JPS6215195Y2 - - Google Patents

Info

Publication number
JPS6215195Y2
JPS6215195Y2 JP1981181829U JP18182981U JPS6215195Y2 JP S6215195 Y2 JPS6215195 Y2 JP S6215195Y2 JP 1981181829 U JP1981181829 U JP 1981181829U JP 18182981 U JP18182981 U JP 18182981U JP S6215195 Y2 JPS6215195 Y2 JP S6215195Y2
Authority
JP
Japan
Prior art keywords
oil storage
pressure
storage tank
equipment
seal gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981181829U
Other languages
Japanese (ja)
Other versions
JPS57129091U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1981181829U priority Critical patent/JPS6215195Y2/ja
Publication of JPS57129091U publication Critical patent/JPS57129091U/ja
Application granted granted Critical
Publication of JPS6215195Y2 publication Critical patent/JPS6215195Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Loading And Unloading Of Fuel Tanks Or Ships (AREA)

Description

【考案の詳細な説明】 この考案は、多数の貯油槽を一箇所に設備した
超大型の貯油プラント(コンビナート)に関する
ものである。
[Detailed description of the invention] This invention relates to an extremely large oil storage plant (complex) that has a large number of oil storage tanks installed in one place.

近年、エネルギ資源の安定供給の確保を図るた
め、石油資源の備蓄の必要性が強調され、大規模
な石油備蓄基地の設置が計画、検討され一部建設
されつつある。
In recent years, in order to ensure a stable supply of energy resources, the necessity of stockpiling petroleum resources has been emphasized, and the establishment of large-scale petroleum stockpiling bases is being planned, considered, and some are being constructed.

これらの基地としては地上、地下、海上等各種
方式が提案されているが、いずれにしても1万〜
10KLの大容量の貯油槽を数基から数十基設置す
る大容量のものであり、建設にあたり用地、気象
等を含めた立地的条件、タンクの型式容量等の技
術的条件、自然環境への影響等を含めた社会的条
件そして経済的条件等、種々の面での十分なる検
討が必要である。この検討項目の中に、窒素酸化
物とともに光化学スモツグ要因物質として知られ
ている炭化水素ペーパの貯油槽からの大気への放
出があり、その放出防止対策が要求されている。
Various types of bases have been proposed, including aboveground, underground, and offshore, but in any case, the
It is a large-capacity oil storage tank with several to dozens of 10KL large-capacity oil storage tanks, and during construction, site conditions including site, weather, etc., technical conditions such as tank type and capacity, and consideration to the natural environment are taken into account. Sufficient consideration must be given to various aspects such as social conditions, including impacts, and economic conditions. Among the items to be considered is the release of hydrocarbon paper, which is known as a photochemical smog-causing substance along with nitrogen oxides, into the atmosphere from oil storage tanks, and measures to prevent this release are required.

このような理由により、貯油槽は大気に炭化水
素ベーパを排出しない密閉構造であることが理想
的である。しかしながら貯油槽を密閉構造にした
場合、槽内圧力の変動を槽の設計耐圧以下に抑え
る必要がある。
For these reasons, it is ideal that the oil storage tank has a sealed structure that does not discharge hydrocarbon vapor into the atmosphere. However, when the oil storage tank has a sealed structure, it is necessary to suppress fluctuations in the pressure inside the tank to below the design pressure resistance of the tank.

一般に貯油槽の内圧の変動要因としては、貯油
槽周囲の気温、日射の変化による内部気体の膨
張、収縮及び貯油液温変化による蒸気圧の変化、
更に貯油受入れ払出し時の液面変化がある。この
中で内圧変動の最大の要因な貯油の受入れ払出し
である。
In general, the factors that cause the internal pressure of an oil storage tank to fluctuate include expansion and contraction of the internal gas due to changes in the temperature around the tank and solar radiation, and changes in vapor pressure due to changes in the storage liquid temperature.
Furthermore, there are changes in the liquid level when receiving and discharging stored oil. Among these, the biggest factor in internal pressure fluctuations is the receiving and discharging of stored oil.

これらの対策のため大容量貯槽型式として、一
般には、貯油量に対応して液上面に密着した屋根
を上下させることにより、液面変動を吸収すると
ともに炭化水素ベーパの発生を抑えるようにした
浮屋根式貯槽(フローテイングルーフタンク)が
採用されている。しかしこの型式の貯油槽におい
ても、油分でぬれた側壁等から炭化水素ベーパが
発生し大気に放出されるとともに、発生ベーパの
分子量の空気より重い成分(C3以上)が浮屋根
上に沈んで滞留し爆発範囲に入る雰囲気を形成す
る可能性がある。
To address these issues, large-capacity storage tanks are generally constructed using floating tanks that absorb liquid level fluctuations and suppress the generation of hydrocarbon vapor by raising and lowering the roof that is in close contact with the upper surface of the liquid depending on the amount of oil stored. A roof-type storage tank (floating roof tank) is used. However, even in this type of oil storage tank, hydrocarbon vapor is generated from the oil-wet side walls and released into the atmosphere, and components of the generated vapor that have a molecular weight heavier than air (C 3 or more) sink to the floating roof. It may stagnate and form an atmosphere within the explosive range.

また、炭化水素ベーパの大気への放出を防止す
るものとして、外気の流入のみを自由にする逆止
弁を備えた貯油槽に、炭化水素ベーパの処理設備
を付設したものも提案(特開昭50−60816号)さ
れているが、外気が逆止弁を通つて槽内に入るだ
けに各種の弊害があり、満足すべきものではな
い。
In order to prevent hydrocarbon vapor from being released into the atmosphere, we have also proposed an oil storage tank equipped with a check valve that only allows outside air to flow in, with hydrocarbon vapor processing equipment attached (Japanese Patent Application Laid-open No. No. 50-60816), however, it is not satisfactory as it has various disadvantages simply because the outside air enters the tank through the check valve.

この考案は、上記に鑑みてなされたもので、炭
化水素ベーパの大気への放出が防止され、また貯
油の受入れ或いは払出し時に生ずる大幅な圧力変
動を合理的に吸収することができる貯油プラント
を提供することを目的とするものである。以下、
この考案を図面を参照して詳細に説明する。
This idea was made in view of the above, and provides an oil storage plant that prevents the release of hydrocarbon vapor into the atmosphere and that can rationally absorb large pressure fluctuations that occur when receiving or discharging stored oil. The purpose is to below,
This invention will be explained in detail with reference to the drawings.

第1図はこの考案の一実施例を示すもので、図
中1はコーンルーフタンタ、球形タンク、ドーム
ルーフタンク等の貯油槽(貯槽)である。この貯
油槽1は数基ないし数十基(図のものは3基)設
置されてこの考案に係る貯油プラントを構成する
もので、いずれも密閉構造に形成されている。各
貯油槽1は、外航或いは内航タンク用入出荷設備
2の受入れ主管3と払出し主管4に、バルブ5を
備えた受入れパイプ6とバルブ7を備えた払出し
パイプ8とで連結されている。この貯油槽1の設
備構成は周知のものである。
FIG. 1 shows an embodiment of this invention, and 1 in the figure is an oil storage tank such as a cone roof tank, a spherical tank, or a dome roof tank. Several to several dozen oil storage tanks 1 (three in the figure) are installed to constitute the oil storage plant according to this invention, and all of them are formed in a closed structure. Each oil storage tank 1 is connected to a main receiving pipe 3 and a main discharging pipe 4 of the receiving/shipping equipment 2 for ocean-going or domestic tanks by a receiving pipe 6 equipped with a valve 5 and a discharging pipe 8 equipped with a valve 7. . The equipment configuration of this oil storage tank 1 is well known.

上記貯油槽1の固定屋根にはそれぞれベント管
9が取り付けられ、各ベント管9は1本の共通ヘ
ツダ10に連結されている。また、この共通ヘツ
ダ10には、後述するベーパ回収設備11とこの
ベーパ回収設備11に連絡パイプ12で連絡され
たシールガス注入設備13が、回収用パイプ14
と注入用パイプ15を介してそれぞれ連結されて
いる。上記のベーパ回収設備11は、貯油槽1の
内圧がたかまつた場合に、貯油槽1内のガスを吸
引して内圧を低下させるとともに、そのガス中に
含まれる炭化水素ベーパを回収するもので、貯油
槽1側に設けられた圧力調節装置16により作動
を制御されるコンプレツサ17と、このコンプレ
ツサ17により圧縮されたガスを冷却してイナー
トガスやメタン、エタン等を除いた炭化水素の大
部分(通常、炭素数が3以上のもの)を凝縮させ
るコンデンサ18と、このコンデンサ18により
凝縮された凝縮液と非凝縮のガスを受け液ガスを
分離するノツクアウトドラム(液ガス分離ドラ
ム)19とから成る。ここで、コンプレツサ17
は圧力調節装置16により駆動装置20を制御さ
れてサクシヨン圧を一定に保つようになつてい
る。ノツクアウトドラム19には、圧力調節装置
21とこの圧力調節装置21によつて開閉を制御
される圧力調節弁22を備えた排気パイプ23が
設けられている。また、コンデンサ18にて冷媒
等を用いて−50℃以下、望ましくは−100℃以下
まで冷却できる場合はコンプレツサ17を用いず
ブロワーで吸収することでベーパ回収設備を構成
することもできる。
A vent pipe 9 is attached to each fixed roof of the oil storage tank 1, and each vent pipe 9 is connected to one common header 10. Further, in this common header 10, a vapor recovery facility 11 (to be described later) and a seal gas injection facility 13 connected to this vapor recovery facility 11 through a communication pipe 12 are connected to a recovery pipe 14.
and are connected to each other via an injection pipe 15. The vapor recovery equipment 11 described above is designed to suck gas in the oil storage tank 1 to lower the internal pressure when the internal pressure of the oil storage tank 1 rises, and to recover hydrocarbon vapor contained in the gas. , a compressor 17 whose operation is controlled by a pressure regulator 16 provided on the oil storage tank 1 side, and the gas compressed by this compressor 17 is cooled to remove most of the hydrocarbons (inert gas, methane, ethane, etc.). A condenser 18 that condenses the condensed liquid (usually containing 3 or more carbon atoms), and a knockout drum (liquid gas separation drum) 19 that receives the condensed liquid condensed by the condenser 18 and non-condensed gas and separates the liquid gas. Become. Here, compressor 17
A drive device 20 is controlled by a pressure regulator 16 to keep the suction pressure constant. The knockout drum 19 is provided with an exhaust pipe 23 having a pressure regulating device 21 and a pressure regulating valve 22 whose opening and closing are controlled by the pressure regulating device 21. Further, if the condenser 18 can be cooled down to -50°C or lower, preferably -100°C or lower using a refrigerant, the vapor recovery equipment can be constructed by absorbing the vapor with a blower without using the compressor 17.

一方、シールガス注入設備13は、上記ベーパ
回収設備11のノツクアウトドラム19に連絡パ
イプ12で連絡されたシールガス用タンク24
と、供給パイプ25により熱源(図示せず)から
送られてきた熱媒体の作用で炭化水素液を蒸発さ
せる蒸発器26とから成る。このシールガス注入
設備13の蒸発器26は前記シールガス用タンク
24と共通ヘツダ10に連通パイプ27と注入用
パイプ15でそれぞれ連結されている。したがつ
て、シールガス用タンク24内の炭化水素液は蒸
発器26に送られて蒸発せしめられ、ガス化され
て貯油槽1に注入される。上記供給パイプ25に
は、前記圧力調節装置16によつて開閉を制御さ
れる調節弁28が設けられ、また、連絡パイプ1
2と連通パイプ27には、ノツクアウトドラム1
9と蒸発器26に取り付けられたレベル調節計2
9,30によつて開閉を制御される調節弁31,
32がそれぞれ設けられている。
On the other hand, the seal gas injection equipment 13 includes a seal gas tank 24 connected to the knockout drum 19 of the vapor recovery equipment 11 through a communication pipe 12.
and an evaporator 26 that evaporates the hydrocarbon liquid under the action of a heat medium sent from a heat source (not shown) through a supply pipe 25. The evaporator 26 of this seal gas injection equipment 13 is connected to the seal gas tank 24 and the common header 10 by a communication pipe 27 and an injection pipe 15, respectively. Therefore, the hydrocarbon liquid in the seal gas tank 24 is sent to the evaporator 26 to be evaporated, gasified, and injected into the oil storage tank 1. The supply pipe 25 is provided with a control valve 28 whose opening and closing are controlled by the pressure control device 16, and the communication pipe 1
2 and the communicating pipe 27 are connected to the knockout drum 1.
9 and a level controller 2 attached to the evaporator 26
a control valve 31 whose opening and closing are controlled by 9 and 30;
32 are provided respectively.

上記において、圧力調節装置21とレベル調節
計29は、ノツクアウトドラム19の圧力又は液
面が高まると調節弁22,31をそれぞれ開く方
向に作動し、またレベル調節計30は蒸発器26
の液面がたかまると調節弁32を閉じる方向に作
動するように構成されている。これまでの説明か
ら理解されるように、圧力調節装置16は、共通
ヘツダ10内の圧力を検出して、コンプレツサ1
7の駆動装置20と調節弁28の両方を制御して
おり、貯油槽1の圧力が所定の設定値域にあれば
両方を作動させず、設定値域以上に高まると駆動
装置20を作動させてコンプレツサ17を働か
せ、逆に圧力が設定値域より低くなると調節弁2
8を開かせて蒸発器26を作用させる。従つて、
コンプレツサ17の作動と調節弁28の開弁とが
同時に行なわれるという誤動作が全くない。すな
わち、コンプレツサ17と調節弁28とに個々に
制御装置を設けた場合には、例えばコーンルーフ
タンタの場合、2つの制御装置の設定圧力の差が
数十mmH2Oであるので、コンプレツサ17の作動
と調節弁28の開弁とが同時に行なわれ、このた
めベーパ回収設備11は貯油槽1内のガスを回収
し続け、同時にシールガス注入設備13はシール
ガスを注入し続けるという空運転状態となる場合
がある。しかし、この考案の貯油プラントにおい
ては、1つの圧力調節装置16によつて不作動域
となる適切な設定値域の幅を隔ててベーパ回収設
備11とシールガス注入設備13とを制御してい
るので、そのようなことが全くない。なお、操業
条件によつては蒸発器後部に補助ホルダ35を設
置する方が好ましい場合もある。また、操業初期
あるいは受入れ払い出し等が連続してシールガス
用タンク内容量で不足する場合はシールガス受入
れ払い出しパイプ39を通して外部よりシールガ
ス用炭化水素液をメイクアツプ又は外部に払い出
しを実施する。
In the above, the pressure regulator 21 and the level regulator 29 operate to open the regulating valves 22 and 31, respectively, when the pressure or liquid level of the knockout drum 19 increases, and the level regulator 30 operates to open the regulating valves 22 and 31, respectively.
When the liquid level rises, the control valve 32 is operated in the direction of closing. As can be understood from the foregoing description, the pressure regulator 16 detects the pressure within the common header 10 and controls the compressor 1.
7, the drive device 20 and the control valve 28 are controlled, and if the pressure in the oil storage tank 1 is within a predetermined set value range, both are not operated, but when the pressure rises above the set value range, the drive device 20 is operated and the compressor is controlled. 17 is activated, and conversely, when the pressure is lower than the set value range, the control valve 2 is activated.
8 is opened to activate the evaporator 26. Therefore,
There is no malfunction where the operation of the compressor 17 and the opening of the control valve 28 are performed at the same time. That is, when the compressor 17 and the control valve 28 are each provided with a control device, for example, in the case of a corn roof tanker, the difference between the set pressures of the two control devices is several tens of mmH 2 O. The operation and the opening of the control valve 28 are performed at the same time, so that the vapor recovery equipment 11 continues to collect gas in the oil storage tank 1, and at the same time, the seal gas injection equipment 13 continues to inject seal gas, resulting in an idle operation state. It may happen. However, in the oil storage plant of this invention, the vapor recovery equipment 11 and the seal gas injection equipment 13 are controlled by one pressure regulator 16 with a width of an appropriate set value range that is a non-operating region. , there is no such thing. Note that depending on operating conditions, it may be preferable to install the auxiliary holder 35 at the rear of the evaporator. In addition, if the internal capacity of the seal gas tank is insufficient at the beginning of operation or after continuous reception and discharge, the hydrocarbon liquid for seal gas is made up or discharged from the outside through the seal gas reception and discharge pipe 39.

次に、上記のように構成されたこの考案の貯油
プラントの作用を説明する。
Next, the operation of the oil storage plant of this invention constructed as described above will be explained.

石油を入出荷設備2から貯油槽1に入れ、或い
は貯油槽1から石油を入出荷設備2に払い出す場
合は、従来と同様に、各貯油槽1のバルブ5,7
を個々に操作して行う。この場合、石油を貯油槽
1に受け入れる場合は、当然、その貯油槽1の内
圧が上昇するが、全ての貯油槽1はベント管9と
共通ヘツダ10により互いに通じているため、内
圧の上昇は全部の貯油槽1に分散されることにな
る。そしてこの際貯油槽1の内圧が設定圧力の上
限をこえると、圧力調節装置16から指令が出て
コンプレツサ17やコンデンサ18等から成るベ
ーパ回収設備11が働き、貯油槽1内のガスを吸
引して内圧を低下させるとともに、ガス中に含ま
れているベーパを凝縮液化してノツクアウトドラ
ム19でガス分離の後凝縮した液相は調節弁31
及び連絡パイプ12を通つてシールガス用タンク
24に入る。また、非凝縮ガスは調節弁22及び
排気パイプ23経由で外部に排出される。なお、
この非凝縮ガスの利用について後述する。
When putting oil into the oil storage tank 1 from the oil storage tank 1 or discharging oil from the oil storage tank 1 to the oil storage tank 1, the valves 5 and 7 of each oil storage tank 1 are used as in the past.
This is done by operating each one individually. In this case, when oil is received into the oil storage tank 1, the internal pressure of the oil storage tank 1 naturally increases, but since all the oil storage tanks 1 communicate with each other through the vent pipe 9 and the common header 10, the internal pressure does not increase. It will be distributed to all oil storage tanks 1. At this time, when the internal pressure of the oil storage tank 1 exceeds the upper limit of the set pressure, a command is issued from the pressure regulator 16, and the vapor recovery equipment 11 consisting of a compressor 17, a condenser 18, etc. is activated, and the gas in the oil storage tank 1 is sucked out. At the same time, the vapor contained in the gas is condensed and liquefied, the gas is separated in the knockout drum 19, and the condensed liquid phase is transferred to the control valve 31.
and enters the seal gas tank 24 through the communication pipe 12. Further, non-condensable gas is discharged to the outside via the control valve 22 and the exhaust pipe 23. In addition,
The use of this non-condensable gas will be described later.

上記ベーパ回収設備11の作用で貯油槽1の内
圧が設定圧力に低下すると、圧力調節装置16か
ら指令が出てベーパ回収設備11のベーパ回収動
作が停止することは説明するまでもない。
It goes without saying that when the internal pressure of the oil storage tank 1 drops to the set pressure due to the action of the vapor recovery equipment 11, a command is issued from the pressure regulator 16 and the vapor recovery operation of the vapor recovery equipment 11 is stopped.

石油を貯油槽1から入出荷設備2に払い出す場
合は、上記とは反対に貯油槽1の内圧が低下する
が、この場合においても内圧の低下はベント管9
と共通ヘツダ10を通じて全貯油槽1に分散され
る。そしてこの場合は、貯油槽1の内圧が設定圧
力の下限以下になると圧力調節装置16から指令
が出されて調節弁28が開かれ、蒸発器26が作
用する。したがつてシールガス用タンク24から
連通パイプ27を通つて蒸発器26に送り込まれ
た凝縮液、つまり軽質炭化水素はガス化されて貯
油槽1に入れられ、その内圧を上昇させる。蒸発
器26に対する軽質炭化水素の送込みはレベル調
節計30によつてコントロールされる。上記シー
ルガス注入設備13の稼動で貯油槽1の内圧が設
定圧になると圧力調節装置16から指令が出され
てシールガス注入設備13のシールガス注入作動
が停止する。
When oil is discharged from the oil storage tank 1 to the receiving/shipping equipment 2, the internal pressure of the oil storage tank 1 decreases, contrary to the above, but even in this case, the internal pressure decreases through the vent pipe 9.
and are distributed to all oil storage tanks 1 through a common header 10. In this case, when the internal pressure of the oil storage tank 1 falls below the lower limit of the set pressure, a command is issued from the pressure regulator 16 to open the regulating valve 28, and the evaporator 26 operates. Therefore, the condensate, that is, light hydrocarbons, sent from the seal gas tank 24 to the evaporator 26 through the communication pipe 27 is gasified and put into the oil storage tank 1, increasing its internal pressure. Light hydrocarbon feed to the evaporator 26 is controlled by a level controller 30. When the internal pressure of the oil storage tank 1 reaches the set pressure due to the operation of the seal gas injection equipment 13, a command is issued from the pressure regulator 16 to stop the seal gas injection operation of the seal gas injection equipment 13.

石油の受入れ時、或いは払出し時以外の内圧変
動に際しても、ベーパ回収設備11とシールガス
注入設備13は上記と全く同様に作用する。
The vapor recovery equipment 11 and the seal gas injection equipment 13 operate in exactly the same manner as described above even when the internal pressure fluctuates at times other than when receiving or discharging oil.

第2図はこの考案の他の実施例を示すもので、
第1図のものと大きく異なる点はシールガス注入
設備の構成である。
Figure 2 shows another embodiment of this invention.
The major difference from the one in FIG. 1 is the configuration of the seal gas injection equipment.

すなわち、この例のシールガス注入設備13
は、シールガスホルダ33を主体とし、このシー
ルガスホルダ33を、前述のノツクアウトドラム
19に設けられた排気パイプ23に連結し、また
注入用パイプ15を介して共通ヘツダ10に連結
するとともに、その注入用パイプ15に圧力調節
装置16によつて開閉を制御される前記調節弁2
8を設けて成り、シールガスホルダ33内にため
られたイナートガスやメタン等の非凝縮ガスを、
貯油槽1の内圧が低下した場合に貯油槽1に供給
するようになつている。なお、ベーパ回収設備1
1等の構成及び作用は第1図のものと同一である
ので、同一の参照符号を付してその説明は省略す
る。
That is, the seal gas injection equipment 13 of this example
The main body is a seal gas holder 33, which is connected to the exhaust pipe 23 provided on the knockout drum 19 described above, and is also connected to the common header 10 via the injection pipe 15, and the injection The said control valve 2 whose opening and closing are controlled by the pressure control device 16 is installed in the pipe 15.
8 is provided, and the non-condensable gas such as inert gas or methane stored in the seal gas holder 33 is
The oil is supplied to the oil storage tank 1 when the internal pressure of the oil storage tank 1 decreases. In addition, vapor recovery equipment 1
Since the structure and operation of the first part are the same as those shown in FIG. 1, the same reference numerals are given and the explanation thereof will be omitted.

この例のものにおいては、イナートガスやメタ
ン等の非凝縮のリサイクルガスに硫化水素等の好
ましさからざる成分を含む場合には、除去装置3
4が設備される。また、操業条件によつてはシー
ルガスホルダ33の後部に低圧の補助ホルダ35
を設置する方が好ましい場合もある。36と37
は、ノツクアウトドラム19とシールガスホルダ
33に取り付けられた凝縮液の排出パイプ、38
はポンプである。又操業初期あるいは受入れ又は
払い出しが連続してシールガスホルダ33の容量
で不足する場合は、シールガス受入れ払い出しパ
イプ39を通して外部よりシールガスを受け入れ
(メークアツプ)又は外部に払い出しを実施す
る。外部よりの受け入れがイナートガスゼネレー
ター等による場合は圧力の低い部分で受け入れる
(メークアツプする)事が望ましくその例を3
9′として示した。
In this example, if the non-condensable recycled gas such as inert gas or methane contains undesirable components such as hydrogen sulfide, the removal device 3
4 will be installed. Also, depending on the operating conditions, a low pressure auxiliary holder 35 may be installed at the rear of the seal gas holder 33.
In some cases, it may be preferable to install 36 and 37
38 is a condensate discharge pipe attached to the knockout drum 19 and the seal gas holder 33;
is a pump. Further, in the initial stage of operation or when the capacity of the seal gas holder 33 is insufficient due to continuous reception or discharge, seal gas is received from the outside through the seal gas reception and discharge pipe 39 (make-up) or discharged to the outside. If external reception is by an inert gas generator, etc., it is desirable to accept (make up) in a low pressure area.
9'.

ところで、第2図のシールガス注入設備を第1
図の貯油プラントに同図2点鎖線に示すように組
み込んで両シールガス注入設備を併用することも
可能である。この場合は、各シールガスの流量比
を調整し更に補助ホルダ35を設置し混合均一化
の後使用する事が望ましい。第1図実線の貯油プ
ラントにおいては、排気パイプ23から排出され
るエタンやメタン等のガスをコンプレツサ17の
燃料あるいはイナートガスゼネレータの原料等に
用いることができる。
By the way, the seal gas injection equipment shown in Figure 2 is
It is also possible to use both seal gas injection equipment together by incorporating it into the oil storage plant shown in the figure as shown by the two-dot chain line in the figure. In this case, it is desirable to adjust the flow rate ratio of each seal gas and further install an auxiliary holder 35 to equalize the mixture before use. In the oil storage plant indicated by the solid line in FIG. 1, gases such as ethane and methane discharged from the exhaust pipe 23 can be used as fuel for the compressor 17 or raw material for the inert gas generator.

以上説明したように、この考案の貯油プラント
は、2基以上の貯油槽1がベント管9を共通ヘツ
ダ10に連結して互に連通した状態で設置され、
この共通ヘツダにベーパ回収設備を、このベーパ
回収設備と前記共通ヘツダにシールガス注入設備
を連結し、共通ヘツダに、共通ヘツダ内の圧力を
検出してこの値が設定値域より高いときはベーパ
回収設備を作動させ、設定値域より低いときはシ
ールガス注入設備を作動させる圧力調節装置を設
けたものであり、貯油液から発する可燃ガスを液
化して収容し、また気化してシールガスとして用
いれば、特別なシールガスを必要としない。この
ような可燃ガスは液化にともない収縮するので、
シールに必要なガス源の液を収容するタンクとし
て大きなものを必要とせず、また、シールガスを
注入するには加熱すればよいので設備も簡単で制
御も容易である。そして、上記の設定値域の幅を
適切に設定することにより、ベーパ回収設備とシ
ールガス注入設備が短時間にオン−オフを繰り返
すことも防がれる。また、貯油槽が共通ヘツダで
連通されていることにより、貯油の受入れ、払出
し時に生ずる1基の対象貯油槽1の内圧変動が全
体の貯油槽1に分散される構成であるので、通常
の内圧変動を系内で吸収することができる。ま
た、貯油の受入れ、払出しがかさなる異状時にお
いては、吸収しきれない圧力変動分のみをベーパ
回収設備11或いはシールガス注入設備13の作
用で補充すればよいので、回収ベーパ量と注入シ
ールガス量が非常に少なくてよく、したがつてベ
ーパ回収設備11とシールガス注入設備13の規
模を小さくできる長所がある。さらに、ベーパ回
収設備11とシールガス注入設備13とを1つの
圧力調節装置16によつて制御しているから、ベ
ーパ回収設備11とシールガス注入設備13とが
同時に運転し続けるという空運転状態を確実に防
止することができる。しかも全体の内圧を大気圧
以上に設定することにより、空気(酸素)の吸込
み混入を阻止し、爆発の危険を避けることができ
る。その上ベーパ回収設備11を備えているの
で、炭化水素ベーパの大気放出を完全になくし
て、大気汚染を防止できるほか、凝縮液はもとよ
り非凝縮ガスを有効に利用して資源の損失を防ぐ
ことができる。
As explained above, in the oil storage plant of this invention, two or more oil storage tanks 1 are installed with the vent pipes 9 connected to the common header 10 and communicated with each other,
A vapor recovery equipment is connected to this common header, a seal gas injection equipment is connected to this vapor recovery equipment and the common header, and the pressure inside the common header is detected and the vapor is recovered when this value is higher than the set value range. It is equipped with a pressure regulator that operates the equipment and operates the sealing gas injection equipment when the pressure is lower than the set value range.The combustible gas emitted from the oil storage liquid is liquefied and stored, and it can also be vaporized and used as sealing gas. , does not require special sealing gas. As such combustible gas contracts as it liquefies,
A large tank is not required to contain the gas source liquid necessary for sealing, and the sealing gas can be injected by heating, so the equipment is simple and control is easy. By appropriately setting the width of the above set value range, it is also possible to prevent the vapor recovery equipment and the seal gas injection equipment from repeatedly turning on and off in a short period of time. In addition, since the oil storage tanks are connected through a common header, internal pressure fluctuations in one target oil storage tank 1 that occur when receiving and discharging stored oil are dispersed to the entire oil storage tank 1, so that the normal internal pressure Fluctuations can be absorbed within the system. In addition, in the event of an abnormal situation in which the receiving and discharging of stored oil is expensive, only the pressure fluctuation that cannot be absorbed can be replenished by the action of the vapor recovery equipment 11 or the seal gas injection equipment 13, so that the amount of recovered vapor and the amount of injected seal gas are This has the advantage that the vapor recovery equipment 11 and the seal gas injection equipment 13 can be downsized. Furthermore, since the vapor recovery equipment 11 and the seal gas injection equipment 13 are controlled by one pressure regulator 16, there is no possibility that the vapor recovery equipment 11 and the seal gas injection equipment 13 will continue to operate simultaneously. This can be reliably prevented. Furthermore, by setting the entire internal pressure above atmospheric pressure, it is possible to prevent air (oxygen) from being sucked in and to avoid the risk of explosion. Moreover, since it is equipped with vapor recovery equipment 11, it is possible to completely eliminate the release of hydrocarbon vapor into the atmosphere and prevent air pollution, and also to effectively utilize not only condensate but also non-condensable gas to prevent loss of resources. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの考案に係る貯油プラントの一実施
例を示すブロツク線図、第2図は他の実施例のブ
ロツク線図である。 1……貯油槽(貯槽)、9……ベント管、10
……共通ヘツダ、11……ベーパ回収設備、13
……シールガス注入設備、16……圧力調節装
置。
FIG. 1 is a block diagram showing one embodiment of an oil storage plant according to this invention, and FIG. 2 is a block diagram of another embodiment. 1... Oil storage tank (storage tank), 9... Vent pipe, 10
... Common header, 11 ... Vapor recovery equipment, 13
...Seal gas injection equipment, 16...Pressure adjustment device.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 密閉構造の2基以上の可燃ガスを発する液を貯
蔵する貯槽と、これらの貯槽に設けられた各ベン
ト管を連結した共通ヘツダと、この共通ヘツダに
連結されたベーパ回収設備と、このベーパ回収設
備と前記共通ヘツダに連結されたシールガス注入
設備と、前記共通ヘツダに設けられ、共通ヘツダ
内の圧力を検出してこの値が設定値域より高いと
きはベーパ回収設備を作動させ、設定値域より低
いときはシールガス注入設備を作動させる圧力調
節装置とを具備して成ることを特徴とする貯油プ
ラント。
Two or more sealed storage tanks for storing liquids that emit flammable gas, a common header connecting each vent pipe provided in these storage tanks, a vapor recovery equipment connected to this common header, and a vapor recovery equipment A seal gas injection device connected to the equipment and the common header is installed in the common header, detects the pressure inside the common header, and when this value is higher than the set value range, activates the vapor recovery equipment, An oil storage plant comprising: a pressure regulator that operates seal gas injection equipment when the pressure is low.
JP1981181829U 1981-12-07 1981-12-07 Expired JPS6215195Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1981181829U JPS6215195Y2 (en) 1981-12-07 1981-12-07

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1981181829U JPS6215195Y2 (en) 1981-12-07 1981-12-07

Publications (2)

Publication Number Publication Date
JPS57129091U JPS57129091U (en) 1982-08-11
JPS6215195Y2 true JPS6215195Y2 (en) 1987-04-17

Family

ID=29979659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1981181829U Expired JPS6215195Y2 (en) 1981-12-07 1981-12-07

Country Status (1)

Country Link
JP (1) JPS6215195Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5511453B2 (en) * 2010-03-18 2014-06-04 トキコテクノ株式会社 Vapor collection device
JP5648668B2 (en) * 2012-10-11 2015-01-07 株式会社タツノ Vapor collection device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52143690A (en) * 1976-05-25 1977-11-30 Mitsubishi Heavy Ind Ltd Device for recovering evaporating freight for ship

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5538313Y2 (en) * 1976-03-01 1980-09-08

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52143690A (en) * 1976-05-25 1977-11-30 Mitsubishi Heavy Ind Ltd Device for recovering evaporating freight for ship

Also Published As

Publication number Publication date
JPS57129091U (en) 1982-08-11

Similar Documents

Publication Publication Date Title
KR101780113B1 (en) A Control System of Inert Gas
US4010779A (en) Apparatus for recovery of vapor
CN107110427B (en) Device and method for cooling liquefied gas
KR102204875B1 (en) A system for emergency discharging lpg and the ship or offshore structure including the same
JPH07217799A (en) Storage device for cryogenic liquid
KR20160120179A (en) Container Carrier
KR101941314B1 (en) A Treatment System Liquefied Gas
US3210953A (en) Volatile liquid or liquefied gas storage, refrigeration, and unloading process and system
CN106170658A (en) For the system that the low temp fuel in vehicle fuel tank is discharged and refills
CN101970082A (en) Gaseous hydrocarbon treating/recovering apparatus and method
JPS6215195Y2 (en)
KR100912169B1 (en) Apparatus and method for cycling condensate
US11067046B2 (en) Vent fuel handling assembly for a gas engine power plant and method of recovering vent fuel gas from a gas engine power plant
JP6519194B2 (en) Boil-off gas release control method for LNG vehicle
JP2009061402A (en) Pier facilities and hydrocarbon recovery system
CN210259661U (en) Low pressure nitrogen of environment-friendly seals cold-insulated vault jar equipment
KR101966200B1 (en) System and Process for Liquefied Gas Filling
KR101943615B1 (en) LNG gasification apparatus for preventing explosion
CN109404720A (en) The cooling of the vaporized component of liquefied gas for dynamic power machine, equipment or the vehicles
US3041841A (en) Storage means for a liquefied gas
KR20180078584A (en) Pressure Control System and Method for Liquefied Gas Storage Tank of Ship
KR102482082B1 (en) Bunkering vessel
WO2024127746A1 (en) Inert gas supply system, ship, and inert gas supply method
KR20170073234A (en) A Regasification System Of Gas
US2459974A (en) Method and apparatus for vaporizing liquefied petroleum gas