JPS62147216A - Combustion sensing device - Google Patents

Combustion sensing device

Info

Publication number
JPS62147216A
JPS62147216A JP28993885A JP28993885A JPS62147216A JP S62147216 A JPS62147216 A JP S62147216A JP 28993885 A JP28993885 A JP 28993885A JP 28993885 A JP28993885 A JP 28993885A JP S62147216 A JPS62147216 A JP S62147216A
Authority
JP
Japan
Prior art keywords
flame hole
hole body
flame
detection circuit
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28993885A
Other languages
Japanese (ja)
Inventor
Tadashi Ono
正 大野
Yukio Nagaoka
行夫 長岡
Yasukiyo Ueda
上田 康清
Yoshio Yamamoto
山本 芳雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP28993885A priority Critical patent/JPS62147216A/en
Publication of JPS62147216A publication Critical patent/JPS62147216A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • F23N5/123Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Combustion (AREA)

Abstract

PURPOSE:To facilitate an air fuel ratio control and make a fast ignition sensing response by providing the first sensing circuit for sensing an impedance between the first flame holes and the second flame holes, the second sensing circuit for sensing an impedance between an electrode and the second flame holes and a combustion sensing circuit for calculating each of the outputs from the first sensing circuit and the second sensing circuit. CONSTITUTION:When flame holes are cold, the fuel is ignited, and when the flame is placed out of the second flame holes 11, a decreased impedance between an electrode 14 and second flame holes is detected by a first sensing circuit 19. When the flame holes are heated and the flame is present between the first flame holes 9 and the second flame holes 11, a decreased impedance between them is detected by the second sensing circuit 20, and whether the flame is positioned at the downstream side or upstream side is discriminated by the combustion sensing circuit 21 so as to perform a more accurate sensing of an air fuel ratio. Thus, it is possible to get an ignition signal of which raising is fast and of which state is continuous and stable.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、石油やガスの燃焼検出装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an oil or gas combustion detection device.

従来の技術 従来のこの種の燃焼検出装置は、第7図の石油燃焼機に
示すように、ヒータ1によって気化器2を加熱し送油ポ
ンプ3から送られる石油を気化し、気化ガスを充満させ
る気化室4と、気化室4内の気化ガスを混合室5に送り
込むと共に燃焼用空気を供給するファン6と、気化室4
と混合室5とを仕切る混合板7と、混合室5に連通し炎
孔8を有するパンチング板で構成される第1の炎孔体9
と、キャップ10と、混合室5に対して第1の炎孔体9
よりも下流側に位置し第1の炎孔体9と一定の距離を有
する金網からなる第2の炎孔体11と、気化室2、混合
板7、第1の炎孔体9、第2の炎孔体11等と電気的に
導通している端子12と、それらと絶縁体13によって
絶縁されたフレームロッド14と、フレームロッド14
と端子12間に電圧15を印加し、フレームロッド14
と第2の炎孔体11間に形成される炎のインピーダンス
変化をフレームロッド電流11の変化として検出し、そ
の電流を検出電圧VTに変換し設定電位vsとコンパレ
ータ16で比較してその出力V□を利用することによシ
燃焼検出を行う検出回路17で構成されており、フレー
ムロッドt 流11の変化によって、着火検知や燃料に
対する空気比率(今後空燃比p&)等の燃焼情報を得て
いた。
2. Description of the Related Art A conventional combustion detection device of this type, as shown in the oil combustion machine in FIG. a fan 6 that sends vaporized gas in the vaporization chamber 4 to the mixing chamber 5 and also supplies combustion air;
A first flame hole body 9 composed of a mixing plate 7 that partitions the mixing chamber 5 and a punching plate communicating with the mixing chamber 5 and having flame holes 8.
, a cap 10 , and a first flame hole body 9 for the mixing chamber 5
A second flame hole body 11 made of a wire mesh located downstream from the first flame hole body 9 and having a certain distance from the first flame hole body 9; A terminal 12 electrically connected to the flame hole body 11 etc., a frame rod 14 insulated from them by an insulator 13, and a frame rod 14.
A voltage 15 is applied between the frame rod 14 and the terminal 12.
The impedance change of the flame formed between the flame rod body 11 and the second flame hole body 11 is detected as a change in the flame rod current 11, and the current is converted into a detection voltage VT, which is compared with the set potential vs by a comparator 16, and its output V It is composed of a detection circuit 17 that detects combustion by using Ta.

(例えば特開昭57−66519号公報)発明が解決し
ようとする問題点 しかしながら上記のような構成では、電流値が微弱で雑
音に弱く、また燃焼量を1/3程度まで絞ると更に微弱
になるとともに空燃比に対する変化も現れにくくなって
空燃比制御が難しくなる。
(For example, Japanese Unexamined Patent Publication No. 57-66519) Problems to be Solved by the Invention However, with the above configuration, the current value is weak and susceptible to noise, and when the combustion amount is reduced to about 1/3, the current value becomes even weaker. At the same time, changes in the air-fuel ratio become less likely to appear, making air-fuel ratio control difficult.

さらに近年燃焼排ガヌのNOx等を低減させるために全
1次予混合燃焼が注目されているが、その場合には炎が
第1の炎孔体9もしくは第2の炎孔体11の表面に密着
して燃えるため、フレームロッド電流Ifが全んど流れ
なくなってしまう問題点を有していた。
Furthermore, in recent years, all primary premix combustion has been attracting attention in order to reduce NOx etc. in combustion exhaust gas, but in that case, the flame is on the surface of the first flame hole body 9 or the second flame hole body 11. Since the flame rod burns in close contact with the flame rod, there is a problem in that the flame rod current If completely stops flowing.

そこで、新しい試みとして第8図に示すように、第1の
炎孔体9と第2の炎孔体11との間を電気的に絶縁する
絶縁体18を設け、インピーダンス検出回路17によっ
て第1の炎孔体9と第2の炎孔体11間のインピーダン
スの変化?検出して燃焼検出を行うものが考えられた。
Therefore, as a new attempt, as shown in FIG. Change in impedance between the flame hole body 9 and the second flame hole body 11? A device that detects and detects combustion has been considered.

この構成では第1の炎孔体9と第2の炎孔体11の全域
をインピーダンス変化検出用のセンサとして使用でき、
しかも第7図におけるフレームロッドが開放された空間
に設置されているのに対し、この構成では第1の炎孔体
9と第2の炎孔体11間にある種の燃焼室が形成されて
いるために、燃焼量を絞った状態でも、また炎が第1の
炎孔体9もしくは第2の炎孔体11の表面に付着して燃
焼している場合でもある程変のイオンが存在し、したが
って第7図で示シタフレームロッドに較べて極めて大き
な電流が得られることが解った。
With this configuration, the entire area of the first flame hole body 9 and the second flame hole body 11 can be used as a sensor for detecting impedance change,
Furthermore, whereas the flame rod in FIG. 7 is installed in an open space, in this configuration a kind of combustion chamber is formed between the first flame hole body 9 and the second flame hole body 11. Therefore, even when the combustion amount is reduced or when the flame is attached to the surface of the first flame hole body 9 or the second flame hole body 11 and burned, a certain amount of strange ions are present. Therefore, it was found that an extremely large current can be obtained compared to the frame rod shown in FIG.

ところが、第7図の構成では、炎孔が冷えている状態で
着火すると、炎孔が暖まるまでは炎は第2の炎孔体11
の外に形成されるため電流が立ち上がるまでに若干の時
間を要し、着火検出を早く行いたい燃焼機へ応用する場
合には問題があることと、第1の炎孔体9と第2の炎孔
体11間である種の燃焼室が形成されその中に炎が在っ
て揺動するために電流に変動があり、したがって精密に
空燃比をとらえる必要がある場合には適さないという部
分的な問題を有していた。
However, in the configuration shown in FIG. 7, if the flame hole is ignited when it is cold, the flame will flow to the second flame hole body 11 until the flame hole warms up.
Since it is formed outside the flame hole body 9, it takes some time for the current to rise, which poses a problem when applied to a combustion machine that requires quick ignition detection. A certain kind of combustion chamber is formed between the flame hole bodies 11, and the flame is inside and oscillates, causing fluctuations in the current, so it is not suitable when it is necessary to accurately determine the air-fuel ratio. It had some problems.

本発明はかかる問題を全て解消するもので、燃焼量を絞
った場合でも全1次予混合燃焼においても、空燃比制御
が可能であり、かつ着火検出応答が早い燃焼検出装置の
実現を目的とする。
The present invention solves all of these problems, and aims to realize a combustion detection device that can control the air-fuel ratio even when the combustion amount is reduced or in full primary premix combustion, and has a quick ignition detection response. do.

問題点を解決するだめの手段 と記問題点を解決するために本発明の燃焼検出装置は、
第7図で説明したフレームロッドと同等の働きをする電
極と、第8図で説明した第1の炎孔体および第2の炎孔
体の、双方の構成を結合し第1の炎孔体と第2の炎孔体
間のインピーダンスを検出する第1の検出回路と、電極
と第2の炎孔体間のインピーダンスを検出する第2の検
出回路と、第1の検出回路および第2の検出回路の各々
の出力を演算する燃焼検出回路とを備えたものである。
Means for Solving the Problems In order to solve the problems described above, the combustion detection device of the present invention has the following features:
A first flame hole body is created by combining the structure of the electrode having the same function as the flame rod explained in FIG. 7 and the first flame hole body and the second flame hole body explained in FIG. 8. a first detection circuit that detects the impedance between the electrode and the second flame hole body; a second detection circuit that detects the impedance between the electrode and the second flame hole body; The combustion detection circuit includes a combustion detection circuit that calculates the output of each of the detection circuits.

作   用 本発明は上記の構成によって、炎孔体が冷えている時に
着火し炎が第2の炎孔体の外に在る間は、電極と第2の
炎孔体間のインピーダンスの低下を第1の検出回路で検
出し、炎孔が暖まって炎が第1の炎孔体と第2の炎孔体
間に在るときには第2の検出回路によってその間のイン
ピーダンス低下を検出し、また炎が第2の炎孔体の下流
側に在るかと流側にあるかを燃焼検出回路で判別するこ
とにより精密な空燃比検出を行うものである。
Function: With the above configuration, the present invention ignites when the flame hole body is cold, and reduces the impedance between the electrode and the second flame hole body while the flame is outside the second flame hole body. The first detection circuit detects the flame, and when the flame hole warms up and the flame is present between the first flame hole body and the second flame hole body, the second detection circuit detects a decrease in impedance between the first flame hole body and the second flame hole body. Precise air-fuel ratio detection is performed by using a combustion detection circuit to determine whether the flame is on the downstream side or on the flow side of the second flame hole body.

実施例 以下、本発明の一実施例を添付図面にもとづいて説明す
る。
Embodiment Hereinafter, one embodiment of the present invention will be described based on the accompanying drawings.

第1図において、第8図と同一番号のものは同一体であ
り、異る点は第2の炎孔体11で形成される炎に接する
ごとく電極14が設けられ、第1の炎孔体9と第2の炎
孔体11間のインピーダンスを検出する第1の検出回路
19と第2の炎孔体11と電極14間のインピーダンス
を検出する第2の検出回路20と、第1の検出回路と第
2の検出回路の各々の出力と演算し燃焼検出出力を発生
する燃焼検出回路21を有するところにあり、燃焼検出
回路21ば、第1の検出回路19の出力と第2の検出回
路20の出力との和もしくは両者の出力を比較し大きい
方を出力する和・比較演算回路22とその出力を設定値
v81 と比較する比較回路23とからなる着火検出回
路24と、第1の検出回路19の出力と第2の検出回路
20の出力との差を出力する差演算回路25とその出力
を設定値v112と比較する比較回路26とからなる燃
料に対する空燃比検出機能27で構成されている。
In FIG. 1, the parts with the same numbers as those in FIG. 9 and the second flame hole body 11; a second detection circuit 20 that detects the impedance between the second flame hole body 11 and the electrode 14; The combustion detection circuit 21 calculates the outputs of the first detection circuit 19 and the second detection circuit to generate a combustion detection output. an ignition detection circuit 24 consisting of a sum/comparison calculation circuit 22 that compares the sum with the output of 20 or the output of both and outputs the larger one; and a comparison circuit 23 that compares the output with a set value v81; It is composed of an air-fuel ratio detection function 27 for fuel, which includes a difference calculation circuit 25 that outputs the difference between the output of the circuit 19 and the output of the second detection circuit 20, and a comparison circuit 26 that compares the output with a set value v112. There is.

1記構成において、燃焼検出回路21の着火検出機能に
関して説明すると、着火時に炎孔が冷えていると、第2
図aに示すごとく炎は第1の炎孔体9に付着することが
できず第2の炎孔体11の外側に形成される。そのため
第1の炎孔体9と第2の炎孔体11間のインピーダンス
は極めて高く、第1の検出回路19によって検出される
電流1yは全んど零の状態であシ、一方電極14と第2
の炎孔体11間のインピーダンスは低く、第2の検出回
路20によって検出される電流■fは着火と同時に立ち
とがる。若干の時間経過後、炎によって炎孔が暖まると
炎は第2図すに示すごとく第1の炎孔体9へ付着し、第
1の炎孔体9と第2の炎孔体11の間および第2の炎孔
体11のごく表面で炎を形成する。そのため、第1の炎
孔体9と第2の炎孔体11間のインピーダンスは低くな
りIgが増加するとともに、電極14と第2の炎孔体1
1間のインピーダンスは高くなりIfは減少する。その
状態を第3図に示す。縦軸に電流■を、横軸に経過時間
tl示すが、この図からも解るように、Ilだけでは立
とがりは良いものの経過時間とともに微少な値になって
しまう問題を有し、Igだけでは大きな電流が得られる
ものの立とがりにtdの遅れが発生する問題を有するが
、その合成値I g + 11は各々の欠点を補い、立
Jニジが速く大きな電流値が得られ、全ての問題が解決
される。この役割全果すものが、和・比較演算回路22
である。この例ではI g + I 1としているが、
IgとI(と全比較しどちらか大きい方の値を用いても
ほぼ同等の性能?得ることができる。
Regarding the ignition detection function of the combustion detection circuit 21 in the configuration described above, if the flame hole is cold at the time of ignition, the second
As shown in Figure a, the flame cannot attach to the first flame hole body 9 and is formed outside the second flame hole body 11. Therefore, the impedance between the first flame hole body 9 and the second flame hole body 11 is extremely high, and the current 1y detected by the first detection circuit 19 is completely zero. Second
The impedance between the flame hole bodies 11 is low, and the current f detected by the second detection circuit 20 rises at the same time as ignition. After some time has passed, the flame warms up the flame hole, and the flame attaches to the first flame hole body 9 as shown in Figure 2, and the flame spreads between the first flame hole body 9 and the second flame hole body 11. A flame is formed on the very surface of the second flame hole body 11. Therefore, the impedance between the first flame hole body 9 and the second flame hole body 11 becomes lower, Ig increases, and the electrode 14 and the second flame hole body 1
The impedance between 1 and 1 becomes high and If decreases. The state is shown in FIG. The vertical axis shows the current ■, and the horizontal axis shows the elapsed time tl.As can be seen from this figure, although Il alone has a good rise, it has the problem that the value decreases to a minute value as the elapsed time increases. Although a large current can be obtained, there is a problem that there is a delay in td at the rise, but the composite value I g + 11 compensates for each of the drawbacks, and the rise and rise are fast and a large current value can be obtained, and all problems are solved. resolved. The sum/comparison calculation circuit 22 fulfills this role.
It is. In this example, I g + I 1,
Almost the same performance can be obtained by comparing Ig and I (and using the larger value of the two).

次に、燃焼検出回路21の空燃比検出機能に関して、第
2図、第4図を用いて説明すると、Paが1より小さい
ときは空気不足のため炎は第2図a、bの中間位の状態
になる。空気が増えてPが1より大きくなって来ると、
空気供給が十分なために炎は第2図すの状態になり、第
1の炎孔体9に密着して燃える。そのためIgは増加し
、11は全んど零になる。更にPaが大きくなると混合
気の噴出速度が大きくなり、かつ第1の炎孔体9が冷や
されるために炎は第1の炎孔体9に付着しにくくなシ、
徐々に第2の炎孔体11側に寄っていく。したがってI
yはピークを経て減少して行く。Igがピークから減少
する領域では、炎が第1の炎孔体9と第2の炎孔体11
で形成される空間にあり、第2の炎孔体への衝突現象も
生ずるのでIgの変動が大きく、精密な値を得るのは難
しい。更にPaが増加すると、炎は第1の炎孔体9に付
着することが出来なくなり、炎は第2図aに示すごとく
第2の炎孔体11へ転移付着する。
Next, the air-fuel ratio detection function of the combustion detection circuit 21 will be explained with reference to FIGS. 2 and 4. When Pa is less than 1, there is a lack of air and the flame is at an intermediate point between a and b in FIG. become a state. When the air increases and P becomes larger than 1,
Since the air supply is sufficient, the flame enters the state shown in Figure 2 and burns in close contact with the first flame hole body 9. Therefore, Ig increases and 11 becomes all zero. Furthermore, as Pa increases, the jetting speed of the air-fuel mixture increases, and the first flame hole body 9 is cooled, so that the flame is less likely to adhere to the first flame hole body 9.
It gradually approaches the second flame hole body 11 side. Therefore I
y decreases after reaching a peak. In the region where Ig decreases from its peak, the flame spreads between the first flame hole body 9 and the second flame hole body 11.
Since the Ig is located in the space formed by the flame and a collision phenomenon with the second flame hole also occurs, the Ig fluctuates widely and it is difficult to obtain an accurate value. When Pa further increases, the flame cannot attach to the first flame hole body 9, and the flame transfers and adheres to the second flame hole body 11 as shown in FIG. 2a.

したがって、炎は第2の炎孔体11の表面に出て来るの
で、Ifは増加し、Igは更に減少してついにPa1点
でその大小関係が反転する。と記の反転ポイントPa1
は、炎が第2の炎孔体11の内側から外側へ出る点であ
ると言い換えても良く、炎が出て行くのをIgの減少と
Ifの増加の両方で検出する構成であるために反転ポイ
ン)P、lは極めて安定した状態で得られる。しかも燃
焼量が変わるとIgのピーク点は変化するが、反転ポイ
ントPa1の変動は少ないという結果も得られているの
で、Pa1’!r監視することによって空燃比Paが解
り、精密な空燃比制御が可能になる。上記のPa1を監
視するのが差演算回路25と比較回路26であり、差が
零になる点で監視すると空燃比はPa1になり、差が例
えば△■になる点で監視すると空燃比FiPa2VCな
って、空燃比の監視をある程度移動させることも可能で
ある。
Therefore, since the flame comes out on the surface of the second flame hole body 11, If increases, Ig further decreases, and finally the magnitude relationship is reversed at the Pa1 point. Reversal point Pa1 marked with
can be rephrased as the point at which the flame exits from the inside to the outside of the second flame hole body 11, since the configuration is such that the exit of the flame is detected by both a decrease in Ig and an increase in If. Inversion points) P and l are obtained in an extremely stable state. Moreover, when the combustion amount changes, the peak point of Ig changes, but the change in the reversal point Pa1 is small, so Pa1'! By monitoring r, the air-fuel ratio Pa can be determined and precise air-fuel ratio control becomes possible. The difference calculation circuit 25 and the comparison circuit 26 monitor Pa1, and if the difference is zero, the air-fuel ratio will be Pa1, and if the difference is, for example, △■, the air-fuel ratio will be FiPa2VC. It is also possible to move the monitoring of the air-fuel ratio to some extent.

着火検出に用いるIg+I(は、図示のように空燃比P
aの広い範囲に渡って大きな値が得られることが解る。
Ig+I used for ignition detection (is the air-fuel ratio P as shown in the figure)
It can be seen that large values are obtained over a wide range of a.

次に本発明の他の実施例を第5図を用いて説明する。燃
焼機によっては空燃比検出は不要であって、着火検出だ
けあれば良いものもある。その場合には第1図における
、燃料に対する空気比率検出回路27が不用になるのは
もちろんのこと、和・比較演算回路22も無くして、燃
焼機本体側で和の出力が得られるようにすることが可能
である。
Next, another embodiment of the present invention will be described using FIG. Some combustion machines do not require air-fuel ratio detection and only require ignition detection. In that case, not only the air to fuel ratio detection circuit 27 shown in FIG. 1 becomes unnecessary, but also the sum/comparison calculation circuit 22 is eliminated so that the sum output can be obtained on the combustion machine main body side. Is possible.

第1図の実施例と相異する点は、電極14を絶縁体18
に取りつけるのではなく、気化器2の端部200に取り
付けることにより、電極14と第1の炎孔体9とを同電
位とし、端子12に流れる電流が第1の炎孔体9と第2
の炎孔体11間に流れる電流と電(j14と第2の炎孔
体11間に流れる電流の和になるものである。
The difference from the embodiment shown in FIG. 1 is that the electrode 14 is
By attaching it to the end 200 of the vaporizer 2 instead of attaching it to the terminal, the electrode 14 and the first flame hole body 9 are at the same potential, and the current flowing through the terminal 12 is connected to the first flame hole body 9 and the second flame hole body 9.
This is the sum of the current flowing between the flame hole body 11 and the current flowing between the flame hole body 11 (j14 and the second flame hole body 11).

同様の目的の他の実施例を第6図を用いて説明する。第
1図の実施例と相異する点は、電極14を無くしてキャ
ップ1oの端部180を下方に延ばし第2の炎孔体の表
面に形成される炎に触れるように構成し、かつキャップ
10と第2の炎孔体9とが接触するように構成してキャ
ップ端部180と第1の炎孔体9とを同電位とし、端子
12に流れるが第1の炎孔体9と第2の炎孔体11間に
流れる電流とキャップ端部180と第2の炎孔体11間
に流れる電流の和になるものである。
Another embodiment having the same purpose will be described with reference to FIG. The difference from the embodiment shown in FIG. 1 is that the electrode 14 is eliminated and the end 180 of the cap 1o is configured to extend downward and touch the flame formed on the surface of the second flame hole body, and the cap 10 and the second flame hole body 9 are configured so that the cap end 180 and the first flame hole body 9 are at the same potential. This is the sum of the current flowing between the second flame hole body 11 and the current flowing between the cap end 180 and the second flame hole body 11.

なお、と記の実施例では、石油バーナを用いたかがスバ
ーナの場合には石油ポンプaやファン6などが不要にな
るのは当然であり、この例に限定されるものではない。
Incidentally, in the embodiment described above, it is natural that the oil pump a, the fan 6, etc. are not required if the oil burner is used, and the present invention is not limited to this example.

発明の効果 以上のように本発明の燃焼検出装置は、第1の炎孔体と
第2の炎孔体と電極と分有し、第1の炎孔体と第2の炎
孔体間のインピーダンスを検出する第1の検出回路と、
N、@と第2の炎孔体間のインピーダンスを検出する第
2の検出回路と、第1の検出回路と第2の検出回路の各
々の出力を演算し燃焼検出出力を発生する燃焼検出回路
とを有し、炎が第2の炎孔体の内側に在る間は第1の炎
孔体と第2の炎孔体間のインピーダンスの低下ヲ第1の
検出回路で検出し、炎が第2の炎孔体の外側に在る間は
第2の炎孔体と電極間のインピーダンスの低下を第2の
検出回路で検出でき、雨検出回路の出力を燃焼検出回路
で演算を行えるので、下記の特性を有する。
Effects of the Invention As described above, the combustion detection device of the present invention includes a first flame hole body, a second flame hole body, and an electrode, and a flame hole body between the first flame hole body and the second flame hole body. a first detection circuit that detects impedance;
a second detection circuit that detects the impedance between N, @ and the second flame hole body; and a combustion detection circuit that calculates the outputs of the first detection circuit and the second detection circuit to generate a combustion detection output. While the flame is inside the second flame hole body, the first detection circuit detects a decrease in impedance between the first flame hole body and the second flame hole body, and the flame is detected by the first detection circuit. While it is outside the second flame hole body, the second detection circuit can detect the decrease in impedance between the second flame hole body and the electrode, and the output of the rain detection circuit can be calculated by the combustion detection circuit. , has the following characteristics.

■ 炎孔の温度や空燃比などの変化によって炎が第2の
炎孔体の内外どちらに形成していても、大きな着火信号
が得られ、耐雑音性に優れている。
(2) Regardless of whether the flame is formed inside or outside the second flame hole body due to changes in the flame hole temperature or air-fuel ratio, a large ignition signal can be obtained and excellent noise resistance is achieved.

■ 炎孔が冷えているときに着火を行うと、炎は第1の
炎孔体には付着できずに最初は第2の炎孔体の外側に形
成され、炎孔の温度がとがると第1の炎孔体に転移付着
するが、燃焼検出回路での演算により最初は第2の検出
回路の出力を、炎の第1の炎孔体への転移付着後は第1
の検出回路の出力を利用することができ、信号の立ち北
がりが速くかつ連続して安定した着火検出信号を得るこ
とができる。
■ If you ignite when the flame hole is cold, the flame will not be able to attach to the first flame hole body, but will initially form on the outside of the second flame hole body, and the temperature of the flame hole will rise. The flame transfers and attaches to the first flame hole body, but by calculation in the combustion detection circuit, the output of the second detection circuit is initially set, and after the flame transfers and adheres to the first flame hole body, the output of the second detection circuit is
It is possible to use the output of the detection circuit, and it is possible to obtain a continuous and stable ignition detection signal with a fast rising edge of the signal.

■ 空燃比が小さいときには混合気の噴出速度が遅く炎
孔の温度も高いので炎は第2の炎孔体の内側にあり、空
燃比が大きくなると混合気の噴出速度が速くなって炎は
下流側に移動しやすくなり、かつ第1の炎孔体が混合気
の噴流によって冷却されて第1の炎孔体から離れ易くな
るので第2の炎孔体の外側に炎が形成されるが、と記の
炎の動きを生ずる空燃比が一定しているために、燃焼検
出回路によって第1の検出回路の出力と第2の検出回路
の出力との差の1iLfff:判別することにより精密
な空燃比の監視を行うことができる。
■ When the air-fuel ratio is small, the injection speed of the mixture is slow and the temperature of the flame hole is high, so the flame is inside the second flame hole body, and when the air-fuel ratio increases, the injection speed of the mixture becomes faster and the flame moves downstream. The first flame hole body is cooled by the jet of the air-fuel mixture and becomes easier to move away from the first flame hole body, so a flame is formed on the outside of the second flame hole body. Since the air-fuel ratio that causes the movement of the flame is constant, the combustion detection circuit determines the difference between the output of the first detection circuit and the output of the second detection circuit, 1iLfff: The fuel ratio can be monitored.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における燃焼検出装置の構成
図、第2図は同装置における炎孔部の炎の形成状態図、
@3図は同装置の立とり特性図、第4図は同装置の定常
特性図、第5図は本発明の他の実施例におけるフレーム
ロッド取付部の構成図、第6図は本発明の他の実施例に
おけるキャップ部の構成図、第7図は従来の燃焼検出装
置の構成図、第8図は従来の燃焼検出装置の他の構成図
である。 5・・・・・・混合室、9・・・・・・第1の炎孔体、
11・・・・・・第2の炎孔体、14・・・・・・電極
、18・・・・・・絶縁体、19・・・・・・第1の検
出回路、20・・・・・・第2の検出回路、21・・・
・・・燃焼検出回路。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第5
図 第6図 S N                    り塚  
          綜 −―悟 H− 区 !か 憾
FIG. 1 is a configuration diagram of a combustion detection device according to an embodiment of the present invention, and FIG. 2 is a diagram of the state of flame formation in the flame hole in the same device.
@ Figure 3 is a standing characteristic diagram of the same device, Figure 4 is a steady-state characteristic diagram of the same device, Figure 5 is a configuration diagram of a frame rod attachment part in another embodiment of the present invention, and Figure 6 is a diagram of the frame rod attachment part in another embodiment of the present invention. FIG. 7 is a block diagram of a cap portion in another embodiment, FIG. 7 is a block diagram of a conventional combustion detection device, and FIG. 8 is a block diagram of another conventional combustion detection device. 5... Mixing chamber, 9... First flame hole body,
DESCRIPTION OF SYMBOLS 11... Second flame hole body, 14... Electrode, 18... Insulator, 19... First detection circuit, 20... ...Second detection circuit, 21...
... Combustion detection circuit. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 5
Figure 6 S N Rizuka
So--Satoru H- Ward! regret

Claims (3)

【特許請求の範囲】[Claims] (1)燃料と燃焼用空気とを混合する混合室と、前記混
合室に連通する第1の炎孔体と、前記混合室に対して前
記第1の炎孔体よりも下流側に位置し前記第1の炎孔体
と一定の距離を有して設けられた第2の炎孔体と、前記
第2の炎孔体で形成される炎に接するごとく設けられた
電極と、前記第1の炎孔体と前記第2の炎孔体との間お
よび前記電極と前記第2の炎孔体との間を電気的に絶縁
する絶縁体と、前記第1の炎孔体と前記第2の炎孔体間
のインピーダンスを検出する第1の検出回路と、前記電
極と前記第2の炎孔体間のインピーダンスを検出する第
2の検出回路と、前記第1の検出回路および前記第2の
検出回路の各々の出力を演算し燃焼検出出力を発生する
燃焼検出回路とからなる燃焼検出装置。
(1) A mixing chamber for mixing fuel and combustion air, a first flame hole body communicating with the mixing chamber, and a flame hole body located downstream of the first flame hole body with respect to the mixing chamber. a second flame hole body provided at a certain distance from the first flame hole body, an electrode provided so as to be in contact with the flame formed by the second flame hole body, and the first flame hole body. an insulator that electrically insulates between the flame hole body and the second flame hole body and between the electrode and the second flame hole body; a first detection circuit that detects the impedance between the flame hole body, a second detection circuit that detects the impedance between the electrode and the second flame hole body, the first detection circuit and the second flame hole body; A combustion detection device comprising a combustion detection circuit that calculates the output of each of the detection circuits and generates a combustion detection output.
(2)燃焼検出回路は、第1の検出回路出力と第2の検
出回路出力との和もしくは両者の出力を比較し大きい方
を出力する演算を行い、着火検出信号とする特許請求の
範囲第1項記載の燃焼検出装置。
(2) The combustion detection circuit performs calculation to compare the sum of the output of the first detection circuit and the output of the second detection circuit, or to output the larger one by comparing the outputs of both, and outputs the larger one as an ignition detection signal. Combustion detection device according to item 1.
(3)燃焼検出回路は、第1の検出回路出力と第2の検
出回路出力との差を出力する演算を行い、燃料に対する
空気比率信号とする特許請求の範囲第1項記載の燃焼検
出装置。
(3) The combustion detection device according to claim 1, wherein the combustion detection circuit performs calculation to output the difference between the first detection circuit output and the second detection circuit output, and outputs the difference between the first detection circuit output and the second detection circuit output as an air to fuel ratio signal. .
JP28993885A 1985-12-23 1985-12-23 Combustion sensing device Pending JPS62147216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28993885A JPS62147216A (en) 1985-12-23 1985-12-23 Combustion sensing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28993885A JPS62147216A (en) 1985-12-23 1985-12-23 Combustion sensing device

Publications (1)

Publication Number Publication Date
JPS62147216A true JPS62147216A (en) 1987-07-01

Family

ID=17749684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28993885A Pending JPS62147216A (en) 1985-12-23 1985-12-23 Combustion sensing device

Country Status (1)

Country Link
JP (1) JPS62147216A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4865415A (en) * 1987-02-20 1989-09-12 Sumitomo Electric Industries, Ltd. Composite fiber-optic overhead ground wire
US5699467A (en) * 1995-06-06 1997-12-16 The Furukawa Electric Co., Ltd. Optical fiber complex overhead line

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4865415A (en) * 1987-02-20 1989-09-12 Sumitomo Electric Industries, Ltd. Composite fiber-optic overhead ground wire
US5699467A (en) * 1995-06-06 1997-12-16 The Furukawa Electric Co., Ltd. Optical fiber complex overhead line

Similar Documents

Publication Publication Date Title
US4109633A (en) Spark-plug for automobile internal combustion engine
US6512375B1 (en) Method of detecting spark plug fouling and ignition system having means for carrying out the same
US4344317A (en) Air-fuel ratio detecting system
JPH0343584B2 (en)
JPH0580620B2 (en)
JPS5834654B2 (en) Method and device for controlling and adjusting fuel-air component ratio of working mixture of internal combustion engine
JPS6115230Y2 (en)
JPS62147216A (en) Combustion sensing device
AU2006200301A1 (en) Ion sensors formed with coatings
JP4051725B2 (en) Air-fuel ratio control method
US20020029612A1 (en) Gas concentration measuring apparatus producing current signal as a function of gas concentration
US4145999A (en) Electronic feedback control system for fuel injection in internal combustion engines of fuel injection type
JPH0672867B2 (en) Oxygen concentration detector
Yarantsev et al. Ignition and flameholding of hydrocarbon fuel in supersonic flow by means of surface electrical discharge
JPS62252824A (en) Flame current detector
JP2604164B2 (en) Catalytic combustion device
JPS62147215A (en) Combustion sensing device
JPS5887421A (en) Hot wire flowmeter for internal combustion engine
JP2558909B2 (en) Combustion detector
JPS62147217A (en) Combustion sensing device
JPS61106939A (en) Air-fuel ratio control device of engine
Swett Jr Spark ignition of flowing gases V: application of fuel-air-ratio and initial-temperature data to ignition theory
JPH02218870A (en) Internal combustion engine ignition device
JPH03251613A (en) Energization control method for ceramic heater
JPH01172746A (en) Heater temperature control device of oxygen concentration sensor