JPS6214776B2 - - Google Patents

Info

Publication number
JPS6214776B2
JPS6214776B2 JP12460577A JP12460577A JPS6214776B2 JP S6214776 B2 JPS6214776 B2 JP S6214776B2 JP 12460577 A JP12460577 A JP 12460577A JP 12460577 A JP12460577 A JP 12460577A JP S6214776 B2 JPS6214776 B2 JP S6214776B2
Authority
JP
Japan
Prior art keywords
angle
point
incident
plane
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12460577A
Other languages
Japanese (ja)
Other versions
JPS5459192A (en
Inventor
Tsutomu Yashiro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Denki Co Ltd
Original Assignee
Rigaku Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Denki Co Ltd filed Critical Rigaku Denki Co Ltd
Priority to JP12460577A priority Critical patent/JPS5459192A/en
Publication of JPS5459192A publication Critical patent/JPS5459192A/en
Publication of JPS6214776B2 publication Critical patent/JPS6214776B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

【発明の詳細な説明】 金属その他の多結晶試料にX線を照射してその
回折角を測定することにより試料の残留応力を知
ることができる。このような応力測定法として従
来は試料面に入射するX線を含んで該試料面に直
角な平面内でX線の入射角を変化し、各入射角に
おいて上記平面内に回折するX線の回折角を求め
ることにより試料面における前記平面の方向の応
力を求めていた。従つてこの方法で主応力の方向
並びに大きさを知るためには少なくとも3方向の
応力を測定しなければならないから測定が極めて
煩雑であつた。しかも試料面に対するX線の入射
角を例えば90度と45度とに設定してそれらの回折
角の差を求めなければならないから、測定点の周
辺に広い空間を必要とし、構造物の凹部等におけ
る応力の測定が困難であつた。本発明は上述のよ
うな欠点のない応力測定法を提供するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION By irradiating a metal or other polycrystalline sample with X-rays and measuring the diffraction angle, the residual stress of the sample can be determined. Conventionally, this stress measurement method involves changing the incident angle of the X-rays within a plane perpendicular to the sample surface, including the X-rays incident on the sample surface, and measuring the X-rays diffracted into the plane at each incident angle. By determining the diffraction angle, the stress in the plane direction on the sample surface was determined. Therefore, in order to determine the direction and magnitude of the principal stress using this method, it is necessary to measure stress in at least three directions, making the measurement extremely complicated. Furthermore, since the incident angle of the X-rays on the sample surface must be set to, for example, 90 degrees and 45 degrees, and the difference in diffraction angles between these angles is determined, a large space is required around the measurement point, and it is necessary to It was difficult to measure the stress at The present invention provides a stress measurement method that does not have the drawbacks mentioned above.

第1図は本発明の原理を説明するための図で、
単一波長の細い平行X線χを矢印のように多結晶
試料面上の被測定点0に入射させる。この点0に
立てた試料面の法線をzとし、また上記試料面上
に設定した直交座標軸をx,yとする。前記入射
X線χは点0から該X線を軸とするほぼ円錐面の
母線に沿つて回折するから、その回折X線の発生
に寄与する結晶の格子面に直角な直線群も同様に
点0を頂点としてほぼ円錐面を形成する。この円
錐面が、入射X線χを含む直線上の任意の一点
0′を含み直線00′に直角な平面と交わる回折面
法線環をSとし、また回折X線が上記平面と交わ
る曲線をTで表わしてある。
FIG. 1 is a diagram for explaining the principle of the present invention.
A thin parallel X-ray χ with a single wavelength is made incident on the measurement point 0 on the polycrystalline sample surface as shown by the arrow. Let z be the normal to the sample surface set at this point 0, and let x and y be the orthogonal coordinate axes set on the sample surface. Since the incident X-ray χ is diffracted from point 0 along the generating line of the conical surface with the X-ray as the axis, the group of straight lines perpendicular to the lattice plane of the crystal that contributes to the generation of the diffracted X-ray also becomes a point. It forms a substantially conical surface with 0 as the apex. Let S be the diffraction surface normal ring where this conical surface includes an arbitrary point 0' on the straight line containing the incident X-ray χ and intersect with a plane perpendicular to the straight line 00', and let S be the curve where the diffracted X-ray intersects with the above plane. It is represented by T.

回折面法線環Sが法線zおよび入射X線の方向
00′を含む平面と交わる点をP′とし、点P′から
x―y平面に下した法線の足をQ′とする。また
法線環S上の任意の点Pからx―y平面に下した
法線の足をQとし、法線zと直線00′おたび0
Pの間の角をそれぞれψ0およびψとする。更に
軸xと直線0Q′並びに0Qとの間の角をそれぞ
れ′および′とし、x―y平面内における主
応力σの方向とx軸との間の角をγ、上記主応
力の方向と直線0Qとの間の角を、直線0′P
と0′P′との間の角をωとする。また直線0Pを
法線とする結晶格子面の歪をε〓、x―y平面
における主応力をσ,σ、直線0Qの方向の
応力をσ、ヤング率をE、ポアソン比をνとす
ると周知のように ε〓=1+ν/Eσsin2ψ−ν/E(σ+σ
)… (1) が成立する。かつ主応力と任意の方向の応力との
間にはモールの応力円の関係 σ=1/2{(σ+σ)+(σ−σ)cos2 } …(2) があるから、(2)式を(1)式に代入して ε〓=1+ν/2E{(σ+σ)+(σ −σ)cos2}sin2ψ−ν/E(σ+σ) …(3) が得られる。また第1図の直線0Pを法線とする
結晶格子面による入射X線χの回折角を2θ、無
歪格子面による基準回折角をθとすれば、 ε〓=−(θ−θ)・cotθ …(4) である。上記(3)式および(4)式から、 が得られる。
Let P' be the point where the diffraction surface normal ring S intersects the plane containing the normal z and the direction 00' of the incident X-ray, and let Q' be the foot of the normal line drawn from point P' to the xy plane. Also, let Q be the foot of the normal line drawn from any point P on the normal ring S to the xy plane, and let the normal z and the straight line 00' be 0.
Let the angles between P be ψ0 and ψ, respectively. Further, let the angles between the axis x and the straight lines 0Q' and 0Q be '0' and ', respectively, and let the angle between the direction of the principal stress σ 1 in the x-y plane and the x-axis be γ, and the direction of the above principal stress. The angle between and the straight line 0Q is the straight line 0'P
Let ω be the angle between and 0'P'. In addition, the strain in the crystal lattice plane normal to the straight line 0P is ε〓, the principal stress in the x-y plane is σ 1 , σ 2 , the stress in the direction of the straight line 0Q is σ, the Young's modulus is E, and the Poisson's ratio is ν. Then, as is well known, ε=1+ν/Eσsin 2 ψ−ν/E(σ 12
)...(1) holds true. And, between the principal stress and the stress in any direction, there is a Mohr stress circle relationship σ=1/2 {(σ 12 )+(σ 1 −σ 2 )cos2} …(2), Substituting equation (2) into equation (1), ε=1+ν/2E{(σ 12 )+(σ 1 −σ 2 )cos2}sin 2 ψ−ν/E(σ 12 )... (3) is obtained. Further, if the diffraction angle of the incident X-ray χ by the crystal lattice plane normal to the straight line 0P in Fig. 1 is 2θ, and the reference diffraction angle by the unstrained lattice plane is θ 0 , then ε〓=−(θ−θ 0 )・cotθ 0 (4). From the above equations (3) and (4), is obtained.

第1図のように主応力の方向γは(5)式の角が
0の状態であつて、このとき回折角2θが極小ま
たは極大値をとる。かつ角は角(′−γ)で
あるから、第1図における角ψおよびωを固定
して(5)式の角ψを一定に保つた状態で角′を変
化することにより、回折角2θが極大または極小
となる位置を観測すると主応力の方向γが求めら
れる。すなわち第1図の角ωを一定に保つて点
0′が法線zを軸とする円C上を移動するように
入射X線χの方向を変化するものである。第2図
はこのような操作によつて角′と回折角2θの
関係を観測したグラフで、角′を約90度の範囲
で変化することにより、2θが極大または極小と
なる位置γを検出することができる。
As shown in FIG. 1, the direction γ of the principal stress is in a state where the angle in equation (5) is 0, and at this time the diffraction angle 2θ takes a minimum or maximum value. And since the angle is the angle ('-γ), by fixing the angles ψ 0 and ω in Figure 1 and changing the angle ' while keeping the angle ψ in equation (5) constant, we can calculate the diffraction angle. By observing the position where 2θ is maximum or minimum, the direction γ of the principal stress can be determined. That is, while keeping the angle ω in FIG. 1 constant, the direction of the incident X-ray χ is changed so that the point 0' moves on a circle C having the normal z as its axis. Figure 2 is a graph that shows the relationship between the angle ' and the diffraction angle 2θ through such operations.By varying the angle ' within a range of approximately 90 degrees, the position γ where 2θ is maximum or minimum can be detected. can do.

また上述のようにして求めた主応力の方向γを
用いて、回折角2θとcos2(′―γ)との関係
を示したグラフを画くと、第3図のように1本の
直線が得られる。(5)式から明らかなようにこの直
線の傾きがA、cos2(′―γ)が0の位置にお
ける2θの値がBである。従つて基準回折角θ
が既知であれば、これらの値A,Bを(5)式に適用
することにより主応力の大きさσ,σを求め
ることができる。なお基準回折角θが既知でな
い場合は第1図における角ψ従つて角ψを2段
階に変化して前後2回の観測を行うことにより第
3図の直線を2本画く。この2本の直線の交点の
座標値または上記2本の直線を延長した仮想交点
の座標値並びに該直線の傾きから、極めて精度の
よい近似をもつて主応力σ,σを求めること
ができる。かつこの場合、上記2本の直線に対応
する観測値を第2図のように角′と回折角2θ
の関係としてブロツトすることにより2本の曲線
を得ると、角ψの大小と角′の各位置におけ
る2θの値の大小との関係によつてその方向の応
力が張力であるか圧力であるか、が表示される。
Furthermore, if we draw a graph showing the relationship between the diffraction angle 2θ and cos2('-γ) using the direction γ of the principal stress determined as described above, we will obtain a straight line as shown in Figure 3. It will be done. As is clear from equation (5), the slope of this straight line is A, and the value of 2θ at the position where cos2 ('-γ) is 0 is B. Therefore, the reference diffraction angle θ 0
If σ 1 and σ 2 are known, the magnitudes σ 1 and σ 2 of the principal stress can be determined by applying these values A and B to equation (5). If the reference diffraction angle θ 0 is not known, the angle ψ 0 in FIG. 1 and therefore the angle ψ are changed in two steps and two observations are made before and after, thereby drawing two straight lines in FIG. 3. It is possible to obtain the principal stresses σ 1 and σ 2 with extremely accurate approximation from the coordinate values of the intersection of these two straight lines or the coordinate values of the virtual intersection obtained by extending the above two straight lines, and the slope of the straight line. can. In this case, the observed values corresponding to the above two straight lines are expressed by the angle ' and the diffraction angle 2θ as shown in Figure 2.
If two curves are obtained by blotting as the relationship between or is displayed.

上述のように本発明の応力測定法は、被測定点
0に立てた法線zとの間の角度ψを一定に保つ
て、上記点0に複数方向からX線χを入射させる
と共にその各入射X線を含んで試料面にそれぞれ
直角な平面0―0′―P′―Q′に対して任意の一定
角度P0P′をなす方向に回折したX線の回折角2
θを前記複数方向の各入射方向毎にそれぞれ観測
することにより主応力の方向またはその大きさを
求めるものである。このため主応力の方向を極め
て容易に検出し得ると共にX線源を1つの円弧に
沿つて連続的あるいは間歇的に移動させるだけで
あるから装置の操作性も良好である。かつ入射X
線と法線との間の角度を一定に保つて線源を約90
度の範囲で移動させるだけであるから、被測定点
の周辺に広い空間が存在しない場合においても測
定を容易に行い得る等の効果がある。
As described above, the stress measurement method of the present invention maintains the angle ψ 0 between the point 0 to be measured and the normal z constant, and makes X-rays χ incident on the point 0 from multiple directions. Diffraction angle 2 of X-rays containing each incident X-ray and diffracted in a direction forming an arbitrary constant angle P0P' with respect to the plane 0-0'-P'-Q' perpendicular to the sample surface.
The direction or magnitude of the principal stress is determined by observing θ in each of the plurality of incident directions. Therefore, the direction of the principal stress can be detected very easily, and since the X-ray source is moved only continuously or intermittently along one circular arc, the operability of the apparatus is also good. and incident X
Keeping the angle between the line and the normal constant, the line source is approximately 90
Since the point to be measured is only moved within a range of degrees, there is an effect that measurement can be easily performed even when there is no wide space around the point to be measured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理を説明するための線図、
第2図および第3図は本発明の方法によつて観測
されたグラフの一例である。なお図において、0
は試料面上の被測定点、zは試料面に立てた法
線、Xは入射X線、Cは入射X線上の点0′の移
動軌跡、SはX線回折面法線環、σ,σは主
応力である。
FIG. 1 is a diagram for explaining the principle of the present invention,
FIGS. 2 and 3 are examples of graphs observed by the method of the present invention. In the figure, 0
is the measured point on the sample surface, z is the normal line to the sample surface, X is the incident X-ray, C is the locus of movement of point 0' on the incident X-ray, S is the X-ray diffraction surface normal ring, σ 1 , σ 2 is the principal stress.

Claims (1)

【特許請求の範囲】[Claims] 1 多結晶試料面上の被測定点に、その点に立て
た法線との間の角度が相等しい複数方向から単一
波長のX線を入射させると共に、その各入射X線
を含み前記試料面にそれぞれ直角な平面に対して
任意の一定角度をなす方向に回折したX線の回折
角を前記複数方向の各入射方向毎にそれぞれ観測
して、その各測定値から主応力の方向とその大き
さとの少なくも一方を求めることを特徴とするX
線応力測定法。
1. Inject X-rays of a single wavelength onto a point to be measured on a polycrystalline sample surface from multiple directions with equal angles to the normal line erected at that point, and The diffraction angles of X-rays diffracted in directions forming an arbitrary fixed angle with respect to a plane perpendicular to the plane are observed for each of the plurality of incident directions, and the direction of the principal stress and its direction are determined from each measurement value. X characterized by seeking at least one of the size and
Linear stress measurement method.
JP12460577A 1977-10-19 1977-10-19 Method of measuring xxray stress Granted JPS5459192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12460577A JPS5459192A (en) 1977-10-19 1977-10-19 Method of measuring xxray stress

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12460577A JPS5459192A (en) 1977-10-19 1977-10-19 Method of measuring xxray stress

Publications (2)

Publication Number Publication Date
JPS5459192A JPS5459192A (en) 1979-05-12
JPS6214776B2 true JPS6214776B2 (en) 1987-04-03

Family

ID=14889565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12460577A Granted JPS5459192A (en) 1977-10-19 1977-10-19 Method of measuring xxray stress

Country Status (1)

Country Link
JP (1) JPS5459192A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS648844U (en) * 1987-07-07 1989-01-18

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5339253B2 (en) * 2009-07-24 2013-11-13 国立大学法人金沢大学 X-ray stress measurement method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS648844U (en) * 1987-07-07 1989-01-18

Also Published As

Publication number Publication date
JPS5459192A (en) 1979-05-12

Similar Documents

Publication Publication Date Title
Young et al. Characterization of bicrystals using Kikuchi patterns
Jona et al. Al (111) revisited
Heilmann et al. Computerized method to determine crystal orientations from Kikuchi patterns
US9128029B2 (en) X-ray analysis apparatus
US4788702A (en) Orientation of crystals
US20130138382A1 (en) X-ray analysis apparatus
JP2021097039A5 (en)
Bevis et al. The Determination of the Orientation of Micro‐Crystals Using a Back‐Reflection Kossel Technique and an Electron Probe Microanalyser
Lin Phase identification using series of selected area diffraction patterns and energy dispersive spectrometry within TEM
Carnera et al. High precision structural measurements on thin epitaxial layers by means of ion-channeling
JPS6214776B2 (en)
Morcillo et al. The experimental determination of infra-red intensities. Bond polar properties in CHF3 and CHCl3
CN109342008B (en) Wind tunnel test model attack angle single-camera video measuring method based on homography matrix
Ruud et al. A miniature instrument for residual stress measurement
Fraundorf Determining the 3D lattice parameters of nanometer-sized single crystals from images
Qing et al. New method for determining grain boundary parameters
JP3954936B2 (en) Bragg reflection condition simulation apparatus and Bragg reflection measurement system
KR20040020915A (en) Nonuniform-density sample analyzing method, device and system
Nolze et al. Manual measurement of angles in backscattered and transmission Kikuchi diffraction patterns
Ullrich et al. Precise determination of the lattice constant of LiF by means of X-ray divergent beam (pseudo Kossel-) technique via computer graphics and multiple intersections
CN110608828A (en) Bragg angle measuring method based on monochromatic X-ray diffraction
Herbstein Accurate determination of cell dimensions from single-crystal X-ray photographs
JP2000009664A (en) Convergence electron diffraction method
Gallot et al. Coupled oscillations of the Wilberforce pendulum unveiled by smartphones
Chen et al. A stereo vision-based attitude measurement system for aircraft model in wind tunnel