JPS62149199A - Static magnetic field shielding structure - Google Patents

Static magnetic field shielding structure

Info

Publication number
JPS62149199A
JPS62149199A JP60290027A JP29002785A JPS62149199A JP S62149199 A JPS62149199 A JP S62149199A JP 60290027 A JP60290027 A JP 60290027A JP 29002785 A JP29002785 A JP 29002785A JP S62149199 A JPS62149199 A JP S62149199A
Authority
JP
Japan
Prior art keywords
magnetic field
shielding
magnetic
static magnetic
field shielding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60290027A
Other languages
Japanese (ja)
Inventor
武部 貴文
睦 安倍
筑田 昌宏
岡野 洋一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP60290027A priority Critical patent/JPS62149199A/en
Publication of JPS62149199A publication Critical patent/JPS62149199A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野〕 本発明は@量・小型化の進んでいる電子・電気機器分野
における磁気洩れ障害を防止する為の静磁1場シールド
構造に関し、詳細には静磁場シールドを果すに当たり容
易且つ低コストで施工を行なうことができ、しかも施工
による重量増加が少なく、さらに高磁束密度下における
シールドを効果的に達成することので計る静磁場シール
ド構造に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a static magnetic single field shield structure for preventing magnetic leakage failure in the field of electronic and electrical equipment, where mass and miniaturization are progressing. This relates to a static magnetic field shield structure that can be easily and inexpensively constructed to achieve static magnetic field shielding, has little weight increase due to construction, and can effectively achieve shielding under high magnetic flux density. be.

各種電子・電気機器等は近年著しく普及しているが、こ
れらに組込まれた永久磁石等からの漏洩磁気による障害
が大きな問題として提起され、その解決が強く要請され
ている。そこでこうした磁気障害を防止する為に種々検
討が進められているが、そのひとつとして、パーマロイ
や珪素鋼板等の静磁場シールド材によって磁気発生源を
被包する方法があり、汎用されている。しかるに上記シ
ールド方法に利用される静磁場シールド材のうちパーマ
ロイについては、薄肉材の場合1i11気シールド効果
が不十分であり、所定のシールド効果を発揮させる為に
は相当の厚肉材を使用しなければならないという問題が
ある。即ち上記方法であると機器の重量が増大し且つ大
型化することになるが、前記電子・電気機器分野では軽
量・小型化が著しく進行していることがら砕石n場シー
ルド構造についても!iil量且つ小型であることが求
められており、上記の如きパーマロイ厚内材はこうした
要請を満足し得るものといえない。またパーマロイ白/
−) 1.+ u iル久/4.す)Δ本でね7覧宣な
杓ルハm因となっており、静磁場シールド構造の施工コ
ストを高騰させている。さらに上記合金は、それ自体の
成形性が悪く、複雑な形状には対応できないだけでなく
、該成形加工に伴なって磁気シールド性が急激に劣化す
るのでこれを回復する為に成形後特殊な焼鈍加工を施さ
なければならないという欠点もある。−万難素鋼板につ
いてもほぼ同様の事情があり、十分な静磁場シールド効
果を発揮させる為にはグレードの高いものを使用しなけ
ればならないのでやはり価格が高騰する。しかも珪素鋼
板の場合には成形性が一層劣悪であり、複雑な形状に成
形することが難しいばかりでなく、成形後の焼鈍処理が
必要とする。
Various electronic and electrical devices have become extremely popular in recent years, but problems caused by magnetic leakage from permanent magnets incorporated in these devices have been raised as a major problem, and a solution to this problem is strongly required. Therefore, various studies are being conducted to prevent such magnetic disturbances, and one widely used method is to encapsulate the magnetic source with a static magnetic field shielding material such as permalloy or silicon steel plate. However, among the static magnetic field shielding materials used in the above-mentioned shielding method, permalloy has an insufficient 1i11 air shielding effect if it is a thin material, and a considerably thick material must be used in order to achieve the desired shielding effect. The problem is that it has to be done. In other words, the above method increases the weight and size of the equipment, but since the electronic and electrical equipment fields are becoming lighter and more compact, the crushed stone n-field shield structure also needs to be improved! It is required that the permalloy material be small in size and large in quantity, and the permalloy thick inner material as described above cannot be said to be able to satisfy these demands. Also permalloy white/
-) 1. + uirukyu/4. ) Δ This is a major cause of public failure and increases the construction cost of the static magnetic field shield structure. Furthermore, the above alloys themselves have poor formability and cannot be formed into complex shapes, and their magnetic shielding properties rapidly deteriorate as a result of the forming process. It also has the disadvantage of requiring annealing. - Almost the same situation exists for steel plates, and in order to exhibit a sufficient static magnetic field shielding effect, high grade steel plates must be used, so the price also rises. Moreover, in the case of a silicon steel plate, its formability is even worse, and it is not only difficult to form it into a complicated shape, but also requires an annealing treatment after forming.

上記の如くパーマロイあるいは珪素鋼板等の静磁場シー
ルド材を使用して磁気シールドを行なう方法については
種々の欠点があり満足し得るものではないが、特に成形
性の悪さはもっとも重要な解決課題となっている。そこ
で従来は成形加工を行なわずに磁気発生源を板状材で囲
ったり、帯状材を重ね巻きして磁気シールドに努めてい
る。
As mentioned above, the method of magnetic shielding using static magnetic field shielding materials such as permalloy or silicon steel plate has various drawbacks and is not satisfactory, but poor formability is the most important problem to be solved. ing. Conventionally, therefore, magnetic shielding has been attempted by surrounding the magnetic source with a plate-like material or wrapping belt-like materials in layers without performing any molding process.

[発明か解決しようとする問題点] しかるに板状材による囲いや帯状材の重ね巻きでは磁気
発生源を完全に密封することか難しく、隙間からの磁気
漏洩が防止できず磁気シールド不良は解消しきれない。
[Problems to be solved by the invention] However, it is difficult to completely seal the magnetic source by enclosing plate-like materials or overlapping belt-like materials, and magnetic leakage from gaps cannot be prevented, making it impossible to eliminate magnetic shielding defects. I can't do it.

また上記方法では複雑な形状には対処できない。この他
薄肉のパーマロイを使用したときには磁気発生源の磁化
の強さが高まるにつれてその高まり以上に磁気の洩れが
急激に増加するという傾向がある様である。
Furthermore, the above method cannot handle complex shapes. In addition, when thin permalloy is used, there seems to be a tendency for magnetic leakage to increase rapidly as the strength of magnetization of the magnetic source increases.

本発明はこうした磁場に着目してなされたものであって
、本発明者等が先に特許出願(特願昭60−12687
4)L/た静磁場シールド材を利用して上述の問題を一
挙に解決しようとするものである。即ち上記先願に係る
静磁場シールド材は成形性が優れ、且つ安価で磁気シー
ルド性の優れたものであるが、その特性を有効に発揮さ
せる為の条件については未だ確立されておらず、使用態
様によっては磁気シールドを効果的に達成することがで
きない恐れがある。殊に磁気発生源自体の磁力が小さい
場合には溜洩磁気の大きさも微弱であり障害の程度も軽
微であるが、これが大きくなった場合に問題が大きくな
るのでこうしたときに磁気の洩れを効果的に抑えること
が必要である。
The present invention was made by focusing on such magnetic fields, and the present inventors had previously filed a patent application (Japanese Patent Application No. 12687-1987).
4) An attempt is made to solve the above-mentioned problems at once by using a static magnetic field shielding material with L/3. In other words, the static magnetic field shielding material related to the above-mentioned prior application has excellent formability, is inexpensive, and has excellent magnetic shielding properties, but the conditions for effectively demonstrating its characteristics have not yet been established, and it is difficult to use it. Depending on the embodiment, magnetic shielding may not be effectively achieved. In particular, when the magnetic force of the magnetic source itself is small, the magnitude of the leaked magnetism is weak and the degree of damage is minor, but if it becomes large, the problem becomes serious, so it is necessary to prevent magnetic leakage in such cases. It is necessary to suppress the

[問題点を解決する為の手段] 上記課題を解決した本発明とは、厚さ0.01〜1.0
 mmの非導電性樹脂を介して磁気遮蔽金属板を積層し
てなる静磁場シールド材を、磁極の中心線上の磁束密度
が200ガウス以上の領域に配置する点に要旨を有する
ものである。
[Means for solving the problems] The present invention that solves the above problems is based on a thickness of 0.01 to 1.0
The gist is that the static magnetic field shielding material, which is formed by laminating magnetic shielding metal plates via a non-conductive resin of 1.5 mm, is placed in a region where the magnetic flux density on the center line of the magnetic pole is 200 Gauss or more.

[作用コ 本発明に利用する静磁場シールド材は、非導電性樹脂を
介して磁気遮蔽金属板を積層したものであり、非磁性材
料である非導電性樹脂と飽和磁束密度の高い金属材料の
組合せによって相剰的に静6n場シールド効果を発揮す
るものである。即ち非導電性樹脂はA1等と同じく非磁
性材料であるが、AIより優れた静磁場シールド効果を
発揮する。一方6n気遮蔽金属板はそれ自身磁化される
ことによって静磁場シールド効果を発揮するもので、飽
和磁束密度の高い金属材料からなる。この様な磁気遮蔽
金属板を、非導電性樹脂を間に挟んで積層すると両者の
持つ静磁場シールド効果を単に加算した以上の静磁場シ
ールド効果を得ることができる。こうした効果が得られ
る理由については明確にし得た訳ではないが、(1)磁
気遮蔽金属板同士の間に非導電性物質を介在させること
によって静磁場シールド内に不連続な磁場が形成される
点、(2)非導電性樹脂によって磁気発生源から遠い側
の磁気遮蔽金属板と磁気発生源の距離が確保される点(
距離保持機能:磁束密度は距離の2乗乃至3乗に反比例
して減少する)及び(3)少なくとも内・外2枚の磁気
遮蔽金属板による重畳的静磁場シールド作用が働く点等
をその理由として挙げることができる。
[Operation] The static magnetic field shielding material used in the present invention is made by laminating magnetic shielding metal plates through non-conductive resin, and is made of a non-magnetic material, non-conductive resin, and a metal material with high saturation magnetic flux density. The combination produces a static 6n field shielding effect. That is, although the non-conductive resin is a non-magnetic material like A1 etc., it exhibits a static magnetic field shielding effect superior to that of AI. On the other hand, the 6n air shielding metal plate exhibits a static magnetic field shielding effect by being magnetized itself, and is made of a metal material with a high saturation magnetic flux density. When such magnetic shielding metal plates are laminated with a non-conductive resin in between, it is possible to obtain a static magnetic field shielding effect that is greater than the simple sum of the static magnetic field shielding effects of both metal plates. Although the reasons for this effect have not been clearly determined, (1) a discontinuous magnetic field is formed within the static magnetic field shield by interposing a non-conductive material between the magnetic shielding metal plates; (2) The point where the distance between the magnetic shielding metal plate on the side far from the magnetic source and the magnetic source is secured by the non-conductive resin (
Distance maintenance function: magnetic flux density decreases in inverse proportion to the square or cube of the distance) and (3) the reason for this is that at least two magnetic shielding metal plates, the inner and outer ones, act to shield the superimposed static magnetic field. It can be mentioned as follows.

上記の如く本発明においては静磁場シールド効果の優れ
た材料を使用するので同一遮蔽効果を確保するのに必要
な静磁場シールド材の軽量化を達成することができる。
As described above, in the present invention, since a material having an excellent static magnetic field shielding effect is used, it is possible to reduce the weight of the static magnetic field shielding material necessary to ensure the same shielding effect.

また使用する材料は後述の如く、パーマロイや珪素鋼板
に比べて遥かに安価な材料であり、低コストで静磁場シ
ールド構造を形成することができる。
Further, as will be described later, the material used is far cheaper than permalloy or silicon steel plate, and the static magnetic field shielding structure can be formed at low cost.

尚上記静磁場シールド材を構成する材料の1つである非
導電性樹脂としては、ポリエステル系樹脂、ポリウレタ
ン系樹脂、ポリプロピレン系樹脂、ポリエチレン系樹脂
、ポリカーボネート系樹脂等からなるフィルム又はシー
ト或は変性ポリエチレン系熱融着フィルム、変性ポリプ
ロピレン系熱融着フィルム等を挙げることができる。非
導電性樹脂の厚みは0.01〜1.0 mmとする必要
があり、該厚みが0 、01mm未満では磁気遮蔽鋼板
との積層による相剰的静磁場シールド効果が十分に発揮
されない。一方1.0m111を超えるのは、薄く且つ
軽量であり成形性も優れたものでなければならないとい
う当該分野の要請に答える為に排除される。
The non-conductive resin, which is one of the materials constituting the static magnetic field shield material, may be a film or sheet made of polyester resin, polyurethane resin, polypropylene resin, polyethylene resin, polycarbonate resin, or a modified resin. Examples include polyethylene heat-sealable films, modified polypropylene-based heat-sealable films, and the like. The thickness of the non-conductive resin needs to be 0.01 to 1.0 mm, and if the thickness is less than 0.01 mm, the mutual static magnetic field shielding effect due to lamination with the magnetic shielding steel plate will not be sufficiently exhibited. On the other hand, materials exceeding 1.0 m111 are excluded in order to meet the demands of the field of thin, lightweight, and excellent moldability.

一方前記静磁場シールド材を構成するもう1つの材料で
ある磁気遮蔽金属板としては成形性に優れ且つ飽和磁束
密度の高い材料であれば特に制限はないが、具体的には
純鉄を含む鋼箔、鋼板、低Si量の珪素鋼板等が推奨さ
れる。又上記磁気遮蔽金属板の厚みについても別設制約
を設ける必要はないが、断器の機能を発揮し且つ市場の
要請に答える為には0.04〜1.0 +n+uとする
ことが望ましい。即ち厚みがQ、04mm未満の場合に
はそれ自身のシールド効果が不十分である為積層による
相刺的シールド効果が希薄となり、また薄膜である為人
手が困難で成形性も低下する。一方1.0mmを超える
と、前記と同様薄くて軽く、しかも成形性に優れるとい
う当該分野の要請に答えることが難しくなる。
On the other hand, the magnetic shielding metal plate, which is another material constituting the static magnetic field shielding material, is not particularly limited as long as it is a material with excellent formability and high saturation magnetic flux density, but specifically steel containing pure iron is used. Foil, steel plate, silicon steel plate with low Si content, etc. are recommended. Further, there is no need to set any special restrictions on the thickness of the magnetically shielding metal plate, but it is desirable to set the thickness to 0.04 to 1.0 +n+u in order to perform the disconnection function and meet market demands. That is, if the thickness is less than Q, 04 mm, the shielding effect of itself is insufficient, so the mutually stimulating shielding effect of lamination becomes weak, and since it is a thin film, manual labor is difficult and moldability is also reduced. On the other hand, if it exceeds 1.0 mm, it becomes difficult to meet the demands of the field of thinness, lightness, and excellent moldability as described above.

次いで磁気遮蔽金属板の積層数については積層数が3〜
5層までは静磁場シールド効果は高まってくるが、6層
以上になってもそれ以上の改善傾向は余り認められなく
なり、単に層数を増やすだけであって材料の浪費あるい
は重量や肉厚をいたずらに大きくするだけとなる。従っ
て積層数は5層以下に止めることが望ましい。
Next, regarding the number of laminated layers of the magnetic shielding metal plate, the number of laminated layers is 3 to 3.
Up to 5 layers, the static magnetic field shielding effect increases, but even after 6 layers, no further improvement is observed, and simply increasing the number of layers results in wasted material or reduced weight and thickness. It just makes it unnecessarily large. Therefore, it is desirable to limit the number of layers to five or less.

ところで上記構成の静磁場シールド材は概括的には憬れ
た静磁場シールド性能を有するものであるが、そのシー
ルド特性については十分に明らかにされていなかった。
By the way, although the static magnetic field shielding material having the above structure generally has poor static magnetic field shielding performance, its shielding characteristics have not been sufficiently clarified.

そこで本発明者等は■従来のパーマロイ、■0.02m
m厚の変性ポリエチレン系樹脂を介して鋼箔を積層した
静磁場シールド材。
Therefore, the inventors of the present invention developed the conventional permalloy, ■0.02m
Static magnetic field shielding material with steel foil laminated through m-thick modified polyethylene resin.

■0.1mm厚の変性ポリエチレン系樹脂を介して鋼箔
を積層した静りn場シールド材、■1.0mm厚のポリ
カーボネート系樹脂を介して鋼箔を積層した静磁場シー
ルド材の4種について夫々同一条件下におけるシールド
特性を調べたところ第1図に示す結果が得られた。尚シ
ールド特性はシールド材配置位置での磁束密度が異なる
場合の、各シールド材の磁気発生源側及び磁気発生源と
反対側の磁束密度を対応させてプロットし示した。
About the four types: ■ Quiet n-field shielding material laminated with steel foil through 0.1 mm thick modified polyethylene resin, ■ Static magnetic field shielding material laminated with steel foil through 1.0 mm thick polycarbonate resin. When the shielding characteristics of each were investigated under the same conditions, the results shown in FIG. 1 were obtained. The shielding characteristics are shown by plotting the magnetic flux densities of each shielding material on the magnetic generation source side and on the side opposite to the magnetic generation source in a case where the magnetic flux density is different at the shielding material placement position.

第1図に示す様に実施例(■〜■)のシールド特性と■
の従来例シールド特性を比較するとシールド配置位置の
6n束密度が低い場合には従来例の方が却って優れたシ
ールド特性を示している。しかしながら高磁束密度域で
は両者の関係は逆転し、実施例の方が格段に優れたシー
ルド特性を示す。尚本発明において利用する積層型静磁
場シーフレドオオは 前=p貫は日日にある才筆にΦ3
脩で日っ十分な静磁場シールド性能を具備する必要から
非導電性樹脂厚さを0.01〜1.0mmと規定してい
る。こうした制約の中で、第1図の実験結果をみると、
前記積層型静磁場シールド材が従来例より優れたシール
ド特性を示すのは磁束密度が200ガウス以上の領域で
あることが分かる。ここで実用上磁気障害が特に問題と
なるのは磁気発生源の磁気の強さが大きいとき即ちその
近傍の磁束密度が高いときであり、このときにこそ静磁
場シールド材を配置してシールド構造を形成する必要が
ある。即ち本発明においては磁束密度が200ガウス以
上の比較的高磁束密度領域に前記積層型静磁場シールド
材を配置しており、かかる本発明のシールド構造によっ
て必要とされる箇所において優れた611気シールド効
果を奏することができる。
As shown in Figure 1, the shielding characteristics of Examples (■ to ■) and ■
Comparing the shielding characteristics of the conventional example, it is found that the conventional example exhibits better shielding characteristics when the 6n flux density at the shield placement position is low. However, in a high magnetic flux density region, the relationship between the two is reversed, and the example exhibits much better shielding characteristics. In addition, the laminated static magnetic field Thiefred O used in the present invention is
The thickness of the non-conductive resin is specified to be 0.01 to 1.0 mm because it is necessary to have sufficient static magnetic field shielding performance. Under these constraints, looking at the experimental results shown in Figure 1, we find that
It can be seen that the laminated static magnetic field shielding material exhibits better shielding characteristics than the conventional example in a region where the magnetic flux density is 200 Gauss or more. In practice, magnetic interference becomes a particular problem when the magnetic strength of the magnetic source is large, that is, when the magnetic flux density in the vicinity is high, and it is precisely at this time that static magnetic field shielding material is placed and the shielding structure is constructed. need to be formed. That is, in the present invention, the laminated static magnetic field shield material is arranged in a relatively high magnetic flux density region of 200 Gauss or more, and the shield structure of the present invention provides an excellent 611-magnetic shield at the required location. It can be effective.

[実施例コ 第2.3図は本発明の実施例を示す静磁場シールド構造
であって、第2図においては磁性流体軸シール部から発
生する磁気を遮蔽するに当たり、磁性流体軸シール部を
被包する様に、カップ状に成形した積層型磁場シールド
材を配置した。但し611性流体軸の磁極中心線上につ
いては磁束密度が200ガウスとなる位置に積層型磁場
シールド材壁が配置される様に設計した。又第3図にお
いてはマイクロモータ部を密閉構造の積層型静磁場シー
ルド材壁によって被包した。この場合もマイクロモータ
部の磁極中心線上については磁束密度が200ガウスと
なる位置に積層型静磁場シールド材璧が配置される様に
設計した。
[Embodiment Fig. 2.3 shows a static magnetic field shielding structure showing an embodiment of the present invention. A laminated magnetic field shielding material formed into a cup shape was placed so as to cover it. However, on the magnetic pole center line of the 611 magnetic fluid axis, the laminated magnetic field shield material wall was designed to be placed at a position where the magnetic flux density was 200 Gauss. Further, in FIG. 3, the micromotor section is covered with a sealed layered static magnetic field shielding material wall. In this case as well, the laminated static magnetic field shield material was designed to be placed at a position where the magnetic flux density was 200 Gauss on the magnetic pole center line of the micromotor section.

上記実施例においてはいずれも磁極中心線上の磁束密度
が200ガウス以上となる位置に静磁場シールド材を配
置したので磁気の漏洩を効率良く防止することができた
In all of the above examples, the static magnetic field shielding material was placed at a position on the magnetic pole centerline where the magnetic flux density was 200 Gauss or more, so that magnetic leakage could be efficiently prevented.

[発明の効果] 本発明は以上の様に構成されており以下要約する効果を
得ることができる。
[Effects of the Invention] The present invention is configured as described above, and can obtain the effects summarized below.

(1)非導電性樹脂を挟んで磁気遮蔽金属板を積層して
なる静磁場シールド材を利用することにより軽ヱで且つ
シールド性に優れた静磁場シールド構造を経済的に形成
することを可能とした。
(1) By using a static magnetic field shielding material made by laminating magnetically shielding metal plates with a non-conductive resin in between, it is possible to economically form a static magnetic field shielding structure that is lightweight and has excellent shielding properties. And so.

(2)磁極中心線上の磁束密度か200ガウス以上の領
域に上記成形性に優れた積層型静ffJ場シールド材を
配置することにより該静磁場シールド材の機能を有効に
発揮させることができ、有害な磁気の漏洩を防止するこ
とができた。
(2) By arranging the laminated static ffJ field shielding material with excellent formability in a region on the magnetic pole centerline where the magnetic flux density is 200 Gauss or more, the function of the static magnetic field shielding material can be effectively exhibited; It was possible to prevent harmful magnetic leakage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る静磁場シールド材と従来の静磁場
シールド材のシールド特性を示すグラフ、第2.3図は
本発明の実施例を示す模式図である。 1・・・磁気発生源
FIG. 1 is a graph showing the shielding characteristics of the static magnetic field shielding material according to the present invention and the conventional static magnetic field shielding material, and FIG. 2.3 is a schematic diagram showing an example of the present invention. 1...Magnetic source

Claims (1)

【特許請求の範囲】[Claims]  厚さ0.01〜1.0mmの非導電性樹脂を介して磁
気遮蔽金属板を積層してなる静磁場シールド材を、磁極
の中心線上の磁束密度が200ガウス以上の領域に配置
することを特徴とする静磁場シールド構造。
A static magnetic field shielding material made by laminating magnetic shielding metal plates via a non-conductive resin with a thickness of 0.01 to 1.0 mm is placed in an area where the magnetic flux density on the center line of the magnetic pole is 200 Gauss or more. Characteristic static magnetic field shield structure.
JP60290027A 1985-12-23 1985-12-23 Static magnetic field shielding structure Pending JPS62149199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60290027A JPS62149199A (en) 1985-12-23 1985-12-23 Static magnetic field shielding structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60290027A JPS62149199A (en) 1985-12-23 1985-12-23 Static magnetic field shielding structure

Publications (1)

Publication Number Publication Date
JPS62149199A true JPS62149199A (en) 1987-07-03

Family

ID=17750834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60290027A Pending JPS62149199A (en) 1985-12-23 1985-12-23 Static magnetic field shielding structure

Country Status (1)

Country Link
JP (1) JPS62149199A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160157394A1 (en) * 2014-11-28 2016-06-02 Commissariat à l'Energie Atomique et aux Energies Alternatives Magnetic shielding
JP2017011236A (en) * 2015-06-26 2017-01-12 株式会社神戸製鋼所 Multilayer magnetic shield

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160157394A1 (en) * 2014-11-28 2016-06-02 Commissariat à l'Energie Atomique et aux Energies Alternatives Magnetic shielding
JP2017011236A (en) * 2015-06-26 2017-01-12 株式会社神戸製鋼所 Multilayer magnetic shield

Similar Documents

Publication Publication Date Title
Hirosawa et al. Perspectives for high-performance permanent magnets: applications, coercivity, and new materials
EP0691548B1 (en) Magnetic field generating device for use in MRI
US7294910B2 (en) Electronic component with multilayered rewiring plate and method for producing the same
US4544904A (en) Composite magnet and magnetic circuit
JP3111079B2 (en) Medical high-field magnet
JPS62149199A (en) Static magnetic field shielding structure
JP2837595B2 (en) Amorphous magnetic shield plate and magnetic shield method
JP2561591B2 (en) Magnetic field generator for MRI
JPH09283327A (en) Magnet opposed permanent magnet circuit
JP2764458B2 (en) Magnetic field generator for MRI
JP4182712B2 (en) Magnetic field generator
JP2649436B2 (en) Magnetic field generator for MRI
JP2649437B2 (en) Magnetic field generator for MRI
JPH035079B2 (en)
JP3073933B2 (en) Magnetic field generator for MRI
EP1447676B1 (en) Circular pole piece and mri system
JPS61170004A (en) Permanent magnetic body
JPH05343881A (en) Magnetic shielding device
JPS59197197A (en) Magnetic shielding device
JP2005255235A (en) Permanent magnet packaging element, method for manufacturing the same, and method for transferring permanent magnet
JPS59136916A (en) Manufacture of permanent magnet
JP2606971B2 (en) Electromagnetic shielding materials
JPS59136999A (en) Electromagnetic, magnetic shilding box
JPS55158580A (en) Anti-magnetism plate for electronic clock
JPH037048A (en) Rotor for hybrid stepping motor