JPS6215119B2 - - Google Patents

Info

Publication number
JPS6215119B2
JPS6215119B2 JP56167963A JP16796381A JPS6215119B2 JP S6215119 B2 JPS6215119 B2 JP S6215119B2 JP 56167963 A JP56167963 A JP 56167963A JP 16796381 A JP16796381 A JP 16796381A JP S6215119 B2 JPS6215119 B2 JP S6215119B2
Authority
JP
Japan
Prior art keywords
graphite
water
graphite fluoride
polymer
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56167963A
Other languages
Japanese (ja)
Other versions
JPS5869788A (en
Inventor
Kazushi Tsukuda
Akira Sakagami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP56167963A priority Critical patent/JPS5869788A/en
Priority to US06/434,902 priority patent/US4557974A/en
Priority to GB08229787A priority patent/GB2109781B/en
Priority to IT23857/82A priority patent/IT1153280B/en
Priority to FR8217644A priority patent/FR2515190B1/en
Priority to DE3239213A priority patent/DE3239213C2/en
Publication of JPS5869788A publication Critical patent/JPS5869788A/en
Publication of JPS6215119B2 publication Critical patent/JPS6215119B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Lubricants (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Metal Extraction Processes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、固体潤滑剤、電池活物質などとして
有用なフツ化黒鉛の変性された組成物に関し、更
にくわしくは表面にグラフト重合した重合体によ
り被覆してなるフツ化黒鉛とその製造方法に関す
るものである。 フツ化黒鉛は炭素又は黒鉛をフツ素と反応させ
て得られる白色ないし灰色の固体粉末であつて、
(CF)o又は(C2F)oで表わされるものが知られて
おり、特異な潤滑性、撥水撥油性を有し、耐薬品
性もすぐれているところから、固体潤滑剤、電池
活物質等として広く用いられている。 しかしながら、フツ化黒鉛は低表面エネルギー
性のため撥水性が強く、水中には分散せず、また
樹脂との相溶性も悪く、成形加工性に乏しい等の
ため、種々の形態での取り扱いにおいて問題の多
いものであつた。そのため、通常は適当な粘結剤
を使用して成形したり、分散性を改善するための
処理を行う必要がある。 例えば固体潤滑剤として用いる場合、理想的に
は、フツ化黒鉛の粉末自体が使用部分に連続密着
膜を形成することが好ましいが、フツ化黒鉛は前
述したように水に対して全く濡れ性を示さず、水
に対する接触角は(CF)oの場合で145゜であり、
PTFE(四弗化エチレン樹脂)のそれが100〜110
゜であるのに比較すると、非常に大きいため、こ
のままでは水を担体として用いても殆ど分散でき
ないものである。従つて、従来特公昭49−19750
号公報記載の発明では、コロイド状シリカ等の分
散剤を用いる方法が、また、特開昭49−116462号
公報記載の発明では、粘結性物質あるいは粘結性
物質と界面活性剤で表面を被覆処理してなるフツ
化黒鉛が提案されており、かなりの効果をあげて
いるが、いまだ十分とは言えず、完全な解決策と
なつていないのが実状である。すなわち、特公昭
49−19750号公報のものは、分散性を良好にする
ためコロイド状シリカ等の分散剤を用いるもので
あるが、その構成上、成形体として用いる場合に
おいてはフツ化黒鉛の含有量には上限があり、せ
いぜい60重量%程度までしか、含有させることが
できず、表面エネルギーに由来するフツ化黒鉛の
種々の特性を有効に利用できるに至らないもので
ある。また、特開昭49−116462号公報の如き方法
においては、ワツクス等の粘結性物質がいわゆる
吸着、接着という単なる物理的な力によりフツ化
黒鉛粒子表面に被覆されているものであり、種々
の使用態様において、必ずしも安定的に、被覆さ
れている状態をとるものではなく、更に、均一な
被覆が困難であるという欠点を有する。しかも、
かかる方法による場合においては、フツ化黒鉛の
特性を十分に発揮させるために、フツ化黒鉛に対
する粘結性物質を可及的に少なくし、且つ均一に
被覆することは殆ど不可能なものである。また、
フツ化黒鉛を主体とする成形体の例として、一次
電池の電極を製造する方法において、PTFEとの
混合物を加圧成形することが知られており、フツ
化黒鉛をPTFEに配合するには、通常TFE(四
弗化エチレン)を乳化重合して得られるPTFE水
性分散体が使用されるが、フツ化黒鉛は撥水性が
極めて大であるため、フツ化黒鉛を予め水と親和
性の強い有機溶媒に懸濁して添加する必要があ
り、しかもフツ化黒鉛を十分に濡らすためには、
多量の有機溶媒が必要となり、PTFE粒子の凝析
が起こり大きい凝塊が生成するため、均一な粉末
状混合体が得られないものである。更に、この大
きな凝塊は粘着性が強く、粉砕が困難であり、そ
のまま圧縮成形すれば圧力が均一にかからないた
めに、内部に歪を生じ易く良好な成形体が得られ
ないものであつた。 本発明は、以上の如き欠点を解決することを目
的とするものであり、種々の担体において極めて
良好な分散性を示すと同時に、フツ化黒鉛の特性
を最大限に発揮させることが出来るように鋭意研
究を行なつた結果、フツ化黒鉛粉末をビニル性単
量体を表面にグラフト重合させてマイクロカプセ
ル化することで、この目的を達成できることを見
出し本発明を完成した。 即ち、本発明はビニル樹脂により表面がグラフ
ト結合されてなるポリマー被覆フツ化黒鉛及びそ
の製造方法であり、製造方法としては水―有機溶
媒混合系または水―界面活性剤混合系にてフツ化
黒鉛と、ラジカル重合もしくはラジカル共重合し
うるビニル性単量体とを分散せしめ、水溶性重合
開始剤の存在下にて重合を行い、フツ化黒鉛にグ
ラフト結合した重合体でフツ化黒鉛を被覆するこ
とを特徴とする、ポリマー被覆フツ化黒鉛の製造
方法である。 本発明で用いられるフツ化黒鉛とは(CF)o
(C2F)oで表わされるもののほか、そのいかなる
割合の混合物をも包含する。 本発明のフツ化黒鉛はビニル樹脂によりグラフ
ト結合されており、該結合は単なる吸着や接着と
異なつて溶媒抽出により分離し得ない程度に強固
な結合形式によりフツ化黒鉛表面に結合している
ものであり、均一な被覆がなされるものである。
樹脂含量は任意な値をとり得るが、分散性を良好
にするためには少なくとも0.5重量%程度が必要
であり、上限は特にないが、フツ化黒鉛の物性を
発揮させるためには50重量%程度までが好ましい
といえる。したがつて少ない樹脂量でも種々の担
体の分散性も良好となり、成形とする場合におい
ても容易に加熱加圧成形が可能で加工性も極めて
良く、且つ強度も大とすることが出来る。本発明
のフツ化黒鉛は少量の樹脂量でも均一に且つ強固
に被覆されるため、フツ化黒鉛の特性を最大限に
発揮させ得ることが出来、さらに用途が広がるも
のである。例えば、プラスチツクの充填材、潤滑
油、グリース等の添加剤、潤滑性能をもつた軸受
類、パツキン類、電極の成形体などに好適に用い
得るものである。なお、本発明での、ビニル樹脂
の被覆は、完全にフツ化黒鉛を被覆してなるもの
に限定されるものではなく、部分的にフツ化黒鉛
表面が露出してなるものをも含むものである。 本発明方法に使用される有機溶媒は水に溶解性
のあるものなら何でもよく、メチルアルコール、
エチルアルコール等の各種アルコール、アセトン
等のケトン類、エーテル類、アミン類などが用い
られ、界面活性剤としてはアニオン性、カチオン
性、ノニオン性界面活性剤のうちいずれを使用し
てもよく、混合系であつてもよい。 一方、フツ化黒鉛を被覆する重合体を形成する
ためのビニル性単量体はラジカル重合、またはラ
ジカル共重合しうるものであればよく、例えばア
クリル酸、メタクリル酸、アクリル酸塩、メタク
リル酸塩、アクリル酸エステル、メタクリル酸エ
ステル、アクリロニトリル、N―メチロールアク
リルアミド、塩化ビニル、酢酸ビニル、スチレ
ン、ジビニルベンゼンなどのビニル基を有する単
量体が用いられる。 水溶性の重合開始剤としては二酸化硫黄、亜硫
酸水溶液、亜硫酸水素塩溶液、過硫酸カリウム、
アゾビスシアノ吉草酸、V―50(2,2′―アゾビ
ス―(2―アミジノプロパン)―ジハイドロクロ
ライド、和光純薬製)などが用いられる。 本発明を好適に実施するには、水100重量部中
に有機溶媒1〜100重量部または界面活性剤1〜
50重量部、フツ化黒鉛1〜100重量部とビニル性
単量体0.1〜100重量部とを加えて、よく撹拌分散
させ、このようにして得られた懸濁液に重合開始
剤を添加し、よくかきまぜる。重合開始剤の使用
量はビニル性単量体に対して、0.01〜20重量%の
範囲で十分である。 本発明の重合反応は常温で可能であるが、重合
時間を短縮したい場合、約70℃程度まで加温すれ
ばよい。本発明に従えば1〜5時間程度の短い重
合時間で高い重合率を得ることができる。 重合反応終了後、スラリー状のフツ化黒鉛を
別し、よく水で洗浄した残留物を乾燥する。 上述のような本発明方法により得られるフツ化
黒鉛の重合体被覆組成物は任意の樹脂量で被覆で
き、反応条件の制御も容易である。 このように本発明ではフツ化黒鉛を極めて少量
の樹脂によつてマイクロカプセル化でき、得られ
たものは自在に成形することができるため、フツ
化黒鉛の理想的な使用形態であるフツ化黒鉛自体
による連続密着膜(層)に近いものを形成させる
ことが可能となり、且つ他の材料中に分散させる
場合においても周りがなじみのよい親性ポリマー
被覆でおおわれているために分散性が極めて良
く、それ故に効果的に性能が生かせるものであつ
て従来、使用されているフツ化黒鉛の各種用途
に、フツ化黒鉛単味以上の効果の発現を行わせる
ことができる。 次にその代表的な用途の例を列挙する。 (1) 合成ゴム、天然ゴム、合成樹脂、ガラス繊
維、セラミツクス、カーボン樹脂、アスフアル
ト、タール―ピツチ黒鉛等との複合材料化によ
つて得られる成形体は自己潤滑性摺動部材、パ
ツキン、ガスケツト等シール部材、繊維等に用
いる。本発明のポリマー被覆フツ化黒鉛は基材
との結合がしつかりと行われており、摺動面に
安定な潤滑膜を形成させることが出来るため、
摩耗量が少なく高PV値(圧力と速度の積)に
耐えることができる。 上記合成ゴムとしてはスチレンゴム、ブタジ
エンゴム、クロロプレンゴム、ブチルゴム、ニ
トリルゴム、エチレンプロピレンゴム、ハイパ
ロン、アクリルゴム、ウレタンゴム、フツ素ゴ
ム、シリコーンゴム、チオコールゴム、エチレ
ン酢ビゴムなどが、合成樹脂としてはフエノー
ル樹脂、ユリア樹脂、メラミン樹脂、アニリン
樹脂、不飽和ポリエステル、ジアリルフタレー
ト、エポキシ樹脂、アルキド樹脂、ポリイミ
ド、シリコン樹脂、ポリエチレン、ポリプロピ
レン、ポリスチレン、ポリメタクリル酸メチ
ル、ポリアクリロニトリル、ポリビニルブチラ
ール、ポリアミド、ABS、ポリカーボネー
ト、ポリアセタール、ポリエチレンテレフタレ
ート、ポリフエニレンオキサイド、ポリスルホ
ン、ポリフエニレンサルフアイド、ポリウレタ
ン、アイオノマー樹脂、フツ素樹脂、セルロー
ス系プラスチツク等が挙げられる。 (2) グリース、潤滑油に添加してギア油、スピン
ドル油、冷凍機油、ダイナモ油、タービン油、
マシン油、シリンダ油、航空ピストン発動機潤
滑油、マリンエンジン油、フアイバーグリー
ス、カツプグリース、グラフアイトグリース、
自動車用ベアリンググリース、コロガリ軸受グ
リース等に用いる。 上記潤滑油としては、ポリオレフイン類、グ
リコール類、カルボン酸エステル類、リン酸エ
ステル類、シリコーン類、パーフルオロカーボ
ン酸、塩化芳香族類等が、グリースとしてはカ
ルシウム石けんグリース、ナトリウム石けんグ
リース、アルミニウム石けんグリース、混合石
けんグリース、バリウム石けんグリース、カル
シウムコンプレツクスグリース、バリウムコン
プレツクスグリースが、あるいは増稠剤として
石けん以外の例えばベントン、フアインシリカ
等を用いた非石けんグリース等が挙げられる。 (3) 潤滑用乾燥被膜として、本発明のポリマー被
覆フツ化黒鉛単独又は他の有機、無機結合剤と
組合わせて摺動部にコーテイングし乾燥潤滑被
膜を形成させ、終身潤滑、初期なじみ、離型に
用いる。 (4) 焼結合金、プラスチツク成型品、ゴム成型品
等の潤滑離型剤として例えばスプレー化して用
いる。 (5) 金属加工、切削、圧延、引抜き、プレス、研
磨等の際、潤滑用として切削油、プレス油、圧
延油、研削油中に混合添加して用いる。 上記の潤滑剤、離型剤としての用途の外、フツ
化黒鉛が従来、用いられている各種用途に、すぐ
れて活用できる。 次に本発明を実施例によつてさらに詳細に説明
する。 実施例 1 60℃に維持した恒温水槽中に1容量の三つ口
フラスコを浸漬し、エチルアルコール200ml、水
280mlとフツ化黒鉛(CF)100g(ジエツトミル
にて粉砕後300メツシユパスのもの、顕微鏡写真
を第1図に示す。)メタクリル酸メチル25gを入
れ、撹拌混合しながら、6%亜硫酸水溶液20mlを
添加し重合を行なつた。この時のPHは約2であ
る。亜硫酸水溶液を添加してから4時間経過後、
反応生成物を別し水で十分洗浄し80℃で真空乾
燥した。 このものの重量は117.8gであり、第2図に示
す顕微鏡写真より明らかなようにフツ化黒鉛、ポ
リマー単独での存在は認められず、フツ化黒鉛は
ポリマーによつて良好に被覆されていた。また、
このものを48時間ベンゼンにて抽出した後、抽出
物及び、ベンゼン不溶物の赤外吸収スペクトルを
測定し、それぞれ第5図、第6図のパターンを得
た。これにより抽出物は、ポリメタクリル酸メチ
ルのホモポリマーであり、ベンゼン不溶部もポリ
メタクリル酸メチルのスペクトルと一致すること
を確認した。これらのことからフツ化黒鉛表面を
ポリメタクリル酸メチルがグラフト結合している
ことを確認した。更に、熱重量分析TGAによ
る、その重量減少からポリメタクリル酸メチルの
含有率は15.1重量%であることを確認した(以
下、実施例においては、同様の手段により、グラ
フト化されていること及びポリマー含有率を確認
した。)。 実施例 2 60℃に維持した恒温水槽中に1容量の三つ口
フラスコを浸漬し、エチルアルコール150ml、水
330mlとフツ化黒鉛(C2F)o100g(ジエツトミル
たて粉砕、250メツシユパスのもの、顕微鏡写真
で第3図に示す。)、メタクリル酸メチル30gを入
れ、かき混ぜながら、9%亜硫酸水溶液20mlを添
加し重合を行なつた。この時のPHは約2である。
亜硫酸水溶液を添加してから3時間経過後、反応
生成物を別し、水で十分洗浄した後、80℃で真
空乾燥した。このものの顕微鏡写真を第4図に示
す。このようにしてポリメタクリル酸メチルの含
有率19.8重量%の乾燥品124.7gを得た。 実施例 3 60℃の恒温水槽中に1容量の三つ口フラスコ
を浸漬し、エチルアルコール150ml、水330mlとフ
ツ化黒鉛(CF)o100g、アクリル酸メチル30gを
入れ、かき混ぜながら、6%亜硫酸水溶液20mlを
添加し重合を行なつた。亜硫酸水溶液を添加して
から3時間経過後、反応生成物を別し、水で十
分洗浄を行つた後、70℃で真空乾燥した。このよ
うにしてポリアクリル酸メチルの含有率17.5重量
%の乾燥品121.2gを得た。 実施例 4 60℃の恒温水槽中に1容量の三つ口フラスコ
を浸漬し、メチルアルコール200ml、水285mlとフ
ツ化黒鉛(C2F)o100g、アクリル酸メチル20g
を入れ、かき混ぜながら、6%亜硫酸水溶液15ml
を添加し重合を行つた。亜硫酸水溶液を添加して
から4時間経過後、反応生成物を別し、水で十
分洗浄を行なつた後、70℃で真空乾燥した。この
ようにして、ポリアクリル酸メチルの含有率10.8
重量%の乾燥品111.8gを得た。 実施例 5 50℃の恒温水槽中に1容量の三つ口フラスコ
を浸漬し、ノニオン性界面活性剤であるポリオキ
シエチレンアルキルエーテル10ml、水470mlとフ
ツ化黒鉛(CF)o100g、メタクリル酸メチル30g
を入れ、かき混ぜながら、6%亜硫酸水溶液20ml
を添加し、重合を行なつた。亜硫酸水溶液を添加
してから、4時間経過後、反応生成物を別し、
水で十分洗浄した後、70℃で真空乾燥した。この
ようにしてポリメタクリル酸メチルの含有率17.4
重量%の乾燥品120.1gを得た。 実施例 6 60℃の恒温水槽中に1容量の三つ口フラスコ
を浸漬し、エチルアルコール200ml、水280mlとフ
ツ化黒鉛(CF)o100g、アクリルニトリル30gを
入れかき混ぜながらV―50(和光純薬製)の10%
水溶液20mlを添加し、重合を行なつた。V―50の
水溶液を添加してから3時間経過後反応生成物を
別し、水で十分洗浄した後、80℃で真空乾燥し
た。このようにしてポリアクリルニトリルの含有
率19.3重量%の乾燥品123.9gを得た。 実施例 7 60℃の恒温水槽中に1容量の三つ口フラスコ
を浸漬し、エチルアルコール200ml、水280mlとフ
ツ化黒鉛(CF)o100g、メタクリル酸メチル15
g、スチレン15gを入れかきまぜながら、6%亜
硫酸水溶液20mlを添加し重合を行なつた。亜硫酸
水溶液を添加してから3時間経過後、反応生成物
を別し、水で十分洗浄した後、80℃で真空乾燥
した。このようにして共重合体の含有率18.8重量
%の乾燥品122.5gを得た。 実施例 8 室温にて1容量の三つ口フラスコにアセトン
200ml、水280mlとフツ化黒鉛(CF)o100g、メタ
アクリル酸メチル10gを入れ、撹拌混合しながら
6%亜硫酸水溶液10mlを添加し重合を行なつた。
亜硫酸水溶液を添加してから5時間経過後、反応
生成物を別し、水で十分洗浄した後、70℃で真
空乾燥した。このようにしてポリメタクリル酸メ
チルの含有率4.8重量%の乾燥品を105g得た。 実施例 9 メタクリル酸メチルの添加量を5g、重合時間
を3時間とした以外は、実施例8と同一条件に
て、重合を行ない、ポリメタクリル酸メチルの含
有率1.2重量%の乾燥品101.2gを得た。 実施例10、比較例1 実施例8で得たポリマー被覆フツ化黒鉛
(PMMA付着量4.8重量%)及び未処理フツ化黒鉛
(比較例1)を室温にて各々タービン油#40中に
1%の割合で添加し、ホモミキサーにて
10000rpmで10分間混合直後、遠心分離機
(3000rpm)中に5分間保持した後、各々の粒子
沈降性を比較した。この結果、比較例1のフツ化
黒鉛は15分後でほぼ完全に沈降した。一方、実施
例8のフツ化黒鉛は60分経過後においても一部沈
降はみとめられたが、ほぼ良好に分散された状態
であつた。 実施例11、比較例2、3 実施例1、2、4、6、7、8、9で得たポリ
マー被覆フツ化黒鉛10g(実施例11)、および未
処理フツ化黒鉛にそれぞれ実施例1、2、4、
6、7、8、9と同一樹脂含量となるように10g
をとり乾式混合したもの(比較例2)、未処理フ
ツ化黒鉛との比が1:1となるようにポリメタク
リル酸メチルを加えて10gとしたもの(比較例
3)を用い、それぞれについて成形を行い、その
成形性および曲げ強度、フツ化黒鉛の分散状態を
評価した結果を第1表に示す。成形条件は180
℃、250Kg/cm2、10分圧縮成形である。 比較例2においてはいずれも成形できないか、
または成形不良のため強度測定は行えなかつた。
The present invention relates to a modified composition of fluorinated graphite useful as a solid lubricant, a battery active material, etc., and more particularly to fluorinated graphite whose surface is coated with a graft-polymerized polymer and a method for producing the same. It is. Graphite fluoride is a white to gray solid powder obtained by reacting carbon or graphite with fluorine.
(CF) o or (C 2 F) o is known, and it has unique lubricity, water and oil repellency, and excellent chemical resistance, so it is used as a solid lubricant and battery active agent. It is widely used as a substance. However, due to its low surface energy, graphite fluoride has strong water repellency, does not disperse in water, has poor compatibility with resins, and has poor moldability, so there are problems when handling it in various forms. There were many. Therefore, it is usually necessary to mold the material using an appropriate binder or to perform a treatment to improve dispersibility. For example, when used as a solid lubricant, it is ideal that the graphite fluoride powder itself forms a continuous adhesive film on the area where it is used, but as mentioned above, graphite fluoride has no wettability with water. Not shown, the contact angle with water is 145° in the case of (CF) o ,
That of PTFE (tetrafluoroethylene resin) is 100 to 110
Since it is very large compared to the average size of 100.degree., it is almost impossible to disperse it as it is even if water is used as a carrier. Therefore, previously
In the invention described in this publication, a method using a dispersant such as colloidal silica is used, and in the invention described in JP-A-49-116462, the surface is coated with a caking substance or a caking substance and a surfactant. Fluorinated graphite, which is coated with graphite, has been proposed and has shown considerable effectiveness, but the reality is that it is still not sufficient and does not provide a complete solution. In other words, Tokko Akira
49-19750 uses a dispersant such as colloidal silica to improve dispersibility, but due to its structure, when used as a molded article, there is an upper limit to the content of graphite fluoride. However, it can only be contained in an amount of about 60% by weight at most, and the various properties of graphite fluoride derived from its surface energy cannot be effectively utilized. Furthermore, in the method disclosed in JP-A-49-116462, a caking substance such as wax is coated on the surface of graphite fluoride particles by mere physical forces such as so-called adsorption and adhesion. In the usage mode, the coated state is not always stable, and furthermore, it has the disadvantage that uniform coating is difficult. Moreover,
In the case of such a method, it is almost impossible to minimize the amount of caking substance on the fluorinated graphite and to uniformly coat the fluorinated graphite in order to fully exhibit its characteristics. . Also,
As an example of a molded product mainly composed of graphite fluoride, it is known that in the method of manufacturing electrodes for primary batteries, a mixture with PTFE is pressure molded. Normally, an aqueous PTFE dispersion obtained by emulsion polymerization of TFE (tetrafluoroethylene) is used, but since graphite fluoride has extremely high water repellency, graphite fluoride is pre-mixed with an organic material with a strong affinity for water. It is necessary to add it by suspending it in a solvent, and in order to sufficiently wet the fluorinated graphite,
A large amount of organic solvent is required, and the PTFE particles coagulate to form a large coagulum, making it impossible to obtain a uniform powder mixture. Furthermore, this large coagulum is highly adhesive and difficult to crush, and if compression molded as it is, pressure is not applied uniformly, which tends to cause internal distortion, making it impossible to obtain a good molded product. The purpose of the present invention is to solve the above-mentioned drawbacks, and to make graphite fluoride exhibit extremely good dispersibility in various carriers and at the same time maximize the characteristics of graphite fluoride. As a result of intensive research, it was discovered that this object could be achieved by microcapsulating fluorinated graphite powder by graft polymerizing a vinyl monomer onto the surface thereof, and the present invention was completed. That is, the present invention is a polymer-coated fluorinated graphite whose surface is graft-bonded with a vinyl resin, and a method for producing the same. and a vinyl monomer capable of radical polymerization or radical copolymerization, polymerization is performed in the presence of a water-soluble polymerization initiator, and the graphite fluoride is coated with a polymer graft-bonded to the graphite fluoride. This is a method for producing polymer-coated fluorinated graphite. What is the graphite fluoride used in the present invention (CF) o?
(C 2 F) In addition to those represented by o , it also includes mixtures thereof in any proportion. The graphite fluoride of the present invention is graft-bonded with a vinyl resin, and the bond is different from mere adsorption or adhesion, and is bonded to the graphite fluoride surface in a form that is so strong that it cannot be separated by solvent extraction. This provides uniform coverage.
The resin content can take any value, but in order to have good dispersibility, it needs to be at least 0.5% by weight, and there is no upper limit, but in order to exhibit the physical properties of graphite fluoride, it should be 50% by weight. It can be said that it is preferable that the Therefore, even with a small amount of resin, the dispersibility of various carriers is good, and when molded, it can be easily molded under heat and pressure, has extremely good workability, and has high strength. Since the graphite fluoride of the present invention is coated uniformly and firmly even with a small amount of resin, the characteristics of the graphite fluoride can be maximized, and its uses are further expanded. For example, it can be suitably used for plastic fillers, additives for lubricating oils, greases, etc., bearings with lubricating performance, packings, molded bodies for electrodes, and the like. In the present invention, the vinyl resin coating is not limited to a complete coating of graphite fluoride, but also includes one in which the surface of graphite fluoride is partially exposed. The organic solvent used in the method of the present invention may be any solvent as long as it is soluble in water, such as methyl alcohol,
Various alcohols such as ethyl alcohol, ketones such as acetone, ethers, amines, etc. are used, and as the surfactant, any one of anionic, cationic, and nonionic surfactants may be used, and a mixture of It may be a system. On the other hand, the vinyl monomer for forming the polymer coating the fluorinated graphite may be one that can be radically polymerized or radically copolymerized, such as acrylic acid, methacrylic acid, acrylates, methacrylates, etc. Monomers having a vinyl group such as , acrylic ester, methacrylic ester, acrylonitrile, N-methylolacrylamide, vinyl chloride, vinyl acetate, styrene, and divinylbenzene are used. Water-soluble polymerization initiators include sulfur dioxide, sulfite aqueous solution, bisulfite solution, potassium persulfate,
Azobiscyanovaleric acid, V-50 (2,2'-azobis-(2-amidinopropane)-dihydrochloride, manufactured by Wako Pure Chemical Industries, Ltd.), and the like are used. To carry out the present invention preferably, 1 to 100 parts by weight of an organic solvent or 1 to 10 parts by weight of a surfactant is added to 100 parts by weight of water.
Add 50 parts by weight, 1 to 100 parts by weight of fluorinated graphite, and 0.1 to 100 parts by weight of vinyl monomer, stir and disperse well, and add a polymerization initiator to the suspension thus obtained. , stir well. A sufficient amount of the polymerization initiator is in the range of 0.01 to 20% by weight based on the vinyl monomer. The polymerization reaction of the present invention can be carried out at room temperature, but if it is desired to shorten the polymerization time, it may be heated to about 70°C. According to the present invention, a high polymerization rate can be obtained in a short polymerization time of about 1 to 5 hours. After the polymerization reaction is completed, the slurry of fluorinated graphite is separated, thoroughly washed with water, and the residue is dried. The polymer coating composition of fluorinated graphite obtained by the method of the present invention as described above can be coated with any amount of resin, and the reaction conditions can be easily controlled. In this way, in the present invention, graphite fluoride can be microencapsulated using a very small amount of resin, and the resulting product can be molded freely. It is possible to form something close to a continuous adhesive film (layer) by itself, and even when dispersed in other materials, the dispersibility is extremely good because the surrounding area is covered with a compatible affinity polymer coating. Therefore, the performance can be effectively utilized, and the effects of graphite fluoride, which have been conventionally used, can be achieved in various applications beyond those of graphite fluoride alone. Next, examples of typical uses are listed. (1) Molded objects obtained by making composite materials with synthetic rubber, natural rubber, synthetic resin, glass fiber, ceramics, carbon resin, asphalt, tar-pitch graphite, etc. can be used as self-lubricating sliding parts, packing, and gaskets. Used for sealing materials, fibers, etc. The polymer-coated graphite fluoride of the present invention is firmly bonded to the base material and can form a stable lubricating film on the sliding surface.
Can withstand high PV values (product of pressure and velocity) with less wear. Examples of the above synthetic rubbers include styrene rubber, butadiene rubber, chloroprene rubber, butyl rubber, nitrile rubber, ethylene propylene rubber, Hypalon, acrylic rubber, urethane rubber, fluorine rubber, silicone rubber, thiokol rubber, and ethylene acetate rubber. Phenol resin, urea resin, melamine resin, aniline resin, unsaturated polyester, diallyl phthalate, epoxy resin, alkyd resin, polyimide, silicone resin, polyethylene, polypropylene, polystyrene, polymethyl methacrylate, polyacrylonitrile, polyvinyl butyral, polyamide, ABS , polycarbonate, polyacetal, polyethylene terephthalate, polyphenylene oxide, polysulfone, polyphenylene sulfide, polyurethane, ionomer resin, fluororesin, cellulose plastic, and the like. (2) Added to grease, lubricating oil, gear oil, spindle oil, refrigeration oil, dynamo oil, turbine oil, etc.
Machine oil, cylinder oil, aviation piston engine lubricating oil, marine engine oil, fiber grease, cup grease, graphite grease,
Used for automotive bearing grease, rolling bearing grease, etc. The above lubricating oils include polyolefins, glycols, carboxylic acid esters, phosphoric esters, silicones, perfluorocarbon acids, chlorinated aromatics, etc., and the greases include calcium soap grease, sodium soap grease, and aluminum soap grease. Examples include mixed soap grease, barium soap grease, calcium complex grease, barium complex grease, and non-soap grease using a thickener other than soap, such as bentone or fine silica. (3) As a dry lubricating film, the polymer-coated fluorinated graphite of the present invention alone or in combination with other organic or inorganic binders is coated on sliding parts to form a dry lubricating film, which improves lifelong lubrication, initial break-in, and separation. Used for molds. (4) Used, for example, in the form of a spray, as a lubricating mold release agent for sintered alloys, plastic molded products, rubber molded products, etc. (5) Used by mixing and adding to cutting oil, press oil, rolling oil, and grinding oil for lubrication during metal processing, cutting, rolling, drawing, pressing, polishing, etc. In addition to the above-mentioned uses as a lubricant and a mold release agent, the graphite fluoride can be used excellently in various other uses for which graphite fluoride has been conventionally used. Next, the present invention will be explained in more detail with reference to Examples. Example 1 A 1-capacity three-necked flask was immersed in a constant temperature water bath maintained at 60°C, and 200ml of ethyl alcohol and water were added.
280 ml of fluorinated graphite (CF) (100 g of fluorinated graphite (CF) (after 300 mesh passes after being crushed in a jet mill, the micrograph is shown in Figure 1)) was added, and while stirring and mixing, 20 ml of a 6% sulfite aqueous solution was added. Polymerization was carried out. The pH at this time is approximately 2. 4 hours after adding the sulfite aqueous solution,
The reaction product was separated, thoroughly washed with water, and dried under vacuum at 80°C. The weight of this product was 117.8 g, and as is clear from the micrograph shown in FIG. 2, the presence of fluorinated graphite or polymer alone was not observed, and the fluorinated graphite was well covered with the polymer. Also,
After extracting this material with benzene for 48 hours, the infrared absorption spectra of the extract and the benzene-insoluble material were measured, and the patterns shown in FIGS. 5 and 6 were obtained, respectively. This confirmed that the extract was a homopolymer of polymethyl methacrylate, and that the benzene-insoluble portion also matched the spectrum of polymethyl methacrylate. From these results, it was confirmed that polymethyl methacrylate was graft-bonded to the surface of graphite fluoride. Furthermore, it was confirmed that the content of polymethyl methacrylate was 15.1% by weight based on the weight reduction by thermogravimetric analysis TGA (hereinafter, in the Examples, the grafting and polymer (The content rate was confirmed.) Example 2 A 1-capacity three-necked flask was immersed in a constant temperature water bath maintained at 60°C, and 150ml of ethyl alcohol and water were added.
Add 330 ml of graphite fluoride (C 2 F) , 100 g of fluorinated graphite (C 2 F) (freshly crushed in a diet mill, 250 mesh passes, shown in the micrograph in Figure 3), and 30 g of methyl methacrylate, and while stirring, add 20 ml of 9% sulfite aqueous solution. and polymerization was carried out. The pH at this time is approximately 2.
Three hours after the addition of the sulfite aqueous solution, the reaction product was separated, thoroughly washed with water, and then vacuum dried at 80°C. A microscopic photograph of this product is shown in FIG. In this way, 124.7 g of a dry product containing 19.8% by weight of polymethyl methacrylate was obtained. Example 3 Immerse a 1 volume three-necked flask in a constant temperature water bath at 60°C, add 150ml of ethyl alcohol, 330ml of water, 100g of graphite fluoride (CF), and 30g of methyl acrylate, and add 6% sulfite while stirring. Polymerization was carried out by adding 20 ml of an aqueous solution. Three hours after the addition of the sulfite aqueous solution, the reaction product was separated, thoroughly washed with water, and then vacuum dried at 70°C. In this way, 121.2 g of a dry product containing 17.5% by weight of polymethyl acrylate was obtained. Example 4 A 1-capacity three-necked flask was immersed in a constant temperature water bath at 60°C, and 200ml of methyl alcohol, 285ml of water, 100g of graphite fluoride (C 2 F), and 20g of methyl acrylate were added.
Add 15ml of 6% sulfite aqueous solution while stirring.
was added to carry out polymerization. Four hours after the addition of the sulfite aqueous solution, the reaction product was separated, thoroughly washed with water, and then vacuum dried at 70°C. In this way, the content of polymethyl acrylate is 10.8
111.8 g of dry product by weight was obtained. Example 5 A 1-capacity three-neck flask was immersed in a constant temperature water bath at 50°C, and 10 ml of polyoxyethylene alkyl ether, a nonionic surfactant, 470 ml of water, 100 g of graphite fluoride (CF), and methyl methacrylate were added. 30g
Add 20ml of 6% sulfite aqueous solution while stirring.
was added to carry out polymerization. 4 hours after adding the sulfite aqueous solution, separate the reaction product,
After thoroughly washing with water, it was vacuum dried at 70°C. In this way, the content of polymethyl methacrylate is 17.4
120.1 g of dry product by weight was obtained. Example 6 Immerse a 1-capacity three-necked flask in a thermostatic water bath at 60°C, add 200 ml of ethyl alcohol, 280 ml of water, 100 g of fluorinated graphite (CF), and 30 g of acrylonitrile while stirring. 10% of pharmaceutical products)
20 ml of aqueous solution was added to carry out polymerization. Three hours after the addition of the V-50 aqueous solution, the reaction product was separated, thoroughly washed with water, and then vacuum dried at 80°C. In this way, 123.9 g of a dry product with a polyacrylonitrile content of 19.3% by weight was obtained. Example 7 A 1-capacity three-necked flask was immersed in a constant temperature water bath at 60°C, and 200 ml of ethyl alcohol, 280 ml of water, 100 g of graphite fluoride (CF), and 15 ml of methyl methacrylate were added.
While stirring, 20 ml of a 6% sulfite aqueous solution was added to carry out polymerization. Three hours after the addition of the sulfite aqueous solution, the reaction product was separated, thoroughly washed with water, and then vacuum dried at 80°C. In this way, 122.5 g of a dry product with a copolymer content of 18.8% by weight was obtained. Example 8 Acetone in a 1 volume three neck flask at room temperature
200 ml, 280 ml of water, 100 g of graphite fluoride (CF), and 10 g of methyl methacrylate were added, and while stirring and mixing, 10 ml of a 6% sulfite aqueous solution was added to carry out polymerization.
Five hours after the addition of the sulfite aqueous solution, the reaction product was separated, thoroughly washed with water, and then vacuum-dried at 70°C. In this way, 105 g of a dry product containing 4.8% by weight of polymethyl methacrylate was obtained. Example 9 Polymerization was carried out under the same conditions as in Example 8 except that the amount of methyl methacrylate added was 5 g and the polymerization time was 3 hours, resulting in 101.2 g of a dry product with a polymethyl methacrylate content of 1.2% by weight. I got it. Example 10, Comparative Example 1 Polymer-coated fluorinated graphite obtained in Example 8 (PMMA adhesion amount: 4.8% by weight) and untreated fluorinated graphite (Comparative Example 1) were each added at 1% to turbine oil #40 at room temperature. Add at the ratio of
Immediately after mixing at 10,000 rpm for 10 minutes, and after holding in a centrifuge (3,000 rpm) for 5 minutes, the particle sedimentation properties of each were compared. As a result, the fluorinated graphite of Comparative Example 1 almost completely settled after 15 minutes. On the other hand, although some sedimentation was observed in the fluorinated graphite of Example 8 even after 60 minutes had passed, it remained almost well dispersed. Example 11, Comparative Examples 2 and 3 Example 1 was applied to 10 g of polymer-coated fluorinated graphite obtained in Examples 1, 2, 4, 6, 7, 8, and 9 (Example 11) and untreated fluorinated graphite, respectively. ,2,4,
10g to have the same resin content as 6, 7, 8, and 9.
were dry mixed (Comparative Example 2), and polymethyl methacrylate was added to make 10 g (Comparative Example 3) at a ratio of 1:1 to untreated fluorinated graphite. Table 1 shows the results of evaluating the moldability, bending strength, and dispersion state of graphite fluoride. Molding conditions are 180
Compression molding at 250Kg/cm 2 for 10 minutes at ℃. In Comparative Example 2, either cannot be molded or
Otherwise, strength measurement could not be performed due to poor molding.

【表】 実施例1のポリマー被覆フツ化黒鉛を用いて成
形した成形体および比較例3の圧縮成形体の破断
面の顕微鏡写真を第7、第8図に示す。これから
も明らかな如く、実施例のものは均一に分散して
いることが確認でき、一方、比較例3のものは極
めて分散性が悪い。 実施例 12 実施例1のポリマー被覆フツ化黒鉛を用いて、
実施例11の方法にて圧縮成形したポリマー被覆フ
ツ化黒鉛成形体より10×30×2mmの試験体を切り
出し、圧縮面について次の条件で接触角の測定を
行つた。この結果を第2表に示す。 () 試験体の測定面をエタノール洗浄後、測
定、 () 試験体を、水を約50c.c.満たしたガラス製密
閉容器内に入れ、1分間約200回の割合で1時
間振とうし、ついでエタノール清浄後測定、 () 測定面を800番エメリーサンドペーパーで
軽く研磨し、エタノール清浄後測定、 () ()の試験体を()の条件で処理した
後測定 比較例 4 比較例3の成形体を実施例12と同様にして接触
角測定を行なつた結果を第2表に示す。
[Table] FIGS. 7 and 8 show microscopic photographs of the fractured surfaces of the molded body molded using the polymer-coated graphite fluoride of Example 1 and the compression molded body of Comparative Example 3. As is clear from this, it can be confirmed that the samples of Examples are uniformly dispersed, whereas the samples of Comparative Example 3 have extremely poor dispersibility. Example 12 Using the polymer-coated fluorinated graphite of Example 1,
A 10 x 30 x 2 mm test piece was cut out from the polymer-coated fluorinated graphite molded body compression-molded by the method of Example 11, and the contact angle was measured on the compressed surface under the following conditions. The results are shown in Table 2. () Measurement after washing the measurement surface of the test piece with ethanol. () Place the test piece in a sealed glass container filled with about 50 c.c. of water and shake it at a rate of about 200 times per minute for 1 hour. , then measurement after cleaning with ethanol, () Lightly sand the measurement surface with No. 800 emery sandpaper and measurement after cleaning with ethanol, () Measurement after treating the specimen in () under the conditions in () Comparative example 4 Comparative example 3 The contact angle of the molded article was measured in the same manner as in Example 12, and the results are shown in Table 2.

【表】 * 成形面は滑かでなくかなりの凸凹を
有する。
実施例12において、測定条件、では、
に比較して接触角が大となつており、これは表面
研磨の結果、裏面の樹脂層が部分的に剥離し、フ
ツ化黒鉛が露出したためと考えられる。また、比
較例4においてでは、フツ化黒鉛の逸脱があり
接触角低下をきたしたものと考えられる。
[Table] * The molding surface is not smooth and has considerable unevenness.
In Example 12, the measurement conditions are as follows:
The contact angle is larger than that of the fluorinated graphite, which is thought to be because the resin layer on the back surface partially peeled off as a result of surface polishing, exposing the graphite fluoride. Furthermore, in Comparative Example 4, it is thought that deviation of the fluorinated graphite caused a decrease in the contact angle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、実施例1の未処理
(CF)o及びポリマー被覆(CF)oの顕微鏡写真、
第3図及び第4図は実施例2の未処理(C2F)o
びポリマー被覆(C2F)oの顕微鏡写真を示す。第
5図及び第6図は実施例1での生成物のベンゼン
抽出処理による、抽出物及びベンゼン不溶物の赤
外線吸収スペクトルパターンを示す。第7図及び
第8図はそれぞれ実施例11、比較例3の成形体の
破断面の顕微鏡写真を示す。
1 and 2 are micrographs of untreated (CF) o and polymer coated (CF) o of Example 1;
Figures 3 and 4 show micrographs of the untreated (C 2 F) o and polymer coated (C 2 F) o of Example 2. 5 and 6 show infrared absorption spectral patterns of the extract and benzene-insoluble material obtained by the benzene extraction treatment of the product in Example 1. FIG. 7 and FIG. 8 show microscopic photographs of the fractured surfaces of the molded bodies of Example 11 and Comparative Example 3, respectively.

Claims (1)

【特許請求の範囲】 1 ビニル樹脂により表面がグラフト結合されて
なるポリマー被覆フツ化黒鉛。 2 加圧成形されてなる特許請求の範囲1記載の
ポリマー被覆フツ化黒鉛。 3 水―有機溶媒混合系または水―界面活性剤混
合系にて、フツ化黒鉛と、ラジカル重合もしくは
ラジカル共重合し得るビニル性単量体とを分散せ
しめ、水溶性重合開始剤の存在下にて重合を行
い、フツ化黒鉛にグラフト結合した重合体でフツ
化黒鉛を被覆することを特徴とする、ポリマー被
覆フツ化黒鉛の製造方法。
[Claims] 1. Polymer-coated fluorinated graphite whose surface is graft-bonded with a vinyl resin. 2. The polymer-coated fluorinated graphite according to claim 1, which is formed by pressure molding. 3 In a water-organic solvent mixed system or water-surfactant mixed system, fluorinated graphite and a vinyl monomer capable of radical polymerization or radical copolymerization are dispersed, and in the presence of a water-soluble polymerization initiator. A method for producing polymer-coated graphite fluoride, which comprises polymerizing the graphite fluoride and coating the graphite fluoride with a polymer graft-bonded to the graphite fluoride.
JP56167963A 1981-10-22 1981-10-22 Polymer-coated graphite fluoride Granted JPS5869788A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP56167963A JPS5869788A (en) 1981-10-22 1981-10-22 Polymer-coated graphite fluoride
US06/434,902 US4557974A (en) 1981-10-22 1982-10-18 Graphite fluoride coated with organic polymer and method of preparing same
GB08229787A GB2109781B (en) 1981-10-22 1982-10-19 Graphite fluoride coated with organic polymer and method of preparing same
IT23857/82A IT1153280B (en) 1981-10-22 1982-10-21 GRAPHITE FLUORIDE COATED WITH ORGANIC POLYMER AND PROCEDURE FOR ITS PREPARATION
FR8217644A FR2515190B1 (en) 1981-10-22 1982-10-21 GRAPHITE FLUORIDE COATED WITH AN ORGANIC POLYMER, PROCESS FOR PREPARING THE SAME, AND METHOD FOR FORMING A SOLID BODY CONTAINING THE SAME
DE3239213A DE3239213C2 (en) 1981-10-22 1982-10-22 Organic polymer coated graphite fluoride and process for its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56167963A JPS5869788A (en) 1981-10-22 1981-10-22 Polymer-coated graphite fluoride

Publications (2)

Publication Number Publication Date
JPS5869788A JPS5869788A (en) 1983-04-26
JPS6215119B2 true JPS6215119B2 (en) 1987-04-06

Family

ID=15859279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56167963A Granted JPS5869788A (en) 1981-10-22 1981-10-22 Polymer-coated graphite fluoride

Country Status (1)

Country Link
JP (1) JPS5869788A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9096736B2 (en) 2010-06-07 2015-08-04 Kabushiki Kaisha Toyota Chuo Kenkyusho Fine graphite particles, graphite particle-dispersed liquid containing the same, and method for producing fine graphite particles
US9728294B2 (en) 2010-06-07 2017-08-08 Kabushiki Kaisha Toyota Chuo Kenkyusho Resin composite material

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60141679A (en) * 1983-12-28 1985-07-26 三井東圧化学株式会社 Resin coated silicon nitride
JPH04236300A (en) * 1991-01-17 1992-08-25 Hanano Shoji Kk Powdery lubricant for plunger device
JP5082020B2 (en) * 2011-02-04 2012-11-28 積水化学工業株式会社 Method for producing exfoliated graphite-polymer composite material
EP2816010B1 (en) * 2012-02-14 2021-06-30 Sekisui Chemical Co., Ltd. Method for producing flake graphite, and flake graphite

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS548548A (en) * 1977-06-22 1979-01-22 Ricoh Co Ltd Operation checking system in power generating type telemeters
JPS5612244A (en) * 1979-07-06 1981-02-06 Matsushita Electric Ind Co Ltd Noncontact sealing device
JPS56112995A (en) * 1980-02-13 1981-09-05 Nippon Steel Chem Co Ltd Lubricant composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS548548A (en) * 1977-06-22 1979-01-22 Ricoh Co Ltd Operation checking system in power generating type telemeters
JPS5612244A (en) * 1979-07-06 1981-02-06 Matsushita Electric Ind Co Ltd Noncontact sealing device
JPS56112995A (en) * 1980-02-13 1981-09-05 Nippon Steel Chem Co Ltd Lubricant composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9096736B2 (en) 2010-06-07 2015-08-04 Kabushiki Kaisha Toyota Chuo Kenkyusho Fine graphite particles, graphite particle-dispersed liquid containing the same, and method for producing fine graphite particles
US9728294B2 (en) 2010-06-07 2017-08-08 Kabushiki Kaisha Toyota Chuo Kenkyusho Resin composite material

Also Published As

Publication number Publication date
JPS5869788A (en) 1983-04-26

Similar Documents

Publication Publication Date Title
JPS58142942A (en) Preparation of polymer-coated inorganic substance and molded article
Zhang et al. Ultralow friction polymer composites incorporated with monodispersed oil microcapsules
CN108395657B (en) Self-repairing self-lubricating material and preparation method thereof
CA1038527A (en) Perfluorocarbon copolymer powders and preparation by spray drying
US3776845A (en) Dry film lubricant consisting of synthetic resin,fluorinated graphite,and solid lubricants such as molybdenum disulfide,graphite,and polytetrafluoroethylene
JP4065558B2 (en) Method for producing composite material for bearing having synthetic resin sliding layer and paste suitable for the same
CA1081680A (en) Method for improving the lubricating properties of mos2
CN108822334A (en) A kind of hollow SiO2Porous polyimide self-lubricating composite of the microballoon as intelligent oil conservator
US4557974A (en) Graphite fluoride coated with organic polymer and method of preparing same
JPS6215119B2 (en)
CN110713609A (en) Method for preparing self-repairing hydrogel based on Janus nano material
US3202626A (en) Modified polytetrafluoroethylene dispersions and solid products
CN112538140A (en) Modified styrene-acrylic emulsion and preparation method thereof
CN110628158A (en) Aqueous phase free radical polymerization preparation method of polymethyl methacrylate/carbon microsphere nano composite material with core-shell structure
CN105777967B (en) A kind of preparation method of morphology controllable double-sided polymerization object particle
CN110511519B (en) Preparation method of carbon microsphere/polymethyl methacrylate/polyethyleneimine nanocomposite with double-layer shell-core structure
JPH03115494A (en) Composite material for sliding and method for its manufacture
CN109096837A (en) A kind of preparation method of the high-antiwear self-lubricating coating of PMMA modified ptfe
CN110818844A (en) Preparation method of polytetrafluoroethylene core-shell composite particles
Liu et al. Oil-soluble polymer brushes-functionalized nanoMOFs for highly efficient friction and wear reduction
GB2109781A (en) Graphite-fluoride coated with organic polymer and method of preparing same
CN110015658A (en) A kind of water-based graphite alkene dispersion liquid and preparation method thereof
CN106883917B (en) Polyester resin solid lubricating block and preparation method thereof
CN105778573B (en) A kind of hyper-dispersant and preparation method thereof and application method
JPS6050739B2 (en) Fluorinated graphite molded body and its manufacturing method