JPS62150802A - Superconducting electromagnet for deflecting charged particles - Google Patents

Superconducting electromagnet for deflecting charged particles

Info

Publication number
JPS62150802A
JPS62150802A JP29481085A JP29481085A JPS62150802A JP S62150802 A JPS62150802 A JP S62150802A JP 29481085 A JP29481085 A JP 29481085A JP 29481085 A JP29481085 A JP 29481085A JP S62150802 A JPS62150802 A JP S62150802A
Authority
JP
Japan
Prior art keywords
orbit
coil
charged particles
superconducting
cooling tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29481085A
Other languages
Japanese (ja)
Other versions
JPH065644B2 (en
Inventor
Kenichi Sato
謙一 佐藤
Nobuhiro Shibuta
渋田 信広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP29481085A priority Critical patent/JPH065644B2/en
Publication of JPS62150802A publication Critical patent/JPS62150802A/en
Publication of JPH065644B2 publication Critical patent/JPH065644B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PURPOSE:To reduce the size and to enhance the performance of a high magnetic field superconducting electromagnet by disposing a shielding spacer with which electromagnetic wave emitted in a tangential direction with respect to the propagating direction of charged particles to be deflected collides in noncontacting state with a coil cooling tank in a charged particle passing orbit. CONSTITUTION:A hollow cylindrical coil cooling tank 6 in which the outer surface of an outside peripheral wall 6b and the outer surfaces of longitudinal end walls 6c, 6c' are covered with heat insulating layers 7 is concentrically disposed in contact with a particle orbit 3 disposed at the center on the outer periphery of the orbit 3. A shielding spacer 8 with which electromagnetic wave emitted in a tangential direction with respect to the propagating direction of charged particles to be defected collides is disposed in noncontacting state with the tank 6 in the orbit 3. Since the coil cooling tank is provided in contact with the orbit, the size of the outer diameter including cooling means can be shortened in the distance that the layer is not provided inside. Since the superconducting coil is provided near the orbit, a coil load becomes small, and the coil can be reduced in size.

Description

【発明の詳細な説明】 一立登し/rX工七1mへ冠) この発明は、円形加速器、ストレージリング、5OR(
シンクロトロン軌道放射)装置、イオン注入装置等にお
いて、荷電粒子を偏向させるのに用いる超電導電磁石に
関する。
[Detailed description of the invention] This invention is a circular accelerator, a storage ring, a 5OR (
The present invention relates to superconducting electromagnets used to deflect charged particles in synchrotron orbital radiation devices, ion implantation devices, etc.

〔技術背景とこの発明の課■〕[Technical background and subject of this invention■]

首記した如き装置に使う荷電粒子偏向用電磁石としては
、鉄心にコイルを巻いた常電導タイプのものが一般的で
あるが、常電導方式では、小型でより強力な偏向用電磁
石を実現し難いことから、本発明者等は、この問題を無
くすべく、超電導ダイポール電磁石に、磁場の方向に対
して垂直方向に曲率を与えたものを考案し、特願昭60
−249285号により提案した。第4図はその一例を
示したもので、ビームダクト1の外周に2個のくら形超
電導コイル2を対向して跨がせたくら形ダイポール電磁
石に曲率を与えである。
The charged particle deflection electromagnets used in the devices mentioned above are generally of the normal conduction type, with a coil wound around an iron core, but with the normal conduction method, it is difficult to create a smaller and more powerful deflection electromagnet. Therefore, in order to eliminate this problem, the present inventors devised a superconducting dipole electromagnet with a curvature perpendicular to the direction of the magnetic field, and filed a patent application in 1983.
This was proposed by No.-249285. FIG. 4 shows an example of this, in which two saddle-shaped superconducting coils 2 are placed across the outer periphery of a beam duct 1 so as to face each other, and a curvature is given to a saddle-shaped dipole electromagnet.

ところで、超電導電磁石は、絶対零度近くの温度下′に
あってはじめて超電導現象を示す。従って、そのコイル
を、液体ヘリウム等の極低温冷媒液と共にタライオスタ
ット内に収納する必要があるが、このときの冷却手段を
含めた電磁石の構造設計が悪いと、種々の不都合が生じ
てくる。例えば、第5図に示すように、荷電粒子通過軌
道(以下ではこれを粒子軌道と云う)3の外周をビーム
ダクト1で囲み、その外周に断熱層4,5に包まれた中
空環状の冷却槽6を同心的に配置し、この槽の内側の周
壁6a外周に超電導コイル2を取付ける構造は、比較的
容易に考えられるが、このように、断熱層を半径方向に
2重配置すると、電磁石の外径が大きくなって設置スペ
ースや取扱い面で不利になる。
By the way, superconducting electromagnets exhibit superconductivity only at temperatures close to absolute zero. Therefore, it is necessary to store the coil in the taliostat together with a cryogenic refrigerant liquid such as liquid helium, but if the structural design of the electromagnet including the cooling means is poor, various inconveniences may occur. . For example, as shown in FIG. 5, a beam duct 1 surrounds the outer periphery of a charged particle passing trajectory (hereinafter referred to as a particle trajectory) 3, and a hollow annular cooling device surrounded by a heat insulating layer 4, 5 is placed around the outer periphery of the beam duct 1. It is relatively easy to think of a structure in which the tanks 6 are arranged concentrically and the superconducting coils 2 are attached to the outer periphery of the inner peripheral wall 6a of the tank, but if the heat insulating layers are arranged in double radial direction in this way, the electromagnet The outer diameter becomes larger, which is disadvantageous in terms of installation space and handling.

また、この場合、内側の断熱層4の厚さを考慮して、つ
まり、その厚さによって増大した大きな空間を対象にし
て軌道3に所定の均一な磁場を出す必要があるので、コ
イル線材の電流密度やその線材にかぎる磁場等も大きく
なる。従って、使用する超電導コイル線材への要求特性
も当然厳しくなる。
In addition, in this case, it is necessary to take into account the thickness of the inner heat insulating layer 4, that is, to apply a predetermined uniform magnetic field to the track 3 in a large space increased by the thickness, so it is necessary to apply a uniform magnetic field to the track 3. The current density and the magnetic field limited to the wire also increase. Therefore, the characteristics required for the superconducting coil wire used will naturally become stricter.

そこで、上述の問題対策として、第5図における断熱層
4を無くし、冷却槽6を粒子軌道3に接して配置するこ
とが考えられる。しかしながら、荷電粒子を磁場によっ
て偏向させる場合、偏向部において放射電磁波が発生す
る。例えば、電子を光速に近い速度で周回させるときに
は、電子の進行方向に対し垂直な偏向用磁場を印加した
個所で電子進行方向の接続方向にX線を主体とした放射
光が発生し、冷却槽が粒子軌道に接している場合には、
その放射光が冷却槽に衝突して熱エネルギーに代わり、
冷却槽の温度を上昇させる。その結果、冷却槽内に収納
された液体へリクム等の極低温冷媒液の蒸発が促進され
、装置のランニングコストが高まってくる。つまり、単
に冷却槽を粒子軌導に接して配置するだけでは、ランニ
ングコスト面での不利を解消し得ない。
Therefore, as a countermeasure to the above-mentioned problem, it is conceivable to eliminate the heat insulating layer 4 in FIG. 5 and to arrange the cooling tank 6 in contact with the particle trajectory 3. However, when charged particles are deflected by a magnetic field, radiated electromagnetic waves are generated in the deflection section. For example, when electrons are made to orbit at a speed close to the speed of light, synchrotron radiation consisting mainly of If is tangent to the particle orbit, then
The synchrotron radiation hits the cooling tank and is converted into thermal energy.
Increase the temperature of the cooling bath. As a result, the evaporation of the cryogenic refrigerant liquid such as liquid helicum stored in the cooling tank is accelerated, increasing the running cost of the apparatus. In other words, simply arranging the cooling tank in contact with the particle trajectory cannot eliminate the disadvantage in terms of running costs.

この発明は、上記に鑑みてなされたもので、高磁場超電
導電磁石の小型化、高性能化、ランニングコストの低減
化の要求を同時に満たすことを課題としている。
This invention has been made in view of the above, and aims to simultaneously satisfy the requirements for miniaturization, high performance, and reduction in running costs of high-field superconducting electromagnets.

〔課題を解決するための手段〕[Means to solve the problem]

上記の諸問題に対処するため、この発明は、第1図乃至
第3図に示すように、荷電粒子を進行方向に垂直な磁場
により偏向させる超電導ダイポール電磁石において、中
心に位置した粒子軌道3の外周に、外側の周壁6b外面
ど展手方向端壁6C16C’外面とが断熱層7に覆われ
る中空筒状のコイル冷却槽6を軌道3に接して同心配置
し、さらに、粒子軌道3内に、偏向の対象となる荷電粒
子の進行方向に対して接線方向に放射される電磁波を衝
突させるための遮蔽スペーサ8を、槽6に対して非接触
状態に配置している。6aは、軌遜3を囲った槽6の内
側の周壁で、その外周面上に超電導コイル2が取付けら
れる。
In order to deal with the above-mentioned problems, the present invention provides a superconducting dipole electromagnet in which charged particles are deflected by a magnetic field perpendicular to the traveling direction, as shown in FIGS. A hollow cylindrical coil cooling tank 6 whose outer surface of the outer circumferential wall 6b and the outer surface of the end wall 6C16C' in the direction of extension are covered with a heat insulating layer 7 is arranged concentrically in contact with the orbit 3, and further, inside the particle orbit 3. A shielding spacer 8 is disposed in a non-contact state with respect to the tank 6 for colliding electromagnetic waves emitted in a direction tangential to the traveling direction of charged particles to be deflected. Reference numeral 6a denotes an inner peripheral wall of the tank 6 surrounding the rail tank 3, and the superconducting coil 2 is attached to the outer peripheral surface of the wall.

なお、遮蔽スペーサ8は、図のものは断面半円形である
が、放射電磁波の進行路を遮ぎるものであればよく、そ
の形状は特に限定されない。例えは、円筒スペーサ等で
もよい。
The shielding spacer 8 shown in the figure has a semicircular cross section, but the shape is not particularly limited as long as it can block the traveling path of the radiated electromagnetic waves. For example, a cylindrical spacer or the like may be used.

また、この遮蔽スペーサは、放射電磁波が原因となる冷
却槽6への熱侵入を低減することを目的としているので
、銅、アルミニウム、鉄、ステンレスと云った良伝熱性
の金属によって形成し、その両端から熱を迅速に逃がせ
るようにしておくのが望ましい。両端から熱を逃がす方
法としては、第2図に示すように、スペーサの両端を、
断熱層7の端壁5c、5c’を覆った部分に連結するこ
とが考えられる。この場合の断熱層7は、壁材が良伝熱
性の材料から成っていれば、真空断熱層、熱反射層等で
も構わないが、液体窒素等を冷却源とした自己冷却能の
ある断熱層であると、スペーサの放熱が非常に良くなる
The purpose of this shielding spacer is to reduce heat intrusion into the cooling tank 6 caused by radiated electromagnetic waves, so it is made of a metal with good heat conductivity such as copper, aluminum, iron, or stainless steel. It is desirable to allow heat to escape quickly from both ends. To dissipate heat from both ends, as shown in Figure 2, both ends of the spacer are
It is conceivable to connect it to a portion of the heat insulating layer 7 that covers the end walls 5c, 5c'. In this case, the heat insulating layer 7 may be a vacuum heat insulating layer, a heat reflective layer, etc. as long as the wall material is made of a material with good heat conductivity, but it may be a heat insulating layer with self-cooling ability using liquid nitrogen as a cooling source. In this case, the heat dissipation of the spacer becomes very good.

このほか、断熱層の壁材とは別体の放熱板を装置の外部
から粒子軌道部に臨ませてスペーサの両端を支持する方
法でも、スペーサの熱を逃がすことができる。
In addition, heat from the spacer can also be released by supporting both ends of the spacer with a heat sink that is separate from the wall material of the heat insulating layer and faces the particle trajectory section from outside the device.

〔作用・効果〕 上述したこの発明の電磁石は、コイル冷却槽が粒子軌道
に接して設けられているので、内側に断熱層が存在しな
い分、冷却手段を含めた外径寸法を短縮することができ
る。
[Operation/Effect] In the electromagnet of the present invention described above, since the coil cooling tank is provided in contact with the particle orbit, there is no heat insulating layer inside, so the outer diameter including the cooling means can be shortened. can.

また、超電導コイルが粒子軌道に接近しているので、コ
イル負荷も小さくなり、さらに、そのためにコイルを小
型化できるので、全体の体積を一層小さくすることがで
きる。
Moreover, since the superconducting coil is close to the particle trajectory, the coil load is also reduced, and furthermore, the coil can be made smaller, so that the overall volume can be further reduced.

さらに、粒子軌道内は高真空に保つ必要があるが、ビー
ムダクトでその真空を保つ第4図の構造と異なり、内外
二重の周壁を備える冷却槽によって真空を維持するので
、経済的に真空度をより高めることも可能になる。
Furthermore, it is necessary to maintain a high vacuum inside the particle orbit, but unlike the structure shown in Figure 4, where the vacuum is maintained by a beam duct, the vacuum is maintained by a cooling tank with double inner and outer peripheral walls, so it is economically possible to maintain a high vacuum. It is also possible to increase the degree.

また、遮蔽スペーサが放射電磁波のコイル冷却槽への衝
突を阻止し、上記電磁波による冷却槽の温度上昇を防止
するので、冷却槽への熱侵入量も低減し、槽内冷媒液の
無駄な蒸発も抑制されると云った効果が得られる。
In addition, the shielding spacer prevents the radiated electromagnetic waves from colliding with the coil cooling tank and prevents the temperature of the cooling tank from rising due to the electromagnetic waves, reducing the amount of heat entering the cooling tank and eliminating wasteful evaporation of the refrigerant liquid in the tank. This has the effect of suppressing the

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の電磁石の一例を示す斜視外観図、第
2図はその展開状態の側面視断面図、第3図は第2図の
In−III線に沿った断面図、第4図は磁場の方向に
対して垂直方向に曲率を与えたダイポール超電導電磁石
の斜視図、第5図は冷却手段を含めた一般的に考えられ
る荷電粒子偏向用超電導電磁石の断面図である。 2・・・超電導コイル、3・・・粒子軌道、6・・・コ
イル冷却槽、6a・・・内側の周壁、6b・・・外側の
周壁、6 Ct 5c/・・・端壁、7・・・断熱層、
8・・・放射電磁波の遮蔽スペーサ 特許出願人  住友電気工業株式会社 同 代理人  鎌  1) 文  − 第1図 ん2図 第3図
Fig. 1 is a perspective external view showing an example of the electromagnet of the present invention, Fig. 2 is a side sectional view of the electromagnet in its unfolded state, Fig. 3 is a sectional view taken along line In-III in Fig. 2, and Fig. 4. 5 is a perspective view of a dipole superconducting electromagnet having a curvature perpendicular to the direction of the magnetic field, and FIG. 5 is a sectional view of a generally considered superconducting electromagnet for deflecting charged particles including a cooling means. 2... Superconducting coil, 3... Particle trajectory, 6... Coil cooling tank, 6a... Inner circumferential wall, 6b... Outer circumferential wall, 6 Ct 5c/... End wall, 7...・・insulation layer,
8... Spacer for shielding radiated electromagnetic waves Patent applicant: Sumitomo Electric Industries, Ltd. Agent: Kama 1) Text - Figures 1, 2, and 3

Claims (2)

【特許請求の範囲】[Claims] (1)荷電粒子を進行方向に垂直な磁場により偏向させ
る超電導ダイポール電磁石において、中心に位置した荷
電粒子通過軌道の外周に、外側の周壁外面と長手方向端
壁外面とが断熱層に覆われる中空筒状のコイル冷却層を
軌道に接して同心配置し、さらに、上記荷電粒子通過軌
道内に、偏向の対象となる荷電粒子の進行方向に対して
接線方向に放射される電磁波が衝突する遮蔽スペーサを
、コイル冷却槽に対して非接触状態に配置したことを特
徴とする荷電粒子偏向用超電導電磁石。
(1) In a superconducting dipole electromagnet in which charged particles are deflected by a magnetic field perpendicular to the direction of travel, a hollow space is provided around the outer periphery of the charged particle passage trajectory located at the center, and the outer surface of the outer circumferential wall and the outer surface of the longitudinal end wall are covered with a heat insulating layer. A cylindrical coil cooling layer is arranged concentrically in contact with the orbit, and a shielding spacer is further provided in the charged particle passing orbit, on which electromagnetic waves emitted in a direction tangential to the traveling direction of the charged particles to be deflected collide. A superconducting electromagnet for deflecting charged particles, characterized in that the are arranged in a non-contact state with respect to a coil cooling tank.
(2)上記遮蔽スペーサの両端が、コイル冷却層の端壁
外面を覆う断熱層に連結されていることを特徴とする特
許請求の範囲第(1)項記載の荷電粒子偏向用超電導電
磁石。
(2) The superconducting electromagnet for charged particle deflection according to claim (1), wherein both ends of the shielding spacer are connected to a heat insulating layer covering the outer surface of the end wall of the coil cooling layer.
JP29481085A 1985-12-25 1985-12-25 Superconducting electromagnet for deflecting charged particles Expired - Lifetime JPH065644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29481085A JPH065644B2 (en) 1985-12-25 1985-12-25 Superconducting electromagnet for deflecting charged particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29481085A JPH065644B2 (en) 1985-12-25 1985-12-25 Superconducting electromagnet for deflecting charged particles

Publications (2)

Publication Number Publication Date
JPS62150802A true JPS62150802A (en) 1987-07-04
JPH065644B2 JPH065644B2 (en) 1994-01-19

Family

ID=17812544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29481085A Expired - Lifetime JPH065644B2 (en) 1985-12-25 1985-12-25 Superconducting electromagnet for deflecting charged particles

Country Status (1)

Country Link
JP (1) JPH065644B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02267898A (en) * 1989-04-06 1990-11-01 Res Dev Corp Of Japan Absorber for synchrotron discharger
JP2017098504A (en) * 2015-11-27 2017-06-01 株式会社東芝 High-temperature superconducting coil, high-temperature superconducting magnet, and method of manufacturing high-temperature superconducting coil
JP2021032611A (en) * 2019-08-20 2021-03-01 株式会社東芝 Charged particle beam irradiation device and charged particle beam irradiation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02267898A (en) * 1989-04-06 1990-11-01 Res Dev Corp Of Japan Absorber for synchrotron discharger
JP2017098504A (en) * 2015-11-27 2017-06-01 株式会社東芝 High-temperature superconducting coil, high-temperature superconducting magnet, and method of manufacturing high-temperature superconducting coil
JP2021032611A (en) * 2019-08-20 2021-03-01 株式会社東芝 Charged particle beam irradiation device and charged particle beam irradiation method

Also Published As

Publication number Publication date
JPH065644B2 (en) 1994-01-19

Similar Documents

Publication Publication Date Title
JP4716284B2 (en) Charged particle beam deflection apparatus and charged particle beam irradiation apparatus
JPH06132119A (en) Superconductive magnet
JPS62186500A (en) Charged beam device
JPS62150802A (en) Superconducting electromagnet for deflecting charged particles
JP2020150240A (en) Superconducting coil and superconducting apparatus
JP7209489B2 (en) superconducting electromagnet
JPS62150803A (en) Superconducting electromagnet for deflecting charged particles
JP3693439B2 (en) Superconducting wiggler with dual beam chamber
US11600416B1 (en) Cryogen-free high-temperature superconductor undulator structure and method for manufacturing the same
JP2739159B2 (en) Toroidal magnet
JP3559659B2 (en) Electron beam cooling device
JPH0570921B2 (en)
US10984935B2 (en) Superconducting dipole magnet structure for particle deflection
JP2868936B2 (en) Superconducting magnet
JPH054262Y2 (en)
JPS62180999A (en) Synchrotron radiation light generator
JP2022165843A (en) Magnetic field generating device
JPH05198429A (en) Superconductor coil
JP2642612B2 (en) Superconducting coil device for magnetic levitation train
JPH02250300A (en) Synchrotron
JPH0316103A (en) Superconducting coil device
JPS6248003A (en) Superconducting coil
JPH05315100A (en) Superconductive wiggler device
JPS6156851B2 (en)
JP2931168B2 (en) Superconducting magnet device