JPS62150194A - Control element - Google Patents

Control element

Info

Publication number
JPS62150194A
JPS62150194A JP60290362A JP29036285A JPS62150194A JP S62150194 A JPS62150194 A JP S62150194A JP 60290362 A JP60290362 A JP 60290362A JP 29036285 A JP29036285 A JP 29036285A JP S62150194 A JPS62150194 A JP S62150194A
Authority
JP
Japan
Prior art keywords
oxide
control element
oxidation
chromium
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60290362A
Other languages
Japanese (ja)
Inventor
荒井 真次
眞人 鎌田
荒木 隆夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60290362A priority Critical patent/JPS62150194A/en
Publication of JPS62150194A publication Critical patent/JPS62150194A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分5′f] 本発明は、制御素子に関し、さらに詳しくは、とくに高
温カス炉の緊急停止用制御系、所謂後備停止系に使用さ
れ、炉運転時に変質することのない制御素子に関する。
[Detailed Description of the Invention] [Technical Part 5'f of the Invention] The present invention relates to a control element, and more specifically, the present invention relates to a control element, and more particularly, it is used in a control system for emergency shutdown of a high-temperature waste furnace, a so-called backup shutdown system, and is This invention relates to a control element that does not deteriorate in quality.

[発明の技術的背景とその問題点] 高温ガス炉においては、制御体とは別個に、例えば緊急
時に炉を停止させるための後備停止り系。
[Technical background of the invention and its problems] In high-temperature gas reactors, there is a back-up shutdown system separate from the control body, for example, for shutting down the furnace in an emergency.

すなわち緊急停止用制御系が設けられていることが一般
的である。かかる後備停止系は、炉心上部に装備された
火j、1の中性f−吸収体よりなる制御素子(以下、屯
に制御素子と称す)を炉心内に一挙に投入する機能を有
するものであって1通常、制御素子、該制御素f・を収
容するホッパー、制御素子を炉心に導くための案内管お
よび制す1素子の投入動作を制御する制御機構などから
構成されている。このような後備停止に系における制御
素子−の投入方法としては、ホッパー下端に設置したラ
ブチャーディスクをガス加圧により破裂させて開口する
ことにより投入する方法、あるいは、ホッパー下部の孔
に挿入したプラグを引き抜くことにより投入する方法な
どがある。この場合、いずれの方法にせよ、制御素子の
円滑な一括投入が行なわれることが必要である。
That is, it is common that an emergency stop control system is provided. This backup shutdown system has the function of injecting all the control elements (hereinafter referred to as control elements) consisting of neutral f-absorbers installed in the upper part of the reactor core into the reactor core all at once. Generally, it consists of a control element, a hopper that accommodates the control element f, a guide pipe for guiding the control element into the reactor core, and a control mechanism that controls the charging operation of the control element. For such backup stoppages, the control element in the system can be introduced by bursting and opening the Lubutture disk installed at the bottom end of the hopper under gas pressure, or by inserting it into the hole at the bottom of the hopper. There is a method of charging by pulling out the plug. In this case, whichever method is used, it is necessary to smoothly insert the control elements all at once.

なお、この制御素トは、中性子吸収断面積の大きなホウ
i (B)を含有するものであることが一般的であり、
例えば炭化ホウ素CB4 G)と黒鉛との混合粉末焼結
体(B4C/Cタイプ)が汎用されている。
Note that this control element generally contains boron (B), which has a large neutron absorption cross section,
For example, a mixed powder sintered body (B4C/C type) of boron carbide (CB4G) and graphite is widely used.

ところで、高温ガス炉においては、冷却材としてHeガ
スが使用されており、炉中に設置された」二足の後備停
止系は、約400℃のHeガス雰囲気下におかれること
になる。Heガスは本来不活性なガスであるが、実際に
は種々の不純物の担体の役割を果たす場合があり、例え
ば炉心構造材である黒鉛から生じる水分、さらには、こ
れらの水分と黒鉛との反応により生成するH2、Co、
Co2.CH4などを含有して、低醇化性雰囲気あるい
は浸炭性雰囲気などの特殊な腐食原境を形成する。この
ようなHeガスか後備停止に系のホッパーに侵入すると
、制御素子が上記の如き腐食環境に曝されることになり
、制御素子表面が変質し、極端な場合には、制御素子が
互いに凝着してホッパー内でブリッジを組んでしまい、
制御素子−の投入動作に支障をきたすという問題が生ず
る。
By the way, He gas is used as a coolant in a high-temperature gas furnace, and the two-leg backup shutdown system installed in the furnace is placed in a He gas atmosphere at about 400°C. Although He gas is originally an inert gas, it may actually act as a carrier for various impurities, such as moisture generated from graphite, which is a core structural material, and reactions between this moisture and graphite. H2, Co, produced by
Co2. Contains CH4, etc., and forms a special corrosion environment such as a low-boiling atmosphere or a carburizing atmosphere. If such He gas enters the hopper of the system during a backup shutdown, the control elements will be exposed to the corrosive environment described above, the surface of the control elements will change, and in extreme cases, the control elements may condense against each other. I put it on and built a bridge in the hopper,
A problem arises in that the closing operation of the control element is hindered.

C9i明の目的コ 本発明は、従来のかかる問題を解消し、炉の運転時にお
いても、表面が変質することがなく、化学的に安定で、
緊急時の投入動作をスムーズに行なうことが可能な制御
素子の提供を目的とする。
Purpose of C9i Akira The present invention solves these conventional problems, and the surface does not change in quality even during furnace operation, and is chemically stable.
The purpose of the present invention is to provide a control element that can smoothly perform a closing operation in an emergency.

[発明の概要] 本発明者らは、まず、上述した如き制御素子の変質が発
生する原因を究明するために次のような実験を行なった
。すなわち、制御素子として通常使用されている炭化ホ
ウ素と黒鉛との混合粉末焼結体(直径10mmの球、対
理論密度比98.5%以上、以下84C/C素子と称す
)をホットプレス法により製造した。このB、C/C素
子を複数個、石英製の容器に密に充填し、水蒸気を20
0座atm含有して酸化性のHe気流中、500°Cで
2000時間加熱した。加熱終了後のB4C/C素子に
は素子間の凝着が観察された。
[Summary of the Invention] The present inventors first conducted the following experiment in order to investigate the cause of the above-mentioned deterioration of the control element. That is, a mixed powder sintered body of boron carbide and graphite (spheres with a diameter of 10 mm, theoretical density ratio of 98.5% or more, hereinafter referred to as 84C/C element), which is commonly used as a control element, was prepared by hot pressing. Manufactured. A plurality of these B, C/C elements are tightly packed in a quartz container, and water vapor is
It was heated at 500°C for 2000 hours in an oxidizing He gas stream containing 0 locator ATM. Adhesion between elements was observed in the B4C/C element after heating was completed.

さらに、これらの素子表面をxvj回折法により調べた
結果、B2O3の生成が確認された。一方、同様の加熱
処理をL記の雰囲気に代えて、CH4を100μatm
含有した浸炭性のHe気流中で行なった結果、素子間の
凝着現象はもとより、素f表面の変質は観察されなかっ
た。
Further, as a result of examining the surfaces of these elements using the xvj diffraction method, the formation of B2O3 was confirmed. On the other hand, by performing the same heat treatment in place of the atmosphere described in L, CH4 was heated at 100 μatm.
As a result of carrying out the test in a gas flow containing carburizing He, not only no adhesion between the elements but also no deterioration of the element surface was observed.

以上のことから、本発明者らは、84C/C素子の変質
は、酸化性雰囲気で起こり、このとき素子表面で生成し
たB2O3が、素子−間の凝着の原因になっていること
を見出した。そして、このような知見にもとづき種々検
#ft1−重ねた結果。
Based on the above, the present inventors discovered that the deterioration of the 84C/C element occurs in an oxidizing atmosphere, and that the B2O3 generated on the element surface at this time is the cause of adhesion between the elements. Ta. Based on this knowledge, various tests #ft1 were repeated.

ホウぶを含有する制御素子の表面と酸化性雰囲気との接
触を断つために、該表面を耐酸化皮膜で被覆すると優れ
た効果が得られることを確認して未発すIを完成するに
到った。
In order to cut off the contact between the surface of the control element containing oxidation and the oxidizing atmosphere, we confirmed that an excellent effect can be obtained by coating the surface with an oxidation-resistant film, and completed the process of I Ta.

すなわち1本発明の制御妻子は、ホウ素を含有する中性
子吸収体よりなる。T11J御素子であって、その表面
が#酸化皮膜により被覆されていることを特徴とする。
That is, one control wife and child of the present invention is made of a neutron absorber containing boron. It is a T11J element, and its surface is coated with a # oxide film.

本発明の側御素子の表面に形成される耐酸化皮膜は、制
御素子との密着性が良好で上述したような酸化性および
浸炭性雰囲気中で安定に存在し、かつこのような雰囲気
と制御素子表面との接触を完全に断つものであれば何ら
限定されるものではないが、とくに、酸化物もしくは醇
化されて緻密な醇化物層を形成する物質よりなるものは
好適である。
The oxidation-resistant film formed on the surface of the side control element of the present invention has good adhesion to the control element, exists stably in the above-mentioned oxidizing and carburizing atmosphere, and is compatible with such an atmosphere and control element. There is no particular limitation on the material as long as it completely cuts off contact with the element surface, but materials made of oxides or substances that form a dense liquefied layer upon oxidation are particularly preferred.

まず、耐酸化皮1!2となる酸化物は、旧述した雰囲気
中で化学的に安定であり、また、融点が高く、500°
C程度の温度領域でノヘ気圧の低いものであることが好
ましく、具体的には、酸化アルミニウム(AM 203
 ) 、 W’A化クロム(Cr203)、酸化ジルコ
ニウム(Zr02)。
First, the oxide that provides oxidation resistance 1!2 is chemically stable in the atmosphere mentioned above, and has a high melting point,
It is preferable to use aluminum oxide (AM 203
), W'A chromium (Cr203), zirconium oxide (Zr02).

酸化チタン(Ti02)、酸化ハフニウム(Hf02)
、酸化タンタル(Ta20s)、酸化ニオブ(Nb20
S )、二酸化ケイ素(Sin2)もしくは酸化ベリリ
ウム(B e O)またはこれらから選ばれた2種以上
のものをあげることができる。また、この酸化物よりな
る皮11りの膜厚は、とくに制限されるものではないが
、通常、50〜200gm程度とすることが好ましい。
Titanium oxide (Ti02), hafnium oxide (Hf02)
, tantalum oxide (Ta20s), niobium oxide (Nb20
S), silicon dioxide (Sin2), beryllium oxide (B e O), or two or more selected from these. Further, the thickness of the skin 11 made of this oxide is not particularly limited, but it is usually preferably about 50 to 200 gm.

このような酸化物層を制御素子表面に形成する方法は、
とくに制限されるものではなく、例えば、熔融状!Eの
酸化物粉末を制御素子表面に高速で吹きつける溶射法、
スパッタなどの物理的蒸着法(PVD)、化学的蒸着法
、(CVD)などをあげることができ、なかでも緻密な
皮膜を得るためにはCVD法が好適である。
The method for forming such an oxide layer on the surface of the control element is as follows:
There are no particular restrictions, for example, molten! A thermal spraying method in which oxide powder of E is sprayed onto the surface of the control element at high speed.
Examples include physical vapor deposition (PVD) such as sputtering, chemical vapor deposition (CVD), etc. Among them, CVD is suitable for obtaining a dense film.

ついで、耐酸化皮膜となる、酸化されて緻密な酸化物層
を形成する物質は、酸素との化学的親和力が大きく、上
述の如き高温ガス炉の運転時、すなわち、500°C程
度の酸化性雰囲気下で。
Next, the substance that is oxidized to form a dense oxide layer, which becomes the oxidation-resistant film, has a high chemical affinity with oxygen, and when operating the high-temperature gas furnace as described above, i.e., the oxidizing property at about 500°C. under the atmosphere.

化学的に安定かつ緻密な酸化物層を速やかに生成しうる
ちのであることが好ましく1.r4体的には。
It is preferable to use a material that quickly forms a chemically stable and dense oxide layer.1. In terms of r4 body.

アルミニウム(An、クロム(Cr)、ジルコニウム(
Z r) 、チタン(Ti)、ベリリウム(Be)、ケ
イ素(Si)、ニッケルークロム(N i −Cr)合
金、ニッケル−アルミニウム(N i −AfL) 合
金、ニッケルークロム−アルミニウム(N i −Cr
−AIL)合金もしくはステンレス鋼またはこれらのう
ちから選ばれた2種以上をあげることができる。これら
の金属あるいは合金の酸化物はその金属もしくは合金母
体との容積比が1.2〜2.5の範囲にあるため、母体
表面を完全に覆うことができ、しかも気孔やき裂など欠
陥のない緻密な皮膜となる。これらの金属もしくは合金
層は、通常10〜100gm程度の層厚とすることが好
ましい。
Aluminum (An, chromium (Cr), zirconium (
Zr), titanium (Ti), beryllium (Be), silicon (Si), nickel-chromium (Ni-Cr) alloy, nickel-aluminum (Ni-AfL) alloy, nickel-chromium-aluminum (Ni- Cr
-AIL) alloy, stainless steel, or two or more selected from these. The oxides of these metals or alloys have a volume ratio of 1.2 to 2.5 with respect to the metal or alloy matrix, so they can completely cover the matrix surface and have no defects such as pores or cracks. Forms a dense film. The thickness of these metal or alloy layers is preferably about 10 to 100 gm.

かかる金属もしくは合金よりなる層は、炉運転時に必ず
しも全層にわたって酸化物となる必要はなく、外表面近
傍に所定の厚さの酸化物層が形成されれば、制御素子の
耐酸化皮膜としての充分な機能を果たすことが可能とな
る。
The layer made of such a metal or alloy does not necessarily have to become an oxide over the entire layer during furnace operation, but if an oxide layer of a predetermined thickness is formed near the outer surface, it can be used as an oxidation-resistant film for the control element. It becomes possible to perform sufficient functions.

[発明の実施例] 実施例1 まず、ホットプレス法を適用して前記と同様の球状の8
4 C/C素子を作製し、この素子の外表面に、減圧不
活性雰囲気中でCrを溶射することにより被覆層を形成
した。すなわち、この溶射工程は低圧プラズマ溶射法で
あり、モ均粒径約7゜ILmの溶射粉末を使用し、圧力
的100TorrのArガス雰囲気中で行なった。得ら
れたCr被覆層の平均厚さは約100 pmであった。
[Embodiments of the Invention] Example 1 First, a spherical 8 similar to the above was prepared by applying a hot press method.
4 A C/C element was produced, and a coating layer was formed on the outer surface of the element by thermally spraying Cr in a reduced pressure inert atmosphere. That is, this thermal spraying process was a low-pressure plasma spraying method, using thermal spray powder with a uniform particle diameter of about 7° ILm, and was carried out in an Ar gas atmosphere at a pressure of 100 Torr. The average thickness of the resulting Cr coating layer was about 100 pm.

このようにして得られたCr被m B 4C/ C素子
を複数個石英管容器に密に充膚して、H2Oを200 
gatm含有したHe気流中で、500℃で2000時
間、オヨび500℃で500時間の加熱処理を行なった
A plurality of Cr-covered mB4C/C elements obtained in this way were densely filled into a quartz tube container, and 200% of H2O was added.
Heat treatment was performed at 500° C. for 2000 hours and then at 500° C. for 500 hours in a He gas flow containing GAT.

かかる加熱処理終了後のCr被冶Bac/C素子の状態
を観察したところ、素子間の凝着は木 / ノ← 1゛
イ書八 九” −111% −各   ナナ−軸j!た
b I+n 面が;仔、^Cr被覆B、C/C素子の断
面組織を光学顕微鏡により観察したところ、B4 C/
(41体とCr被覆層との界面近傍の組織には全く変化
が認められなかった。
When we observed the state of the Cr-treated Bac/C elements after the heat treatment, we found that the adhesion between the elements was as follows. When the cross-sectional structure of the Cr-coated B and C/C elements was observed with an optical microscope, it was found that the surface was B4 C/
(No change was observed in the structure near the interface between the 41 body and the Cr coating layer.

さらに、EPMA(X線マイクロアナライザー)によ馴
て、加熱処理後のB a C/ C素子の断面における
Or被覆層外表面から素子中心に至るまでの酸素の分布
を調べた結果、2000時間および5000時間のいず
れの処理についてもCr被覆層の極表層で酸素濃度が高
くなっている以外は加熱処理前の素子との有意差は認め
られなかった。
Furthermore, we used an EPMA (X-ray microanalyzer) to investigate the distribution of oxygen in the cross section of the B a C/C element after heat treatment, from the outer surface of the Or coating layer to the center of the element. No significant difference was observed in any of the 5,000-hour treatments compared to the element before heat treatment, except that the oxygen concentration was higher in the extreme surface layer of the Cr coating layer.

以上のことから、Cr被覆層によりB4C/C2+:、
子の酸化、すなわち、B2O3の生成が阻o二されたこ
とが確認された。さらに、上述した熱処理条件、つまり
、高温ガス炉の通常運転時において後備停止系が曝され
ることになる条件下では、Cr被覆層の表層が速やかに
酸化されて緻密かつ化学的に安定な酸化物層を生成し、
1該酸化物層が、内部への酸化の拡散を抑制しているこ
とが判明した。
From the above, B4C/C2+:,
It was confirmed that the oxidation of the particles, that is, the production of B2O3, was inhibited. Furthermore, under the heat treatment conditions mentioned above, that is, the conditions to which the backup shutdown system is exposed during normal operation of the high-temperature gas reactor, the surface layer of the Cr coating layer is rapidly oxidized, resulting in dense and chemically stable oxidation. generate a physical layer,
1 It was found that the oxide layer suppressed the diffusion of oxidation into the interior.

実施例2 に記実施例1と同様のB、C/C素子の表面に、CVD
法を適用してA文203被覆層を形成した。この工程は
、反応ガスとして三塩化アルミニウム(All CfL
 3)とH2およびCO2混合ガスを用い、析出温度(
84C/C素子温度)1050℃で行なった。得られた
A l 203被覆層の平均層厚は約70gmであった
Example 2: CVD was applied to the surface of the same B, C/C element as in Example 1.
A pattern A203 coating layer was formed by applying the method. This process uses aluminum trichloride (All CfL) as a reactant gas.
3) and H2 and CO2 mixed gas, the precipitation temperature (
84C/C element temperature) 1050°C. The average layer thickness of the resulting Al 203 coating layer was about 70 gm.

このようにして得られたAi、03被fiB4C/C素
子を複数個石英管容器に充填して上記実施例1と同様の
条件で2000時間および5000時間の加熱処理を行
なった。加熱処理後のAu203被覆B4C/C素子の
状態を観察したところ、素子間の凝着は全く生じていな
かった。また、加熱処理前後のA!;L2o3被覆B4
C/C素子の断面組織を光学顕微鏡で観察した結果、B
 a C/ C母体とA文203被覆層との界面近傍の
組織には全く変化が認められなかった。
A plurality of the thus obtained Ai, 03 fiB4C/C elements were filled into a quartz tube container and heat treated for 2000 hours and 5000 hours under the same conditions as in Example 1 above. When the state of the Au203-coated B4C/C element after the heat treatment was observed, no adhesion between the elements had occurred at all. Also, A before and after heat treatment! ;L2o3 coating B4
As a result of observing the cross-sectional structure of the C/C element with an optical microscope, B
No change was observed in the structure near the interface between the aC/C matrix and the A-texture 203 coating layer.

このことから、A交2o3被覆層によって、Bの酸化、
すなわち、B2O3の生成に起因するBaC/C素子の
変質が有効に防止ネれたことが確認された。
From this, the oxidation of B,
That is, it was confirmed that the deterioration of the BaC/C element due to the generation of B2O3 was effectively prevented.

[発明の効果] 以上の説明から明らかなように、本発明の制御素子、と
くに高温ガス炉の後備停止系に使用される制御素子は、
その表面が#酸化波11りで被覆されているため、炉運
転時に酸化性雰囲気に曝されても、その表面が変質する
ことなく、したがって、B2O3などの生成に起因する
素子間の凝着が生ずることがない。その結果、制御素子
使用時のスムーズな動作が確保される。
[Effects of the Invention] As is clear from the above description, the control element of the present invention, particularly the control element used in the backup shutdown system of a high-temperature gas reactor,
Since its surface is coated with #oxidation wave 11, even if it is exposed to an oxidizing atmosphere during furnace operation, its surface will not change in quality, and therefore adhesion between elements due to the production of B2O3 etc. will be prevented. It never occurs. As a result, smooth operation is ensured when using the control element.

さ1うに、本発明の制御J11素子は、従来使用されて
いる制御素子に対して単に表面被覆処理を施すだけで製
造しうるため、例えば、制御素子自体の材料、形状およ
び特性などの設計条件を大幅に変更することは全く必要
とせず多大な効果を奏するものである。したがって、そ
の工業的価値は極めて大である。
In addition, since the control J11 element of the present invention can be manufactured by simply subjecting a conventionally used control element to surface coating treatment, for example, design conditions such as the material, shape, and characteristics of the control element itself can be manufactured. It is not necessary to make any major changes to the system, and it has a great effect. Therefore, its industrial value is extremely large.

Claims (4)

【特許請求の範囲】[Claims] (1)ホウ素を含有する中性子吸収体よりなる制御素子
であって、その表面が耐酸化皮膜により被覆されている
ことを特徴とする制御素子。
(1) A control element comprising a neutron absorber containing boron, the surface of which is coated with an oxidation-resistant film.
(2)該耐酸化皮膜が、酸化物または酸化されて緻密な
酸化物層を形成する物質よりなるものである特許請求の
範囲第1項に記載の制御素子。
(2) The control element according to claim 1, wherein the oxidation-resistant film is made of an oxide or a substance that forms a dense oxide layer when oxidized.
(3)該酸化物が、酸化アルミニウム、酸化クロム、酸
化ジルコニウム、酸化チタン、酸化ハフニウム、酸化タ
ンタル、酸化ニオブ、二酸化ケイ素および酸化ベリリウ
ムよりなる群から選ばれた少なくとも1種である特許請
求の範囲第2項に記載の制御素子。
(3) Claims in which the oxide is at least one selected from the group consisting of aluminum oxide, chromium oxide, zirconium oxide, titanium oxide, hafnium oxide, tantalum oxide, niobium oxide, silicon dioxide, and beryllium oxide. Control element according to item 2.
(4)該酸化されて緻密な酸化物を形成する物質が、ア
ルミニウム、クロム、ジルコニウム、チタン、ベリリウ
ム、ケイ素、ニッケル−クロム合金、ニッケル−アルミ
ニウム合金、ニッケル−クロム−アルミニウム合金およ
びステンレス鋼よりなる群から選ばれた少なくとも1種
である特許請求の範囲第2項に記載の制御素子。
(4) The substance that is oxidized to form a dense oxide is made of aluminum, chromium, zirconium, titanium, beryllium, silicon, nickel-chromium alloy, nickel-aluminum alloy, nickel-chromium-aluminum alloy, and stainless steel. The control element according to claim 2, which is at least one type selected from the group.
JP60290362A 1985-12-25 1985-12-25 Control element Pending JPS62150194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60290362A JPS62150194A (en) 1985-12-25 1985-12-25 Control element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60290362A JPS62150194A (en) 1985-12-25 1985-12-25 Control element

Publications (1)

Publication Number Publication Date
JPS62150194A true JPS62150194A (en) 1987-07-04

Family

ID=17755048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60290362A Pending JPS62150194A (en) 1985-12-25 1985-12-25 Control element

Country Status (1)

Country Link
JP (1) JPS62150194A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013092486A (en) * 2011-10-27 2013-05-16 Hitachi-Ge Nuclear Energy Ltd Nuclear reactor control rod
JP2020532726A (en) * 2017-08-31 2020-11-12 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー High temperature control rods for light water reactors

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013092486A (en) * 2011-10-27 2013-05-16 Hitachi-Ge Nuclear Energy Ltd Nuclear reactor control rod
JP2020532726A (en) * 2017-08-31 2020-11-12 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー High temperature control rods for light water reactors

Similar Documents

Publication Publication Date Title
Dabney et al. Experimental evaluation of cold spray FeCrAl alloys coated zirconium-alloy for potential accident tolerant fuel cladding
US4463062A (en) Oxide bond for aluminum oxide coated cutting tools
Li et al. Effect of Al content on high-temperature oxidation behavior and failure mechanism of CrAl-coated Zircaloy
EP0179704B1 (en) Hydrogen permeation protection for metals
Luo et al. Preparation technologies and performance studies of tritium permeation barriers for future nuclear fusion reactors
Evangelou et al. Oxidation behaviour of single crystal nickel-based superalloys: intermediate temperature effects at 450–550 C
US4055706A (en) Processes for protecting refractory metallic components against corrosion
US20060188056A1 (en) Method for forming coatings on structural components with corrosion-mitigating materials
Bennett et al. The improvement by a CVD silica coating of the oxidation behaviour of a 20% Cr/25% Ni niobium stabilized stainless steel in carbon dioxide
JPS62150194A (en) Control element
CN112853287B (en) Protective coating with long-time high-temperature-resistant steam oxidation and preparation method thereof
Itoh et al. Mechanical properties of overaluminized MCrAlY coatings at room temperature
Siitonen et al. Corrosion properties of stainless steel coatings made by different methods of thermal spraying
Desiati et al. Two-step sintering improved compaction of electrophoretic-deposited YSZ coatings
Chen et al. Reusable molds for casting U-Zr alloys
US5137683A (en) Process for forming a chromium oxide insulating layer between the pellets and the cladding of a nuclear fuel element, and fuel element having such an insulating layer
Taniguchi Coatings for TiAl
Perry et al. Interlayers formed in the carbide coating of steel by chemical vapour deposition
Pettit et al. Oxidation and Hot Corrosion Resistance
Ignatov et al. Mechanism of the Oxidation of Nickel and Chromium Alloys
Kishimoto et al. Hydrogen permeation in metals during exposure to a process gas environment
Reiner et al. Carbon monoxide reaction with liquid uranium-niobium alloys
Wai et al. Deuterium permeation and lithium‑lead corrosion behaviors of ceramic‑iron joint coating
Itoh et al. Aluminizing behaviors of vacuum plasma sprayed MCrAlY coatings
Jiang et al. Study on Composition Design of Enamel Coating and Its Resistance to Active Metal Vapor Corrosion