適当である。
Any fluidized bed type can be used. The raw material alkanolamines are diluted with an inert gas such as nitrogen, helium, or argon at a concentration of 1 to 80% by volume, preferably 2 to 50% by volume, if necessary. Further, in some cases, ammonia, water, or the like may be supplied together with alkanolamines for the purpose of suppressing side reactions. The reaction is usually carried out at normal pressure, but it can also be carried out under increased or reduced pressure if necessary. The reaction temperature varies depending on the type of raw material.
The space velocity of the raw material gas varies depending on the type of raw material and the concentration of the raw material gas, but it is in the range of 100 to 500 °C.
000 hr", preferably in the range of 500 to 3000 hr-1.

以下、実施例において本発明を具体的に述べるが、実施
例中の転化率2選択率および単流収率については、次の
定義に従うものとする。
The present invention will be specifically described in Examples below, and the conversion rate 2 selectivity and single flow yield in the Examples shall comply with the following definitions.

転化率(モル%)= 消費されたアルカノールアミン 供給されたアルカノールアミン のモル数 選択率(モル%)= 消費されたアルカノールアミン のモル数 単流収率(モル%)= 供給されたアルカノールアミン のモル数 実施例1゜ 水酸化マグネシウム0.581Jと酸化ケイ素301J
を水100dに懸濁させ、充分に攪拌しながら90℃で
加熱濃縮し白色スラリー状混合物を得た。これを空気中
120℃で1晩乾燥した後、3.5メツシユに破砕し、
600℃で2時間焼成し触媒とした。
Conversion rate (mol %) = Number of moles of alkanolamine fed Selectivity (mol %) = Number of moles of alkanolamine consumed Single stream yield (mol %) = Number of moles of alkanolamine fed Number of moles Example 1゜Magnesium hydroxide 0.581J and silicon oxide 301J
was suspended in 100 d of water, and heated and concentrated at 90° C. with sufficient stirring to obtain a white slurry-like mixture. After drying this in the air at 120°C overnight, it was crushed into 3.5 mesh pieces.
It was calcined at 600°C for 2 hours to obtain a catalyst.

この触媒20−を内径16咽のステンレス製反応管に充
填した後、370℃の溶融塩浴に浸漬し、該管内に容量
化でモノエタノールアミン:窒素=5:95の原料ガス
を空間速度1500hr−’で通し、反応を行なった。
After filling this catalyst 20- into a stainless steel reaction tube with an inner diameter of 16 mm, it was immersed in a molten salt bath at 370°C, and a raw material gas of monoethanolamine:nitrogen = 5:95 was charged into the tube at a space velocity of 1500 hours. -' and the reaction was carried out.

反応生成物はガスクロマトグラフにより定量し、表−1
に示す結果を得た。
The reaction products were quantified by gas chromatography and are shown in Table 1.
The results shown are obtained.

実施例2゜ 触媒原料として、水酸化カルシウム1.11gと酸化ケ
イ素300を用いた他は、実施例1と同様にして触媒を
調製した。この触媒を用いモノエタノールアミンおよび
イソプロパツールアミンの反応を、実施例1の反応条件
に基づいて行なった結果を表−1に示した。
Example 2 A catalyst was prepared in the same manner as in Example 1, except that 1.11 g of calcium hydroxide and 300 g of silicon oxide were used as catalyst raw materials. Using this catalyst, monoethanolamine and isopropanolamine were reacted based on the reaction conditions of Example 1. The results are shown in Table 1.

実施例3゜ 触媒原料として、水酸化ストロンチウム(8水和物) 
13.28(J、水酸化ルビジウム1.02 (]およ
び酸化ケイ素30(lを用いた他は、実施例1と同様に
して触媒を調製し、モノエタノールアミンおよび3−ア
ミノ −1−プロパツールの反応を、実施例1に従い行
なったところ、表−1に示す結果を得た。
Example 3 Strontium hydroxide (octahydrate) as catalyst raw material
A catalyst was prepared in the same manner as in Example 1, except that 13.28 (J, rubidium hydroxide 1.02 ()) and silicon oxide 30 (L) were used, and monoethanolamine and 3-amino-1-propanol were used. When the reaction was carried out according to Example 1, the results shown in Table 1 were obtained.

実施例4゜ 触媒原料として、水酸化バリウム(8水和物)63.1
gと酸化ケイ素30(lを用いた他は、実施例1と同様
にして触媒を調製し、モノエタノールアミンの連続反応
を、実施例1の反応条件に基づいて行ない、表−1に示
す結果を得た。
Example 4 Barium hydroxide (octahydrate) 63.1 as catalyst raw material
A catalyst was prepared in the same manner as in Example 1, except that g and silicon oxide 30 (l) were used, and a continuous reaction of monoethanolamine was carried out based on the reaction conditions of Example 1. The results are shown in Table 1. I got it.

比較例1゜ 触媒原料として、酸化ケイ素30(7のみを用い実施例
1と同様にして触媒を調製した。この触媒を用い、実施
例1の反応条件下、種々温度を変え反応を行ない、表−
2に示す結果を得た。
Comparative Example 1 A catalyst was prepared in the same manner as in Example 1 using only silicon oxide 30 (7) as a catalyst raw material. Using this catalyst, reactions were carried out under the reaction conditions of Example 1 at various temperatures. −
The results shown in 2 were obtained.

比較例2゜ メタタングステン酸アンモニウム水溶液(W03基準で
50wt%) 65.2gに、直径5mのシリコンカー
バイド40gを浸し、湯浴上蒸発乾固した後、空気中1
50℃で1時間乾燥し、更に空気中715℃で4時間焼
成して触媒前駆物を得た。これを酸化ケイ素10%コロ
イド液50mに浸し、湯浴上蒸発乾固後、空気中150
℃で1時間乾燥し、続いて空気中715℃で4時間焼成
して、酸化タングステン25,4重量%、酸化ケイ素3
.3重量%を含む担持触媒(原子比でWto S io
、504.1 )を得た。この触媒を用い実施例1の反
応条件に基づいてモノエタノールアミンの反応を行ない
、表−2に示す結果を得た。
Comparative Example 2 40 g of silicon carbide with a diameter of 5 m was immersed in 65.2 g of ammonium metatungstate aqueous solution (50 wt% based on W03), evaporated to dryness on a hot water bath, and then evaporated to dryness in air.
The mixture was dried at 50°C for 1 hour and further calcined in air at 715°C for 4 hours to obtain a catalyst precursor. This was immersed in 50 m of 10% silicon oxide colloidal solution, evaporated to dryness on a hot water bath, and then heated to 150 m in air.
℃ for 1 hour, followed by calcination in air at 715℃ for 4 hours to obtain 25.4% by weight of tungsten oxide and 3% by weight of silicon oxide.
.. Supported catalyst containing 3% by weight (atomic ratio WtoSio
, 504.1) was obtained. Using this catalyst, monoethanolamine was reacted based on the reaction conditions of Example 1, and the results shown in Table 2 were obtained.

なお、この触媒は、米国特許第4.301.036号明
細書記載の実施例4に従って調製したものである。
Note that this catalyst was prepared according to Example 4 described in US Pat. No. 4,301,036.

比較例3゜ 五塩化ニオブs、ogを水50ttdlに、60℃で加
熱しつつ完全に溶解させた侵、アンモニア水を加え、溶
液のpHを1.0とした。その後、濾過、水洗を経て得
た固体を、10重間%のシュウ酸水溶液80mに溶解し
、更に、水酸化バリウム(8水和物)0.2gを加えた
。この溶液中にシリコンカーバイド60ccを浸し、8
0℃で蒸発乾固させた後、空気中500℃で3時間焼成
して五酸化ニオブ3.7重量%、酸化バリウム0.5車
量%を含む担持触媒(原子比でNb to Ba o、
102.6 )を19だ。この触媒を用い実施例1に基
づいて反応を行ない、表−2に示す結果を得た。
Comparative Example 3 Niobium pentachloride S, og was completely dissolved in 50 ttdl of water while heating at 60°C, and aqueous ammonia was added to adjust the pH of the solution to 1.0. Thereafter, the solid obtained through filtration and water washing was dissolved in 80 ml of a 10% by weight aqueous oxalic acid solution, and further 0.2 g of barium hydroxide (octahydrate) was added. Soak 60cc of silicon carbide in this solution,
After evaporating to dryness at 0°C, it was calcined in air at 500°C for 3 hours to obtain a supported catalyst containing 3.7% by weight of niobium pentoxide and 0.5% by weight of barium oxide (Nb to BaO in atomic ratio).
102.6) is 19. Using this catalyst, a reaction was carried out based on Example 1, and the results shown in Table 2 were obtained.

なお、この触媒は、米国特許第4.477、591号明
mm記載の実施例3に従って調製したものである。
This catalyst was prepared according to Example 3 described in US Pat. No. 4,477,591.

実施例5゜ 触媒原料として、水酸化カリウム0.28(lと酸化ケ
イ素30(lを用い、実施例1と同様にして触媒を調製
した。この触媒を用いて、モノエタノールアミンおよび
2−アミノ −1−ブタノールの反応を、実施例1の反
応条件に基づいて行ない、表−1に示す結果を得た。
Example 5 A catalyst was prepared in the same manner as in Example 1 using 0.28 (l) of potassium hydroxide and 30 (l) of silicon oxide as catalyst raw materials. Using this catalyst, monoethanolamine and 2-amino The reaction of -1-butanol was carried out based on the reaction conditions of Example 1, and the results shown in Table 1 were obtained.

実施例6゜ 触媒原料として、水酸化マグネシウム0.58g。Example 6゜ 0.58 g of magnesium hydroxide as a catalyst raw material.

水酸化ナトリウム0.20gと酸化ケイ素30(]を用
い、実施例1と同様にして触媒を調製した。この触媒を
用いて、モノエタノールアミンおよび5−アミノ−1−
ペンタノールの反応を、実施例1の反応条件に基づいて
行ない、表−1に示す結果を得た。
A catalyst was prepared in the same manner as in Example 1 using 0.20 g of sodium hydroxide and 30 g of silicon oxide. Using this catalyst, monoethanolamine and 5-amino-1-
The reaction of pentanol was carried out based on the reaction conditions of Example 1, and the results shown in Table 1 were obtained.

実施例7゜ 触媒原料として、水酸化カルシウム0.37(lと水、
 酸化バリウム(8水和物)  3.94(7および酸
化ケイ素301Jを用い、実施例1と同様にして触媒を
調製した。この触媒を用いて、モノエタノールアミンお
J:びイソプロパツールアミンの反応を実施例1の反応
条件に基づいて行ない、表−1に示す結果を得た。
Example 7゜ Calcium hydroxide 0.37 (l and water,
A catalyst was prepared in the same manner as in Example 1 using barium oxide (octahydrate) 3.94 (7) and silicon oxide 301J. Using this catalyst, monoethanolamine J: and isopropylamine The reaction was carried out based on the reaction conditions of Example 1, and the results shown in Table 1 were obtained.

実施例8゜ 触媒原料として、水酸化セシウム0.75(Jと水酸化
バリウム(8水和物>  4.73(Jおよび酸化ケイ
素30gを用い、実施例1と同様にして触媒を調製した
。この触媒を用いてモノエタノールアミンの連続反応を
実施例1の反応条件に基づいて行ない、表−1に示す結
果をmだ。
Example 8 A catalyst was prepared in the same manner as in Example 1 using 0.75 (J) of cesium hydroxide, 4.73 (J of barium hydroxide (octahydrate) and 30 g of silicon oxide as catalyst raw materials). Using this catalyst, a continuous reaction of monoethanolamine was carried out based on the reaction conditions of Example 1, and the results are shown in Table 1.

Claims (1)

【特許請求の範囲】[Claims] (1)ケイ素に微量もしくは等量のアルカリ金属および
/またはアルカリ土類金属から選ばれる1種またはそれ
以上の元素を加えてなる一般式SiaXbOc(ここで
Siはケイ素、Xはアルカリ金属および/またはアルカ
リ土類金属から選ばれる1種またはそれ以上の元素、O
は酸素を表わす。添字a、b、cはそれぞれの元素の原
子比を示し、a=1のとき、b=0.005〜1の範囲
(好ましくはb=0.01〜0.5の範囲)をとり、c
はaおよびbにより定まる値をとる。)で表わされる酸
化物組成物であることを特徴とする、 一般式 ▲数式、化学式、表等があります▼( I ) (式中のR、R′は各々水素、メチル基およびエチル基
の中から選ばれ、nは2〜5の範囲の整数値をとる。)
で表わされるアルカノールアミン類を 一般式 ▲数式、化学式、表等があります▼(II) (式中のR、R′およびnは前記( I )式と同様であ
る。)で表わされる環式アミン類へ転化せしめる気相分
子内脱水反応用触媒。
(1) General formula SiaXbOc (where Si is silicon, X is an alkali metal and/or One or more elements selected from alkaline earth metals, O
represents oxygen. Subscripts a, b, and c indicate the atomic ratio of each element, and when a = 1, b = 0.005 to 1 (preferably b = 0.01 to 0.5), and c
takes a value determined by a and b. ) General formula ▲There are mathematical formulas, chemical formulas, tables, etc.▼(I) (R and R' in the formula are hydrogen, methyl group, and ethyl group, respectively) (n is an integer in the range of 2 to 5.)
Alkanolamines represented by the general formula ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (II) (In the formula, R, R' and n are the same as in the above formula (I).) Cyclic amines represented by the general formula Catalyst for gas phase intramolecular dehydration reaction that converts into
JP60292540A 1985-12-23 1985-12-27 Catalyst for gaseous phase intramolecular dehydrating action of alkanolamines Granted JPS62152539A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP60292540A JPS62152539A (en) 1985-12-27 1985-12-27 Catalyst for gaseous phase intramolecular dehydrating action of alkanolamines
AU66664/86A AU591208B2 (en) 1985-12-23 1986-12-17 Catalyst for vapor-phase intramolecular dehydration reaction of alkanolamines
EP86310008A EP0227461B1 (en) 1985-12-23 1986-12-22 Process for preparing cyclic amines
DE8686310008T DE3675751D1 (en) 1985-12-23 1986-12-22 METHOD FOR PRODUCING CYCLIC AMINES.
CA000525996A CA1276617C (en) 1985-12-23 1986-12-22 Catalyst for vapor-phase intramolecular dehydration reaction of alkanolamines
CN86108813A CN1014059B (en) 1985-12-23 1986-12-23 Catalyst for vapor-phase intramolecular dehydration reaction of alkanolamin
KR1019860011138A KR910005188B1 (en) 1985-12-23 1986-12-23 Catalyst for vapor-phase intramolecular dehydration reaction of alkanolamines
US07/183,474 US4841060A (en) 1985-12-23 1988-04-15 Vapor-phase intramolecular dehydration reaction of alkanolamines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60292540A JPS62152539A (en) 1985-12-27 1985-12-27 Catalyst for gaseous phase intramolecular dehydrating action of alkanolamines

Publications (2)

Publication Number Publication Date
JPS62152539A true JPS62152539A (en) 1987-07-07
JPH0513700B2 JPH0513700B2 (en) 1993-02-23

Family

ID=17783107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60292540A Granted JPS62152539A (en) 1985-12-23 1985-12-27 Catalyst for gaseous phase intramolecular dehydrating action of alkanolamines

Country Status (1)

Country Link
JP (1) JPS62152539A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0196167A (en) * 1987-10-09 1989-04-14 Nippon Shokubai Kagaku Kogyo Co Ltd Production of aziridine compound
JPH02223550A (en) * 1988-11-25 1990-09-05 Nippon Shokubai Kagaku Kogyo Co Ltd Production of aziridine compound
JPH05202027A (en) * 1991-11-29 1993-08-10 Nippon Shokubai Co Ltd Production of alkylene sulfide
JP2002511336A (en) * 1998-04-08 2002-04-16 イネオス アクリリックス ユーケー リミティド Unsaturated acids or their esters and catalysts therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0196167A (en) * 1987-10-09 1989-04-14 Nippon Shokubai Kagaku Kogyo Co Ltd Production of aziridine compound
JPH0555498B2 (en) * 1987-10-09 1993-08-17 Nippon Catalytic Chem Ind
JPH02223550A (en) * 1988-11-25 1990-09-05 Nippon Shokubai Kagaku Kogyo Co Ltd Production of aziridine compound
JPH05202027A (en) * 1991-11-29 1993-08-10 Nippon Shokubai Co Ltd Production of alkylene sulfide
JP2712136B2 (en) * 1991-11-29 1998-02-10 株式会社日本触媒 Method for producing alkylene sulfide
JP2002511336A (en) * 1998-04-08 2002-04-16 イネオス アクリリックス ユーケー リミティド Unsaturated acids or their esters and catalysts therefor
JP2012166200A (en) * 1998-04-08 2012-09-06 Lucite Internatl Uk Ltd Unsaturated acid or ester thereof, and catalyst for the same

Also Published As

Publication number Publication date
JPH0513700B2 (en) 1993-02-23

Similar Documents

Publication Publication Date Title
US4841060A (en) Vapor-phase intramolecular dehydration reaction of alkanolamines
KR910004073B1 (en) Catalyst for vapor-phase intramolecularar dehydration reaction of alkanolamines
KR910004074B1 (en) Catalyst for vapor-phase intermolecular dehydration reaction of alkanolamines
US4301036A (en) Dehydration catalyst for making ethylenimine
JPS62152539A (en) Catalyst for gaseous phase intramolecular dehydrating action of alkanolamines
JP2001524541A (en) Lactam production method
JPH0525550B2 (en)
JPH0513699B2 (en)
RU2154631C2 (en) Method of preparing aliphatic alpha, omega aminonitriles in gas phase
JPH0576344B2 (en)
JPH0516905B2 (en)
JPS6323744A (en) Catalyst for vapor-phase intermolecular dehydrating reaction of alkanolamine
KR970011453B1 (en) Process for producing acrylonitrile
JPS63126557A (en) Catalyst for vapor phase intramolecular dehydration reaction of alkanol amines
JPS63123441A (en) Catalyst for gaseous phase intramolecular dehydration reaction of alkanolamines
JPS63303964A (en) Production of aziridine compound
JPH0275349A (en) Catalyst for gaseous intramolecular dehydrating reaction of alkanolamines
JPH0576346B2 (en)
JPH0576347B2 (en)
JPH0576345B2 (en)
JPS63123442A (en) Catalyst for gaseous phase intramolecular dehydration reaction of alkanolamines
JPS63126556A (en) Catalyst for vapor phase intramolecular dehydration reaction of alkanol amines
JPH08224473A (en) Dehydrocyclization catalyst and production of pyrazines using the same
JP2011224551A (en) Catalyst for producing aziridine compound, and method for producing the aziridine compound using the catalyst
JPS63126558A (en) Catalyst for vapor phase intramolecular dehydration reaction of alkanol amines