JPS62149315A - Method and apparatus for magnetic type filtration used with multipolar magnet - Google Patents
Method and apparatus for magnetic type filtration used with multipolar magnetInfo
- Publication number
- JPS62149315A JPS62149315A JP28791985A JP28791985A JPS62149315A JP S62149315 A JPS62149315 A JP S62149315A JP 28791985 A JP28791985 A JP 28791985A JP 28791985 A JP28791985 A JP 28791985A JP S62149315 A JPS62149315 A JP S62149315A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- magnet
- multipolar
- magnetic flux
- multipolar magnet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、流体中の磁性固形物を磁気により吸着捕集す
るいわゆる磁気式濾過方法及びその装置に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a so-called magnetic filtration method and apparatus for magnetically adsorbing and collecting magnetic solids in a fluid.
第3図は従来の方式による二極の磁石を用いた磁気式濾
過装置の例であり、図中1は容器、2は並設された二極
磁石、3は非磁性管、4は炉材lO並びに固形分を保持
する目皿である。二極磁石2を下部にロッド9で下げ、
破線32以下の位置に移動させると、重力で容器l下部
のホッパー5に炉材lOと固形分が落下し、弁6より下
に排出される。?75過時には炉材lOや固形分を含む
流体を供給ロアより入れ、目皿4J:、にが材lOと固
形分を保持及び付着させ、弁6より流体のみを排出する
。Figure 3 shows an example of a conventional magnetic filtration device using two-pole magnets. It is a perforated plate that holds lO and solids. Lower the dipole magnet 2 to the bottom with the rod 9,
When the container is moved to a position below the broken line 32, the furnace material lO and solids fall into the hopper 5 at the bottom of the container l due to gravity and are discharged below the valve 6. ? After 75 hours, a fluid containing the furnace material 1O and solids is introduced from the supply lower, the perforated plate 4J holds and adheres the garlic wood 1O and the solids, and only the fluid is discharged from the valve 6.
[発明が解決しようとする問題点]
この場合、磁束分布は31のようになり、磁石の側面の
磁力は弱く、磁石上側に逃げる磁束が多く、Yp濾過装
置しては磁石間の磁束が疎になり、固形分がこの部分で
捕集されず濾過効率が上らないという欠点があった。一
方、磁極周辺に集中的に固形分が集積し、この部分での
が過抵抗が高くなり、いわゆる目詰まりを起こすととも
に偏流やチャンネリングを起こし、これも濾過効率を低
下させるものであった。[Problems to be solved by the invention] In this case, the magnetic flux distribution is as shown in 31, the magnetic force on the side of the magnet is weak, and there is a lot of magnetic flux escaping to the upper side of the magnet. This has the disadvantage that the solid content is not collected in this part and the filtration efficiency cannot be improved. On the other hand, solid matter concentrates around the magnetic poles, resulting in high overresistance in these areas, causing so-called clogging, as well as drifting and channeling, which also reduce filtration efficiency.
本発明は、上記従来技術の欠点を改善した新しい方法と
装置を提供することを目的とするものである。It is an object of the present invention to provide a new method and device that improves the drawbacks of the prior art described above.
[問題点を解決するための手段]
第1の発明である磁気式か過方法は、永久磁石の磁束に
より、流体中に含まれる磁性のある固形分を吸着捕集す
る磁気式濾過方法において、前記た
永久磁石に、一体に成形され番被磁性素材を全周飽和多
極磁化した磁石を用いることを特徴とするものである。[Means for Solving the Problems] The magnetic filtration method, which is the first invention, is a magnetic filtration method in which magnetic solids contained in a fluid are attracted and collected by the magnetic flux of a permanent magnet. The present invention is characterized in that a magnet is used as the permanent magnet, which is integrally molded and has a magnetized material that is saturated and multipole magnetized all around.
第2の発明である磁気式濾過装置は、第1の発明を実施
するための装置であって、容器中に突設された少なくと
も1個の非磁性管と、該非磁性管内に挿入される全周飽
和磁化された多極磁石を有することを特徴とするもので
ある。A second invention, a magnetic filtration device, is a device for carrying out the first invention, and includes at least one non-magnetic tube protruding into a container, and a magnetic filtration device inserted into the non-magnetic tube. It is characterized by having a multipolar magnet that is circumferentially saturated magnetized.
第3の発明である磁気式が過装置は第1の発明を実施す
るための装置であって、非磁性管を容器とし、該容器の
外周に全周飽和磁化された多極磁石を設けたことを特徴
とするものである。The third invention, a magnetic magnetization device, is a device for carrying out the first invention, in which a non-magnetic tube is used as a container, and a multipolar magnet that is saturated magnetized all around the container is provided on the outer periphery of the container. It is characterized by this.
本発明に用いられる多極磁石は、本発明者等が先に出願
の特開昭Go−107809号および特願昭80−22
1952号の方法によって製造することができる。この
方法によれば、磁石の極数と極の磁気強度、極間の磁束
密度分布を所望のパターンに設定できるとともに、総磁
束密度の増大、保磁力の維持強化も計ることができる。The multipolar magnet used in the present invention is disclosed in Japanese Patent Application Laid-Open No. 107809 and Japanese Patent Application No. 80-22 filed earlier by the present inventors.
It can be manufactured by the method of No. 1952. According to this method, the number of poles of the magnet, the magnetic strength of the poles, and the magnetic flux density distribution between the poles can be set to a desired pattern, and the total magnetic flux density can be increased and the coercive force maintained and strengthened.
[作 用]
本発明に用いられる多極磁石においては、軸方向にN、
Sの磁極が単独で交互に形成され、非磁性管の周囲に偏
りのない磁束分布を作り出すため、有効濾過面積、及び
体積の増大を図ることができる。また、吸着される固形
分の形状、大きさを磁束分布に応じて分配させることが
できる。[Function] In the multipolar magnet used in the present invention, N in the axial direction,
Since the S magnetic poles are formed singly and alternately to create an even magnetic flux distribution around the non-magnetic tube, it is possible to increase the effective filtration area and volume. Further, the shape and size of the solid matter to be adsorbed can be distributed according to the magnetic flux distribution.
このような作用は、単に従来の二極磁石を組み合わせた
だけでは得られないものである。たとえば従来の二極磁
石を組み合わせてその磁極をN−3、N−3と相対させ
ると、大部分の磁束は相対二極間の最短距離部分に集中
し、目的とする磁石側面の磁束は微弱となる。一方、磁
極をN−S 、S−Nと相対された場合は、側面部の磁
束密度は増大するが、総磁束密度は減少し、また磁石の
減磁が起こり耐久性に乏しくなる。Such an effect cannot be obtained simply by combining conventional dipole magnets. For example, when conventional two-pole magnets are combined and their magnetic poles are opposed to N-3 and N-3, most of the magnetic flux is concentrated at the shortest distance between the two opposing poles, and the magnetic flux on the side of the magnet is weak. becomes. On the other hand, when the magnetic poles are opposed to N-S and S-N, the magnetic flux density at the side faces increases, but the total magnetic flux density decreases, and the magnet demagnetizes, resulting in poor durability.
本発明の主眼は磁気式濾過装置において、多極磁石を使
用することにより、装置内部の磁束分布状態を制御した
ことにある。したがって濾過装置の規模、形態、磁石の
数とその形状、配置、材質、あるいは濾過材の有無、材
質、形状、その配置などはその目的によって適宜選択す
べきものであり、本発明は、以下に述べる実施例に限定
されるものではない。The main focus of the present invention is to control the magnetic flux distribution state inside the device by using a multipolar magnet in a magnetic filter device. Therefore, the scale and form of the filtration device, the number of magnets, their shape, arrangement, material, presence or absence of a filtration material, material, shape, arrangement, etc. should be appropriately selected depending on the purpose. It is not limited to the examples.
[実施例]
本発明の実施例を第1図に示す、第1図において、1は
容器、8は並設された多極磁石であり、上からN−3−
N−3の順に4極に着磁されている。3は非磁性管、4
は炉材lO並びに固形分を保持する目皿である。[Example] An example of the present invention is shown in FIG. 1. In FIG. 1, 1 is a container, 8 is a multipolar magnet arranged in parallel,
It is magnetized into four poles in the order of N-3. 3 is a non-magnetic tube, 4
is a perforated plate that holds the furnace material lO and solids.
上記構成において、多極磁石8を下部にロッド9で下げ
、破線12以下の位置に移動させると重力で容器l下部
のホッパー5に炉材lOと固形分が落下し、弁より下に
排出される。rp通過時は炉材10や固形分を含む流体
を供給ロアより入れ、目皿4上に炉材と固形分を保持及
び付着させ、弁6より流体のみを排出する。In the above configuration, when the multipole magnet 8 is lowered by the rod 9 and moved to a position below the broken line 12, the furnace material lO and solids fall into the hopper 5 at the bottom of the container l due to gravity and are discharged below the valve. Ru. When passing through the RP, fluid containing the furnace material 10 and solids is introduced from the supply lower, the furnace material and solids are held and adhered to the perforated plate 4, and only the fluid is discharged from the valve 6.
本実施例における磁束分布は、図の11のようになり磁
石の側面の磁束が強くなる。このため、磁石の上側に逃
げる磁束を減少させることができる。また、磁束の分布
が平均化されるので、炉材の部分的な偏りを防止するこ
とができる。The magnetic flux distribution in this example is as shown in 11 in the figure, and the magnetic flux on the side surfaces of the magnet is strong. Therefore, the magnetic flux escaping to the upper side of the magnet can be reduced. Furthermore, since the distribution of magnetic flux is averaged, it is possible to prevent the furnace material from becoming partially unbalanced.
第2図は本発明の他の実施例を示すものである。この実
施例は大極に着磁された多極磁石8を容量1の外周に囲
繞して配置し、非磁性材料よりなる容器1の内面に濾過
層を形成するようにしたものである。この場合、固形分
の取り出しは多極磁石8を上または下の方向に移動する
か、あるいは取りはずすことによって行うことができる
。FIG. 2 shows another embodiment of the invention. In this embodiment, a multipolar magnet 8 magnetized to a large pole is placed around the outer periphery of a capacitor 1, and a filtration layer is formed on the inner surface of a container 1 made of a non-magnetic material. In this case, the solid matter can be removed by moving the multipolar magnet 8 upward or downward, or by removing it.
上記各実施例においては、磁性材よりなるが材lOを使
用し、炉材層により固形物を捕集する例を示したが、か
材層を省略し、磁石(あるいは磁石を内挿した非磁性管
)の表面に直接固形物を吸着させるようにしてもよい。In each of the above embodiments, an example was shown in which the magnetic material lO was used and the solid matter was collected by the furnace material layer, but the material layer was omitted and a magnet (or a non-magnetic material with a magnet inserted) was shown. Solid matter may be directly adsorbed onto the surface of the magnetic tube.
また、磁石の形状を平板状とし、この表面を利用して固
形物を吸着させるようにしてもよい。Alternatively, the magnet may be shaped like a flat plate, and the surface of the magnet may be used to attract solid matter.
[発明の効果]
以上説明したように、本発明によれば、多極磁石を用い
て濾過装置内の磁束分布を制御し、磁石間の磁束を密と
することによって偏流やチャンネリングを防止すること
ができる。また固形物のショートパスを防ぐとともに、
固形物の吸着を容器内に平均化させることにより、目詰
まりも防止され、か過動率をより向上させることが可能
とな図、第2図は本発明の他の実施例を示す装置の構成
図、第3図は従来装置の構成図である。[Effects of the Invention] As explained above, according to the present invention, multipolar magnets are used to control the magnetic flux distribution within the filtration device, and by making the magnetic flux between the magnets dense, it is possible to prevent drifting and channeling. be able to. In addition to preventing short passes of solids,
By averaging the adsorption of solids within the container, clogging can be prevented and the hyperactivity rate can be further improved. Figure 2 shows an apparatus showing another embodiment of the present invention. The block diagram, FIG. 3, is a block diagram of a conventional device.
■・・・容器、3・・・非磁性管、8・・・多極磁石、
lO・・・か材。■... Container, 3... Non-magnetic tube, 8... Multipolar magnet,
lO... or material.
Claims (1)
る固形分を吸着捕集する磁気式ろ過方法において、前記
永久磁石に、一体に成形された被磁化素材を全周飽和多
極磁化した磁石を用いることを特徴とする多極磁石を用
いた磁気式ろ過方法。 2)容器中に突設された少なくとも1個の非磁性管と、
該非磁性管内に挿入される全周飽和磁化された多極磁石
を有することを特徴とする多極磁石を用いた磁気式ろ過
装置。 3)上記非磁性管外側に、磁性ろ材を保持することを特
徴とする特許請求の範囲第2項記載の多極磁石を用いた
磁気式ろ過装置。 4)非磁性管を容器とし、該容器の外周に全周飽和磁化
された多極磁石を設けたことを特徴とする多極磁石を用
いた磁気式ろ過装置。 5)上記非磁性管内に磁性ろ材を保持することを特徴と
する特許請求の範囲第4項記載の多極磁石を用いた磁気
式ろ過装置。[Claims] 1) In a magnetic filtration method in which magnetic solids contained in a fluid are attracted and collected by the magnetic flux of a permanent magnet, the magnetized material formed integrally with the permanent magnet is entirely attached to the permanent magnet. A magnetic filtration method using a multipolar magnet characterized by using a magnet with circumferentially saturated multipolar magnets. 2) at least one non-magnetic tube protruding into the container;
A magnetic filtration device using a multipolar magnet, characterized in that the multipolar magnet is inserted into the non-magnetic tube and is saturated magnetized all around. 3) A magnetic filtration device using a multipolar magnet according to claim 2, wherein a magnetic filter medium is held on the outside of the non-magnetic tube. 4) A magnetic filtration device using a multipolar magnet, characterized in that a non-magnetic tube is used as a container, and a multipolar magnet whose entire circumference is saturated magnetized is provided around the outer periphery of the container. 5) A magnetic filtration device using a multipolar magnet according to claim 4, wherein a magnetic filter medium is held within the non-magnetic tube.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28791985A JPS62149315A (en) | 1985-12-23 | 1985-12-23 | Method and apparatus for magnetic type filtration used with multipolar magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28791985A JPS62149315A (en) | 1985-12-23 | 1985-12-23 | Method and apparatus for magnetic type filtration used with multipolar magnet |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62149315A true JPS62149315A (en) | 1987-07-03 |
Family
ID=17723425
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28791985A Pending JPS62149315A (en) | 1985-12-23 | 1985-12-23 | Method and apparatus for magnetic type filtration used with multipolar magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62149315A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014098040A1 (en) * | 2012-12-17 | 2014-06-26 | 有限会社ショウナンエンジニアリング | Magnetic in-line filter |
-
1985
- 1985-12-23 JP JP28791985A patent/JPS62149315A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014098040A1 (en) * | 2012-12-17 | 2014-06-26 | 有限会社ショウナンエンジニアリング | Magnetic in-line filter |
US9475062B2 (en) | 2012-12-17 | 2016-10-25 | Shounan Engineering Inc. | Magnetic inline filter |
JPWO2014098040A1 (en) * | 2012-12-17 | 2017-01-12 | 有限会社ショウナンエンジニアリング | Magnetic in-line filter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2430157A (en) | Magnetic separator for removing finely divided magnetic material from liquids | |
US6562239B2 (en) | Magnetic separation device | |
AU9561701A (en) | Method for separating a dispersed or dissolved substance and magnet separator | |
JPS587344B2 (en) | Kiyojikaishikijisenki | |
JP4964144B2 (en) | Method for forming a high gradient magnetic field and material separation apparatus based on this method | |
JPS62149315A (en) | Method and apparatus for magnetic type filtration used with multipolar magnet | |
JP2005262058A (en) | Method and apparatus for magnetic sorting | |
JPS5815929B2 (en) | Manufacturing method of radially magnetized permanent magnet | |
JP2003062483A (en) | Spindle magnet and magnetic separation apparatus using the same | |
JP2002537096A (en) | Ferrohydrostatic separation method and apparatus | |
US4412176A (en) | Testing method for determining the magnetic properties of ferromagnetic powders | |
JP3641657B2 (en) | Purification device using magnetic material | |
JPS634820A (en) | Filtrating apparatus using laminated magnet | |
JPS58501662A (en) | Apparatus and method for magnetic sorting | |
JPS59314A (en) | Electromagnetic filter | |
CN213792187U (en) | Magnetic separator structure of medical analytical equipment | |
GB2147526A (en) | Apparatus for separating ferromagnetic particles from a slurry | |
JPH0557211A (en) | Oil separator | |
JPS551854A (en) | Coagulation of ferromagnetic fine powders in suspension | |
JPH09253524A (en) | Magnetic separator | |
JPS5823371Y2 (en) | magnetic filter | |
JPS60106B2 (en) | magnetic separation device | |
RU1801589C (en) | Soft-magnetic ore wet concentration apparatus | |
JPS59162962A (en) | Magnetic separator | |
RU1768231C (en) | Magnetic filter |