JPS62151238A - Control method for electric upsetter - Google Patents

Control method for electric upsetter

Info

Publication number
JPS62151238A
JPS62151238A JP29472085A JP29472085A JPS62151238A JP S62151238 A JPS62151238 A JP S62151238A JP 29472085 A JP29472085 A JP 29472085A JP 29472085 A JP29472085 A JP 29472085A JP S62151238 A JPS62151238 A JP S62151238A
Authority
JP
Japan
Prior art keywords
power
voltage
value
current
thyristor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29472085A
Other languages
Japanese (ja)
Inventor
Masaki Watanabe
政樹 渡辺
Akira Kawamoto
川本 明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisan Industry Co Ltd
Original Assignee
Aisan Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisan Industry Co Ltd filed Critical Aisan Industry Co Ltd
Priority to JP29472085A priority Critical patent/JPS62151238A/en
Publication of JPS62151238A publication Critical patent/JPS62151238A/en
Pending legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Abstract

PURPOSE:To stabilize a shape of a product and a working time by calculating and adding a deviation against set values of a voltage value of a primary side of a current controllable transformer for an electric heating upsetter working, and a power and/or current value, and controlling a thyristor phase angle. CONSTITUTION:The vicinity of the end part of a base material 1 is held by a pressure 6 of an electrode 4 for electric conduction, the tip is made to abut on an anvil 5, the base material 1 is heated by an electric conduction of a secondary side 8 of a current controllable transformer 7 and pressed 2, 3 and it is brought to upsetter forging. In that case, a voltage value 13 and a power value 14 and/or a current value 15 of a primary side 9 are detected, and by a control circuit 16, a deviation value against the respective set values is calculated and added. A phase angle of a thyristor 11 being in the primary side is controlled by a phase control angle adjusting device 12 so that its added value becomes small. By this control, a variance of a forge contraction shape and a forging time of the product 1 is decreased, and by improving the quality and making a tact constant, the production efficiency is improved.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は電気アプセツタの制御方法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method of controlling an electrical upsetter.

(従来の技術) 一般に電気アプセツタは、型鍛造に先立つ予備成形とし
て、棒状の素材の一部に電流を通じて加熱しながら圧縮
して素材を鍛縮するのに用いられ、第5図にその構成の
一例を示す。図中、1は鍛縮された製品、2および3は
上下それぞれの圧縮用のシリンダ、4は素材通電用の電
極、5は同じくアンビル、6は素材クランプ用のクラン
プシリンダである。また7は昇流用変圧器(ステップダ
ウントランス)で、その二次巻線8は電viA4とアン
ビル5に接続され、その−次巻線9は交流電源10に接
続されている。
(Prior art) An electric forge is generally used to forge a rod-shaped material by passing an electric current through it, heating and compressing the material as a preforming step prior to die forging. An example is shown. In the figure, 1 is a forged product, 2 and 3 are upper and lower compression cylinders, 4 is an electrode for energizing the material, 5 is an anvil, and 6 is a clamp cylinder for clamping the material. Further, 7 is a step-down transformer, the secondary winding 8 of which is connected to the voltage viA 4 and the anvil 5, and the secondary winding 9 of which is connected to the AC power source 10.

(発明が解決しようとする問題点) ところが上記従来の電気アプセツタにおいては、製品1
のふくれ部1aの形状および鍛縮時間のばらつきが大き
いという問題があった。これらのばらつきの原因として
は上下のシリンダ2 J5よび3の加圧力のばらつきや
、投入される電気的エネルギの変動などが考えられるが
、シリンダの加圧力は通常比較的一定値に維持されてお
り、発明者の知見によると投入される電気的エネルギの
変動による影響が最も大きい。すなわち従来の電気アブ
廿ツタにおいては、昇流用変圧器7は直接交流電源10
に接続されているオープンループ式の電気回路を有する
ので、−次巻線9の端子電圧Eは第6図(a>に示すよ
うに交流電源10の電圧変動の影響を直接受け、また−
次側の電力Pと電流■は同図(b)と(C)に示すよう
に、前記電源電圧の変動に加えて通電開始時のラッシュ
電流によるオーバーシュートとアンダーシュート現象を
生じ、その後は素材が昇温しで鍛縮されて太くなるため
時間と共に増加しつつ変動する。このような昇流用変圧
器7への入力電圧、電流、電力の変動により通電時の素
材の温度、昇温速度等に製品ごとのばらつきを生じ、こ
れにより製品の鍛縮形状および鍛縮時間のばらつきを生
じるものと考えられる。
(Problem to be solved by the invention) However, in the above-mentioned conventional electric upsetter, the product 1
There was a problem in that the shape of the bulge portion 1a and the forging time varied greatly. Possible causes of these variations include variations in the pressurizing force of the upper and lower cylinders 2 J5 and 3, and fluctuations in the input electrical energy, but the pressurizing force of the cylinders is usually maintained at a relatively constant value. According to the inventor's findings, the greatest influence is due to fluctuations in the input electrical energy. That is, in the conventional electric generator, the step-up transformer 7 is directly connected to the AC power supply 10.
Since it has an open-loop electric circuit connected to -, the terminal voltage E of the -th winding 9 is directly affected by the voltage fluctuation of the AC power supply 10, as shown in Fig. 6 (a), and -
As shown in Figures (b) and (C), the power P and current ■ on the next side cause overshoot and undershoot phenomena due to the rush current at the start of energization in addition to fluctuations in the power supply voltage. As the temperature increases, it is forged and becomes thicker, so it increases and fluctuates over time. Such fluctuations in the input voltage, current, and power to the step-up transformer 7 cause variations in the temperature of the material during energization, the rate of temperature rise, etc. for each product, and this causes variations in the forging shape and forging time of the product. This is thought to cause variation.

この発明は上記従来の問題点を解決するもので、電気ア
ブ廿ツタの投入電気エネルギをフィードバックにより安
定化させることによって、製品の鍛縮形状J5よび鍛縮
時間のばらつきを減少させることができる電気アブ廿ツ
タの制御方法を提供しようとするものである。
This invention solves the above-mentioned conventional problems, and is an electric abrader that can reduce variations in the forged shape J5 and forging time of products by stabilizing the input electrical energy of the electric abrader through feedback. This paper attempts to provide a method for controlling leaf ivy.

(問題点を解決するための手段) 上記目的を達成するためにこの発明の電気アブ廿ツタの
制御方法においては、電気アブ廿ツタの昇流用変圧器の
一次側に電力調整用のサイリスタを接続し、上記昇流用
変圧器の一次巻線にかかる電圧と、電力および/または
電流とを検出し、上記電圧の検出値と電圧設定値との偏
差と、上記電力および/または電流の検出値と電力設定
値および/または電流設定値の偏差の各偏差を加算し、
得られた加算信号により上記各偏差を減少させる方向に
上記サイリスタの位相制御角を調整する位相制御をおこ
なう。
(Means for Solving the Problems) In order to achieve the above object, in the method for controlling an electric turbine according to the present invention, a thyristor for power adjustment is connected to the primary side of the step-up transformer of the electric turbine. The voltage, power and/or current applied to the primary winding of the step-up transformer is detected, and the deviation between the detected voltage value and the voltage setting value and the detected value of the power and/or current are determined. Add each deviation of the power setting value and/or current setting value,
Phase control is performed using the obtained addition signal to adjust the phase control angle of the thyristor in a direction that reduces each of the deviations.

この発明においては、電気アブ廿ツタの投入電気エネル
ギを制御するためのパラメータとして、昇流用変圧器の
一次巻線にかかる電圧と電力と電流の三つを用いてもよ
いが、電力と電流の一方と電圧を用いれば充分な精度の
制御をおこなうことができ、発明者の知見によると電圧
と電力を用いるのが最も好ましい。
In this invention, the voltage, power, and current applied to the primary winding of the step-up transformer may be used as the parameters for controlling the input electrical energy of the electric aerator; Control with sufficient precision can be achieved by using either voltage or voltage, and according to the inventor's findings, it is most preferable to use voltage and power.

また電圧、電力、電流の設定値としては種々のパターン
を採用し19るが、第6図に示すように従来装置におけ
る電力および電流の変化状態は時間と共に増加する直線
で近似できるので、該直線を設定値とし、電圧は一定電
圧を設定値として用いるようにすれば、各設定値の決定
を従来法によるデータをちとに容易におこなうことがで
き、かつ制御も容易であるので好ましい。
In addition, various patterns are adopted for the set values of voltage, power, and current19, but as shown in Figure 6, the state of change in power and current in the conventional device can be approximated by a straight line that increases with time. It is preferable to use a constant voltage as a set value, because each set value can be easily determined using data obtained by the conventional method, and control is also easy.

(作用) この発明の制御方法においては、R流用変圧器の一次巻
線にかかる電圧と電力および/または電流が増減して各
設定値に対して偏差を生じると、各偏差値の加算信号に
より上記変圧器の一次側に設けたサイリスタの位相制御
がおこなわれ、サイリスタの点弧時期の調整によって各
偏差値の減少化がはかられる。これによって前記電圧と
、電力および/または電流の変動中は各設定値に対し所
定の範囲内に維持され、素材加熱用の電気エネルギが均
一化されて製品の鍛縮時間および鍛縮形状のばらつきが
減少する。
(Function) In the control method of the present invention, when the voltage, power, and/or current applied to the primary winding of the R diversion transformer increases or decreases and a deviation occurs with respect to each set value, an addition signal of each deviation value is generated. The phase of the thyristor provided on the primary side of the transformer is controlled, and each deviation value is reduced by adjusting the firing timing of the thyristor. This maintains the voltage, power, and/or current within a predetermined range for each set value during fluctuations, and equalizes the electrical energy for heating the material, resulting in variations in product forging time and shape. decreases.

(実施例) 以下第1図乃至第4図によりこの発明の一実施例を説明
する。
(Embodiment) An embodiment of the present invention will be described below with reference to FIGS. 1 to 4.

図中、第1図と同一部分には同一符号を付しである。1
1は昇流用変圧B7の一次側に接続した電力調整用のサ
イリスタ、12はこのサイリスタの位相制御角調整装置
である。また13は一次巻線9の電圧検出用の電圧セン
サ、14は同じく電力センサ、15は同じく電流センサ
であり、この実施例では電圧センサー3および電力レン
サ14による検出値をパラメータとして用い、第2図に
構成を示1“フィー、ドパツク用の制御回路16により
以下の演算をおこなう。すなわち、第2図において17
は時間と共に変化しない一定電圧の電圧設定IaE o
を有する電圧設定器、18は通電開始時t から通電終
了時t2に至る間に時間と共に直線的に増加する電力設
定値P。を有する電力設定器、19および20は比較器
として動作ザる差動増巾器であって、電圧センナ13に
よる電圧検出値と電圧設定器17の電圧設定!1fiE
oとを差動増1】器19により比較増巾してその偏差信
号S1を加算器21に入力し、また電力センサー4によ
る電力検出値と電力設定値P。とを差動増巾器20によ
り比較増巾してその偏差信号S2を加算器21に入力す
る。両幅差信号S 、S2は加算器21により必要によ
り重みをつけて加算し、その加算信号S3は増巾器22
により増巾してフィードバックに適した電圧信号■、と
したのち、加舜器23によってバイアス電圧発生¥52
4のバイアス電圧V。と加算し、位相制御角調整装置1
2に制御信号として与えて、上記電圧偏差および電力偏
差を減少させる方向に位相制御角を調整するようにサイ
リスタ11の位相制御をおこなう。この位相制御により
、第4図に示すように没入電圧J3よび電力が過大な投
入パワー過大状態においてはり゛イリスタ11の点弧時
期を遅らせ、投入電力および電圧が不足する投入パワー
不足状態においてサイリスタ11の点弧11)期を進ま
せることになり、さらに瞬時的な投入電圧および電力の
変動に対しても絶えず点弧時期を調整して電圧および電
力の偏差を修正するので、−次%$29にかかる電圧お
よび電力のばらつきは少量に抑制されて、製品の鍛縮形
状および鍛縮時間のばらつきが減少するのである。
In the figure, the same parts as in FIG. 1 are given the same reference numerals. 1
1 is a power regulating thyristor connected to the primary side of the step-up transformer B7, and 12 is a phase control angle adjusting device for this thyristor. Further, 13 is a voltage sensor for detecting the voltage of the primary winding 9, 14 is a power sensor, and 15 is a current sensor. In this embodiment, the values detected by the voltage sensor 3 and the power sensor 14 are used as parameters, and the second The configuration is shown in FIG.
is a constant voltage setting that does not change over time IaE o
A voltage setting device 18 has a power setting value P that increases linearly with time from the time t 1 when energization starts to the time t 2 when energization ends. The power setters 19 and 20 are differential amplifiers that operate as comparators, and are configured to compare the voltage detected by the voltage sensor 13 with the voltage setting of the voltage setter 17! 1fiE
The difference signal S1 is compared and amplified by the differential amplification unit 19, and the difference signal S1 is inputted to the adder 21, and the power detection value by the power sensor 4 and the power set value P. are compared and amplified by the differential amplifier 20 and the resulting deviation signal S2 is input to the adder 21. The width difference signals S and S2 are weighted and added as necessary by an adder 21, and the added signal S3 is added to an amplifier 22.
After amplifying the voltage signal to a voltage signal suitable for feedback, the adder 23 generates a bias voltage.
4 bias voltage V. and phase control angle adjustment device 1.
2 as a control signal to control the phase of the thyristor 11 so as to adjust the phase control angle in a direction that reduces the voltage deviation and power deviation. As shown in FIG. 4, this phase control delays the firing timing of the thyristor 11 in an excessive input power state where the immersion voltage J3 and electric power are excessive, and delays the firing timing of the thyristor 11 in an insufficient input power state where the input power and voltage are insufficient. The ignition period 11) is advanced, and the ignition timing is constantly adjusted to correct deviations in voltage and power even in response to instantaneous fluctuations in voltage and power. Variations in the voltage and power applied to the product are suppressed to a small amount, and variations in the forged shape and forging time of the product are reduced.

第3図(a)〜(C)は上記方法により第6図と同じ製
品(エンジンバルブ)の鍛縮をおこなった際の電圧E、
電力P、電流I(電流センサ15による検出値)の変化
状態を示し、第6図に比べ変動の少ない電気エネルギの
投入がおこなわれ、製品鍛縮形状および鍛縮時間のばら
つきの少ない良好な結果が得られた。
Figures 3 (a) to (C) show the voltage E when the same product (engine valve) as in Figure 6 was forged using the above method;
It shows the state of change in electric power P and current I (values detected by the current sensor 15), and compared to Fig. 6, electric energy was input with less fluctuation, and good results were obtained with less variation in product forging shape and forging time. was gotten.

この発明は上記実施例に限定されるものではなく、たと
えば制御装置16としては上記以外の構成の装置を用い
てもよい。
The present invention is not limited to the embodiments described above, and for example, a device having a configuration other than that described above may be used as the control device 16.

(発明の効果) 以上説明したようにこの発明によれば、電気アプセツタ
における製品の鍛縮形状および鍛縮時間のばらつきを減
少させることができ、製品品質の向上およびタクト一定
色による鍛造ラインの生産能率向上に寄与するものであ
る。
(Effects of the Invention) As explained above, according to the present invention, it is possible to reduce variations in the forged shape and forging time of products in an electric forge, improve product quality, and produce a forging line with a constant takt time. This contributes to improving efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の方法に使用する装置の一例を示ず機
器系統図、第2図は第1図の制御回路の回路図、第3図
(a)〜(C)は第1図の装置における昇流用変圧器の
一次側の電圧、電力、電流と時間の関係を示す線図、第
4図はこの発明方法と従来方法の比較説明図、第5図は
従来の電気アプセツタの一例を示す機器系統図、第6図
(a)〜(C)は第5図の装置における昇流用変圧器の
一次側の電圧、電力、電流と時間の関係を示づ線図であ
る。 7・・・昇流用変圧器、9・・・−次巻線、10・・・
交流電源、11・・・サイリスタ、12・・・位相制御
角調整装置、13・・・電圧センサ、14・・・電力セ
ンサ、15・・・電流センサ、16・・・制御回路、1
7・・・電圧設定器、18・・・電力設定器、19・・
・差動増巾器、20・・・差動増d]器、21・・・加
算器、22・・・増巾器、23・・・加咋器、24・・
・バイアス電圧発生器。 図  面 始3図 (b) tw    t2    晴間 第4図
Fig. 1 is an equipment system diagram showing an example of the apparatus used in the method of the present invention, Fig. 2 is a circuit diagram of the control circuit shown in Fig. 1, and Figs. A diagram showing the relationship between voltage, power, current and time on the primary side of the step-up transformer in the device, Figure 4 is a comparative illustration of the method of this invention and the conventional method, and Figure 5 is an example of a conventional electric upsetter. The equipment system diagrams shown in FIGS. 6(a) to 6(C) are diagrams showing the relationship between voltage, power, current, and time on the primary side of the step-up transformer in the apparatus of FIG. 5. 7...Step-up transformer, 9...-second winding, 10...
AC power supply, 11... Thyristor, 12... Phase control angle adjustment device, 13... Voltage sensor, 14... Power sensor, 15... Current sensor, 16... Control circuit, 1
7... Voltage setting device, 18... Power setting device, 19...
・Differential amplifier, 20... Differential amplifier d] device, 21... Adder, 22... Amplifier, 23... Adder, 24...
・Bias voltage generator. Figure Start of page 3 (b) tw t2 Haruma Figure 4

Claims (1)

【特許請求の範囲】 1 電気アプセツタの昇流用変圧器の一次側に電力調整
用のサイリスタを接続し、上記昇流用変圧器の一次巻線
にかかる電圧と、電力および/または電流とを検出し、
上記電圧の検出値と電圧設定値との偏差と、上記電力お
よび/または電流の検出値と電力設定値および/または
電流設定値の偏差の各偏差を加算し、得られた加算信号
により上記各偏差を減少させる方向に上記サイリスタの
位相制御角を調整する位相制御をおこなうことを特徴と
する電気アプセツタの制御方法。 2 電圧設定値が一定電圧であり、電力設定値および/
または電流設定値が時間と共に増加する直線で表わされ
る特許請求の範囲第1項記載の電気アプセツタの制御方
法。
[Claims] 1. A thyristor for power adjustment is connected to the primary side of a step-up transformer of an electrical upsetter, and the voltage, power and/or current applied to the primary winding of the step-up transformer is detected. ,
The deviation between the detected voltage value and the voltage setting value, and the deviation between the detected power and/or current value and the power setting value and/or current setting value are added, and the resulting sum signal is used to A method for controlling an electric upsetter, comprising performing phase control to adjust the phase control angle of the thyristor in a direction that reduces deviation. 2 The voltage setting value is a constant voltage, and the power setting value and/or
2. The method of controlling an electric upsetter according to claim 1, wherein the current setting value is represented by a straight line increasing with time.
JP29472085A 1985-12-26 1985-12-26 Control method for electric upsetter Pending JPS62151238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29472085A JPS62151238A (en) 1985-12-26 1985-12-26 Control method for electric upsetter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29472085A JPS62151238A (en) 1985-12-26 1985-12-26 Control method for electric upsetter

Publications (1)

Publication Number Publication Date
JPS62151238A true JPS62151238A (en) 1987-07-06

Family

ID=17811435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29472085A Pending JPS62151238A (en) 1985-12-26 1985-12-26 Control method for electric upsetter

Country Status (1)

Country Link
JP (1) JPS62151238A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5054301A (en) * 1990-03-26 1991-10-08 Honda Giken Kogyo Kabushiki Kaisha Method of forming metallic product
JP2008132527A (en) * 2006-11-29 2008-06-12 Honda Motor Co Ltd Upsetting device
KR100922227B1 (en) * 2007-08-13 2009-10-20 삼미금속 주식회사 Electrical upset device for manucturing a exhaust valve and method thereof
CN103406478A (en) * 2013-07-31 2013-11-27 黄汝坚 Variable-control-output electric upsetting machine and control method thereof
CN107199307A (en) * 2017-06-06 2017-09-26 麻城市中达精密机械有限公司 A kind of method of electric upsetter and its processing valve provided with pressure sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5054301A (en) * 1990-03-26 1991-10-08 Honda Giken Kogyo Kabushiki Kaisha Method of forming metallic product
JP2008132527A (en) * 2006-11-29 2008-06-12 Honda Motor Co Ltd Upsetting device
KR100922227B1 (en) * 2007-08-13 2009-10-20 삼미금속 주식회사 Electrical upset device for manucturing a exhaust valve and method thereof
CN103406478A (en) * 2013-07-31 2013-11-27 黄汝坚 Variable-control-output electric upsetting machine and control method thereof
CN107199307A (en) * 2017-06-06 2017-09-26 麻城市中达精密机械有限公司 A kind of method of electric upsetter and its processing valve provided with pressure sensor

Similar Documents

Publication Publication Date Title
WO1996010468A1 (en) Welding method for the connection of a component to a workpiece, and a device for carrying out the method
JPS62151238A (en) Control method for electric upsetter
JPS61123481A (en) Constant-current control method of resistance welder
CN112743215A (en) Welding temperature control method and device for inductor
US4249236A (en) Controller for power converter
US4715523A (en) Electromagnetic power drive for a friction welding machine
ATE164956T1 (en) SELF-ADJUSTING REGULATOR
US5124521A (en) Method and apparatus for controlling welding current in resistance welding
JP3263444B2 (en) Power supply system using solar cells
JP3530798B2 (en) Control method of electric dust collector pulse charging device
US4471265A (en) Apparatus for counteracting the cathode current increase occurring during warming-up in a travelling-wave tube in response to variation in the grid-cathode distance
JPH0679458A (en) Method and device for controlling welding current according to welding speed in arc welding device
JP3208134B2 (en) Forging equipment
SU555958A1 (en) Device for controlling induction heating of metals under pressure treatment
SU1648684A1 (en) Method for automatically controlling hf pipe welding
JPS61185099A (en) Digital excitation controller of generator
JPS5617193A (en) High frequency induction heating welding equipment
SU554124A1 (en) Pulse generator for electrolysis treatment of metals
SU766781A1 (en) Method for controlling arc length in welding with consumable electrode
JPH053074A (en) Control method of inverter device for induction heating
GB2068147A (en) Welding current control in resistance welding
JP2845648B2 (en) Method and apparatus for controlling welding current of DC resistance welding machine
SU1031681A1 (en) Apparatus for controlling welding voltage in butt welding machine
SU1581512A1 (en) Method of controlling resistance welding
JPS5913584A (en) Method and device for controlling resistance welding