JPS62146782A - Fail safe device for four-wheel steered vehicle - Google Patents

Fail safe device for four-wheel steered vehicle

Info

Publication number
JPS62146782A
JPS62146782A JP28834885A JP28834885A JPS62146782A JP S62146782 A JPS62146782 A JP S62146782A JP 28834885 A JP28834885 A JP 28834885A JP 28834885 A JP28834885 A JP 28834885A JP S62146782 A JPS62146782 A JP S62146782A
Authority
JP
Japan
Prior art keywords
wheel steering
steering angle
rear wheel
vehicle speed
limit value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28834885A
Other languages
Japanese (ja)
Inventor
Yoshihide Unosaki
鵜崎 良英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP28834885A priority Critical patent/JPS62146782A/en
Publication of JPS62146782A publication Critical patent/JPS62146782A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
    • B62D7/15Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels
    • B62D7/159Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels characterised by computing methods or stabilisation processes or systems, e.g. responding to yaw rate, lateral wind, load, road condition

Abstract

PURPOSE:To prevent rear wheels from rapidly steering when a vehicle is rapidly accelerated and decelerated, by setting the limit value as a target rear wheel steering angle when the target rear wheel steering angle, determined by steering ratio and a front wheel steering angle, exceeds said rear wheel steering angle limit value determined corresponding to a car speed and acceleration. CONSTITUTION:A rear wheel steering device has a power steering device driven and controlled by a stepping motor 12, and it is controlled by a microcomputer 11. Here the microcomputer 11, which has a rear wheel steering angle determining means 31 determining a target rear wheel steering angle thetar from steering ratio (k), determined by a determining means 30 on the basis of an output of a car speed sensor 16, and an output of a front wheel steering angle sensor 15, is constituted so as to control the motor 12 in accordance with the thetar. While the microcomputer, which has a determining means 33 determining a rear wheel steering angle limit value in accordance with a car speed and acceleration, for instance, at time with the car speed larger than the steering ratio reversing car speed further with the acceleration positive, sets said limit value as the target rear wheel steering angle by a correcting means 35 when the target rear wheel steering angle exceeds said limit value.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野] この発明は、四輪操舵車両におけるフェイルセーフ装置に関し、低速時に後輪を前輪に対して逆位相に、高速時に後輪を前輪に対して同位相に転舵するように構成された四輪操舵車両において、急加減速時において後輪が急激に転舵されることを防止し、走行の安全性が確保されるようにしたものに関する。 【従来の技術】[Industrial application field] The present invention relates to a fail-safe device for a four-wheel steering vehicle, and relates to a four-wheel steering system configured to steer the rear wheels in an opposite phase to the front wheels at low speeds and in the same phase as the front wheels at high speeds. The present invention relates to a vehicle that prevents the rear wheels from being abruptly steered during sudden acceleration or deceleration, thereby ensuring driving safety. [Conventional technology]

種々の状況に応じた最適な操向性を達成するために、前
輪のみならず、後輪をも転舵されるように構成された四
輪操舵車両はすでに知られている。 このうち、本出願人によって提案され、かつ出願された
ものに、制御装置によって回転制御されるステッピング
モータと、このステッピングモータの回転が入力される
公知の後輪転舵(幾構とを組み合せて後輪転舵装置を構
成するようにしたものがある(特願昭59−25715
6号)。 ステッピングモータは、その回転量が制御パルス数に比
例することから、ディジタル制御が容易なため、車速あ
るいは前輪転舵角に応じて設定された最適な舵角に後輪
を転舵させることが容易にできる。 このほか、後輪を制御装置によって制御される油圧アク
チュエータによって転舵させるものも見受けられるが、
これらも、前輪舵角と、車速とを制御入力として検知し
、これにもとづいて後輪を所定方向に所定量転舵させる
ようにしている。 ところで、あらゆる車速において、ドライバビリティを
最適化するためには、遠心力をほとんど考慮する必要の
ない低速時と、遠心力を考慮する必要のあるjfh速時
とで、前輪の舵角に対する後輪の舵角の比を表わす転舵
比kを本願の第3図に示すように変化させることが好ま
しいことが知られている。ここで転舵比kが正の領域は
前輪と逆方向に後輪が転舵される、いわゆる逆位相であ
ることを示し、転舵比kが負の領域は前輪と同方向に後
輪が転舵される、いわゆる同位相であることを示す。こ
れによると、低速時には後輪が逆位相に転舵されるので
、車体旋回中心が前方に移行して車体中心を通る車幅方
向線上に近づき、したがって車体のすべり角がOに近づ
(とともに旋回半径が前輪のみ転舵する場合に比べて小
さくなる。そして高速時には、遠心力の影響により前輪
と路面との間にすべりが生じ、旋回中心が前方に移行す
る傾向が生じるが、この傾向を後輪を前輪と同方向に転
舵することにより相殺し、旋回中心を車体中心を通る車
幅方向線上に近づけることができる。
2. Description of the Related Art Four-wheel steered vehicles are already known in which not only the front wheels but also the rear wheels are steered in order to achieve optimal steering performance in accordance with various situations. Among these, the one proposed and filed by the present applicant combines a stepping motor whose rotation is controlled by a control device, and a known rear wheel steering (several mechanisms) into which the rotation of this stepping motor is input. There is a device that constitutes a wheel steering device (Japanese Patent Application No. 59-25715)
No. 6). Since the amount of rotation of a stepping motor is proportional to the number of control pulses, it is easy to digitally control the stepping motor, making it easy to steer the rear wheels to the optimal steering angle set according to the vehicle speed or front wheel steering angle. Can be done. In addition, there are some models in which the rear wheels are steered by a hydraulic actuator controlled by a control device.
These also detect the front wheel steering angle and vehicle speed as control inputs, and based on these, the rear wheels are steered by a predetermined amount in a predetermined direction. By the way, in order to optimize drivability at all vehicle speeds, it is necessary to determine the rear wheel steering angle relative to the front wheel steering angle at low speeds, where centrifugal force hardly needs to be considered, and at jfh speeds, where centrifugal force needs to be considered. It is known that it is preferable to change the steering ratio k, which represents the ratio of the steering angles, as shown in FIG. 3 of the present application. Here, a region where the steering ratio k is positive indicates that the rear wheels are steered in the opposite direction to the front wheels, so-called anti-phase, and a region where the steering ratio k is negative indicates that the rear wheels are steered in the same direction as the front wheels. Indicates that the wheels are steered, that is, they are in the same phase. According to this, at low speeds, the rear wheels are steered in the opposite phase, so the center of rotation of the vehicle body moves forward and approaches the vehicle width direction line passing through the center of the vehicle body, and therefore the slip angle of the vehicle body approaches O (as well as The turning radius is smaller than when only the front wheels are steered.At high speeds, centrifugal force causes slippage between the front wheels and the road surface, which tends to shift the turning center forward. By steering the rear wheels in the same direction as the front wheels, the turning center can be brought closer to the vehicle width direction line passing through the center of the vehicle body.

【発明が解決しようとする問題点] 第 図に示すように、低速時には逆位相に、高速時には
同位相に後輪を転舵制御する場合、とくに中速域で転舵
比kが正から負へと大きく変化している。 このようにして転舵比kを車速のみの関数として規定し
、これに基づいて後輪を転舵させるとすると、たとえば
旋回しながら中速域で急加速、あるいは急減速したとき
、後輪が左右に大きく転舵されてしまい、危険である。 この発明は、以上のような事情のもとで考え出されたも
ので、車速によって後輪の転舵比kが逆位相から同位相
にわたって変化させられるように制御される四輪操舵ボ
両において、急加減速時での1&輪のみの舵角の変化を
抑制し、走行安全性が確保されるようにしたフェイルセ
ーフ装置を提供することをその課題とする。 【問題を解決するための手段】 上記の問題を解決するため、この発明では、次の技術的
手段を講じている。 ステアリング操作によって作動される前輪転舵機構と、
前輪舵角センサと、車速センサと、加速度検出手段と、
上記車速センサからの車速情報に応じた転舵比を決定す
る転舵比決定手段と、上記転舵比決定手段によって決定
された転舵比と、前輪舵角センサからの前輪舵角情報と
により、目標後輪舵角を決定する目標後輪舵角決定手段
と、上記目標後輪舵角に応じた制御信号により作動され
る後輪転舵装置とを備え、低速時は後輪を前輪と逆位相
に、高速時は後輪を前輪と同位相に制御するように構成
された四輪操舵車両において、上記車速情?艮が、転舵
比の位相が逆転する転舵比逆転車速より大きく、かつ加
速度が正であるとき、および、上記車速情報が上記転舵
比逆転車速より小さくかつ加速度が負であるとき、その
車速および加速度に応じた後輪舵角限界値を決定する後
輪舵角限界値決定手段と、上記後輪舵角限界値決定手段
で決定された限界値と上記目標後輪舵角決定手段によっ
て決定された目標後輪舵角とを比較する比較手段と、上
記比較手段において上記目標(々輪舵角が上記後輪舵角
限界値を超えるとき上記限界値を目標後輪舵角とする目
標後輪舵角補正手段とをさらに備えている。
[Problems to be Solved by the Invention] As shown in Figure 1, when the rear wheels are steered in opposite phases at low speeds and in the same phase at high speeds, the steering ratio k changes from positive to negative, especially in the medium speed range. has changed significantly. If we define the steering ratio k as a function only of the vehicle speed in this way and then steer the rear wheels based on this, for example, when turning suddenly and suddenly accelerating or decelerating in the medium speed range, the rear wheels will The vehicle will be steered significantly left and right, which is dangerous. This invention was devised under the above circumstances, and is applicable to a four-wheel steering vehicle in which the steering ratio k of the rear wheels is controlled to vary from the opposite phase to the same phase depending on the vehicle speed. The object of the present invention is to provide a fail-safe device that suppresses changes in the steering angle of only the first and second wheels during sudden acceleration and deceleration, thereby ensuring driving safety. [Means for Solving the Problems] In order to solve the above problems, the present invention takes the following technical measures. a front wheel steering mechanism operated by steering operation;
A front wheel steering angle sensor, a vehicle speed sensor, an acceleration detection means,
A steering ratio determining means for determining a steering ratio according to vehicle speed information from the vehicle speed sensor, the steering ratio determined by the steering ratio determining means, and front wheel steering angle information from the front wheel steering angle sensor. , comprising a target rear wheel steering angle determining means for determining a target rear wheel steering angle, and a rear wheel steering device operated by a control signal according to the target rear wheel steering angle, and at low speeds, the rear wheels are rotated in the opposite direction to the front wheels. In a four-wheel steering vehicle configured to control the rear wheels to be in the same phase as the front wheels at high speeds, the above vehicle speed condition? When the phase of the steering ratio is greater than the steering ratio reversal vehicle speed at which the steering ratio is reversed and the acceleration is positive, and when the vehicle speed information is smaller than the steering ratio reversal vehicle speed and the acceleration is negative, Rear wheel steering angle limit value determining means for determining a rear wheel steering angle limit value according to vehicle speed and acceleration, and the limit value determined by the rear wheel steering angle limit value determining means and the target rear wheel steering angle determining means. a comparison means for comparing the determined target rear wheel steering angle; and a comparison means for comparing the target rear wheel steering angle with the determined target rear wheel steering angle; The vehicle further includes rear wheel steering angle correction means.

【作用および効果] この発明の四輪操舵車両においては、原則的に、第3図
に示すように、低速時には後輪が前輪と逆位相に、高速
時には後輪が前輪と同位相に転舵される。したがって、
中速域において、転舵比にの位相が逆転する転舵比逆転
車速v1が存在する。 この転舵比逆転車速V1から高速側に車速か変化すると
き、およびこの転舵比逆転車速■1から低速側に車速が
変化するとき、転舵比にの絶対値は増大する。したがっ
て転舵比逆転車速■1から急加速するとき、および転舵
比逆転車速Vlから急減速するときには、転舵比にの絶
対値が急激に増大し、前輪が大きく転舵されている場合
これにより後輪が急激に転舵されることになる。 しかしながら、本発明では、後輪舵角限界値決定手段が
その時点での車速および加速度に応じた後輪舵角限界値
を決定し、転舵比と前輪舵角によって決定される目標後
輪舵角が上記後輪舵角限界値を超える場合にはこの後輪
舵角限界値を目標後輪舵角としているので、上記転舵比
逆転車速■1から急加速あるいは急減速しても、それに
よって後輪が急激に転舵されることを回避することがで
きる。 【実施例の説明】 以下、本発明の実施例を図面を参照して具体的に説明す
る。 第1図は、本発明が適用される四輪操舵車両の全体構成
図である。ここで前輪転舵機構1は、従来公知のものが
使用される。すなわち、ランク・ピニオン弐転舵機構の
場合、ステアリングホイール2とともに軸転するステア
リングシャフト3の回転は、ギヤボックス4でラック杆
5の往復動に変換され、さらにこのラック杆5の往復動
は、両端のタイロンドロ、6を介してナックルアーム7
゜7の軸8.8を中心とした回動に変換され、このナッ
クルアーム7.7の回動により、前輪9.9は上記軸9
.9を中心として転舵されるようになっている。 一方、後輪転舵機構10は、マイクロコンピュータで構
成される制御装置1)によって制御されるステッピング
モータ12と、このステッピングモータ12の回転出力
が入力される公知のパワーステアリング装置14によっ
て構成される。このマイクロコンピュータ1)には、制
御のための入力として、前輪舵角センサ15、車速セン
サ16および車速センサの出力信号を時間で微分するこ
とによる加速度検出手段17からの情報が入力されるよ
うになっている。そしてこのマイクロコンピュータ1)
から、ステッピングモータ12の駆動回路12aに制御
線が延びている。 上記パワーステアリング装置14は、たとえば、公知の
ランク・ピニオン式のパワーステアリング装置を使用す
ることができる。すなわち、ギヤボックス20の入力部
に付設されたコントロールバルブ部21は、ポンプ22
からの圧油を入力軸23の回転方向に応じて、ギヤボッ
クス20内に形成される複動パワーシリンダ部24に送
り、このパワーシリンダ部24がラック杆25の動きを
支援する。ラック杆25の動きは、その両端に連結され
たタイロッド26.26によってナックルアーム27.
27に伝達されてこのナックルアーム27.27を軸2
8.28を中心として回転させ、これにより後輪29.
29は軸28,28を中心として所定方向に転舵される
。 マイクロコンピュータ1)を含む以上の構成において、
実質的にプログラムにより実現されうる次のような手段
が基本的に構成される。 すなわち、その第一は、車速センサ16からの車速情報
に応じた転舵比kを決定する転舵比決定手段30、その
第二は、上記転舵比決定手段30によって決定された転
舵比にと、前輪舵角センサ15からの前輪舵角情報θf
とにより、目標後輪舵角θrを決定する後輪舵角決定手
段31、その第三は、上記目標後輪舵角に応じてステッ
ピングモータ12を回転すべき量および方向を決定し、
かつこれに基づく制御パルス信号をステッピングモータ
12の駆動回路12aに送出するパルス送山手段32、
その第四は、上記車速情報が、転舵比にの位相が逆転す
る転舵比逆転車速■1より大きく、かつ上記加速度セン
サ17で検出される加速度αが正であるとき、および、
上記車速情報が上記転舵比逆転車速■1より小さくかつ
加速度αが負であるとき、その車速Vおよび加速度αに
応じた後輪舵角限界値θ「−を決定する後輪舵角限界値
決定手段33、その第五は、上記後輪舵角限界値決定手
段33で決定された限界値θrムと上記目標後輪舵角決
定手段31によって決定された目標後輪舵角θrとを比
較する比較手段34、その第六は、上記比較手段34に
おいて上記目標後輪舵角θrが上記後輪舵角限界値θr
ムを超えるとき上記限界値θ、Qを目標後輪舵角θrと
する目標後輪舵角補正手段35である。 上記転舵比決定手段30には、第3図に示すような、車
速Vと転舵比にとの関係を表わすデータテーブル36が
含まれる。このデータテーブル36の意味は、すでに述
べた通りである。なお、グラフの横軸との交差点が、転
舵比逆転車速v1である。 また、上記後輪舵角限界決定手段33には、第4図に示
すような、車速Vと加速度αに対応する後輪舵角限界θ
rムーを示すデータテーブル37が含まれる。この図に
おいて後輪舵角限界θrLl、vV1は、中立位置をO
oとした左右への切れ角として表現しである。加速度α
の絶対値が大きい程、後輪舵角限界値が制限されている
。なお、この図において、3段階の加速度αl、α2.
α3を例にとってそれに対応する後輪舵角限界値の傾向
を示しているが、これは、あくまでも本発明の考え方を
示す例示であって、無段階的に各加速度に対応する後輪
舵角限界値θr1−を決めてよい。 以上のようなフェイルセーフ機能を備える四輪操舵車両
の動作を、第5図に示す概略フローチャートに沿ってさ
らに説明する。 まず、車速■、加速度αおよび前輪舵角θfが読み込ま
れる(SIOl、102,5103)。 次に、加速度αの絶対値が、所定の限界を超えたかどう
かが判断され(3104)、超えた場合には(S 10
4でYES)、後輪を強制的に中立に戻しく51)2)
、かつ後輪転舵制御を中止する(S1)3)。これは、
より具体的には、目標後輪舵角決定手段31の出力を0
リセツトしてもよいし、ステッピングモータ12の電源
を落とすと同時に、別個のアクチュエータにより強制的
にラック杆25を中立位置に戻すようにしてもよい。 以上のステップを設けているのは、車速センサ16の破
損を、その出力情報を微分することによる加速度値が極
大化したことをもって検知し、安全のため、後輪転舵を
中止する趣旨である。すなわち、正確な車速情報がマイ
クロコンピュータ1)に入力されないと、データテーブ
ル36に沿った、最適な舵角に後輪を転舵することがで
きなくなるからである。 次に、車速センサ16からの車速情報■と、データテー
ブル36とから、転舵比kが決定される(S105)。 次に、車速Vが転舵比逆転車速Vlより大きいか小さい
かにわけて、次のようにして最終的に目標後輪舵角θ「
が決定される。 すなわち、車速■が上記転舵比逆転車速■1より太きく
(S106でYES)、すなわち高速状態であって、加
速度αが正の場合には(S 107でYES) 、デー
タテーブル37からその車速および加速度に応じた後輪
舵角限界値θd―が読み込まれる(3108)。一方、
目標後輪舵角決定手段35において上記転舵比にと前輪
舵角θfとから目標後輪舵角θrが決定されている(S
iO2)ので、次に、上記後輪舵角限界値θrLと目標
後輪舵角θrが比較される1S1)0)。ここで目標後
輪舵角θ「が上記限界値θrムを超えている場合には(
S1)’0でYES)、上記限界値θ「−が目標後輪舵
角θrとされ(Sill)、これに基づいてステッピン
グモータ12を回転させるべき量および方向が決定され
、かつそれに応じた制御パルスがステッピングモータ1
2の駆動回路12aに送出される(31)7)。また、
5107で加速度αが負の場合には(S 107でNO
)、目標後輪舵角θrに基づいてそのまま後輪は制御さ
れる(S1)6,51)7)。車速■が転舵比逆転車速
Vlより大きい状態から減速する場合には、第3図のデ
ータテーブル36から明らかなように、転舵比kがOに
向かい、後輪が中立に戻るので、安全上とくに問題がな
いからである。 一方、車速Vが転舵比逆転車速■1より小さくて、かつ
減速中の場合には(S I O6でNo、51)4でY
ES) 、上記高速状態で加速中の場合と同様にして後
輪舵角決定ないしその補正が行なわれる(S1)5,5
109,5ilo、5l1))、、また、51)4で加
速度αが正の場合には(S 1)4でNO)、目標後輪
舵角θrに基づいて、そのまま後輪は制御される(51
)6,51)7)。車速■が転舵比逆転車速■1より小
さい状態から加速する場合には、第3図のデータテーブ
ル36から明らかなように、転舵比kがOに向かい、後
輪が中立に戻るので、安全上ときに問題がないからであ
る。 以上のように本発明によれば、低速時に逆位相で、高速
時に同位相で、後輪が転舵制御される四輪操舵車両にお
いて、転舵比逆転車速から急加速する場合、および、転
舵比逆転車速から減速する場合に、後輪が運転者の意志
と無関係に大きく転舵されるという危険が回避され、走
行の安全性が非常に高まる。 もらろん、この発明の範囲は上述した実施例に限定され
ることはない。たとえば、実施例では、車速■に対応す
る転舵比kを決定するために、データテーブル36を使
用しているが、これは、転舵比kを車速の関数として表
現して、計算により決定するようにしてもよい。また、
後輪舵角限界値θ、Qを決定する場合も、計算によるこ
ともできる。 また、実施(9(1では加速度検出手段を、加速度αを
車速度センサからの情報を時間で微分しているが、単独
の加速度センサからの信号を直接制御入力として使用す
ることもできる。 また、実施例では、後輪転舵装置として、制jJ■装置
によって制御されるステッピングモータと、このステッ
ピングモータの出力が入力されるパワーステアリング機
構を組み合わせて構成しているが、この後輪転舵装置と
しては、マイクロコンピュータで制御されるあらゆる機
構が含まれる。
[Operations and Effects] In the four-wheel steering vehicle of this invention, as shown in FIG. be done. therefore,
In the medium speed range, there is a steering ratio inversion vehicle speed v1 in which the phase of the steering ratio is reversed. When the vehicle speed changes from this steering ratio inversion vehicle speed V1 to the high speed side, and when the vehicle speed changes from this steering ratio reversal vehicle speed 1 to the low speed side, the absolute value of the steering ratio increases. Therefore, when rapidly accelerating from a steering ratio reversal vehicle speed ■1 and when rapidly decelerating from a steering ratio reversal vehicle speed Vl, the absolute value of the steering ratio increases rapidly, and if the front wheels are being steered significantly, this will occur. This causes the rear wheels to be abruptly steered. However, in the present invention, the rear wheel steering angle limit value determining means determines the rear wheel steering angle limit value according to the vehicle speed and acceleration at that time, and the target rear wheel steering angle is determined based on the steering ratio and the front wheel steering angle. If the angle exceeds the rear wheel steering angle limit value, this rear wheel steering angle limit value is used as the target rear wheel steering angle, so even if the steering ratio is reversed and the vehicle speed is suddenly accelerated or decelerated from 1, This makes it possible to avoid sudden steering of the rear wheels. [Description of Embodiments] Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. FIG. 1 is an overall configuration diagram of a four-wheel steering vehicle to which the present invention is applied. Here, a conventionally known front wheel steering mechanism 1 is used. That is, in the case of the two rank and pinion steering mechanism, the rotation of the steering shaft 3 that rotates along with the steering wheel 2 is converted into a reciprocating motion of the rack rod 5 in the gear box 4, and furthermore, this reciprocating motion of the rack rod 5 is as follows. Tyrondro at both ends, knuckle arm 7 through 6
The rotation of the knuckle arm 7.7 causes the front wheel 9.9 to move around the axis 9.
.. It is designed to be steered around 9. On the other hand, the rear wheel steering mechanism 10 includes a stepping motor 12 controlled by a control device 1) comprised of a microcomputer, and a known power steering device 14 to which the rotational output of the stepping motor 12 is input. The microcomputer 1) receives information from a front wheel steering angle sensor 15, a vehicle speed sensor 16, and an acceleration detection means 17 by differentiating the output signals of the vehicle speed sensor with respect to time as inputs for control. It has become. And this microcomputer 1)
A control line extends from the drive circuit 12a of the stepping motor 12 to the drive circuit 12a of the stepping motor 12. As the power steering device 14, for example, a known rank and pinion type power steering device can be used. That is, the control valve section 21 attached to the input section of the gear box 20 is connected to the pump 22.
Pressure oil from the input shaft 23 is sent to a double-acting power cylinder section 24 formed in the gear box 20 according to the rotational direction of the input shaft 23, and this power cylinder section 24 supports the movement of the rack rod 25. Movement of the rack rod 25 is controlled by the knuckle arms 27.26 by tie rods 26.26 connected to both ends thereof.
27, this knuckle arm 27.
8.28, thereby rotating the rear wheel 29.
29 is steered in a predetermined direction about shafts 28, 28. In the above configuration including the microcomputer 1),
The following means which can be practically realized by a program is basically configured. That is, the first one is the steering ratio determining means 30 that determines the steering ratio k according to the vehicle speed information from the vehicle speed sensor 16, and the second one is the steering ratio determining means 30 that determines the steering ratio k according to the vehicle speed information from the vehicle speed sensor 16. Then, front wheel steering angle information θf from the front wheel steering angle sensor 15
Accordingly, the rear wheel steering angle determining means 31 determines the target rear wheel steering angle θr, the third one determines the amount and direction to rotate the stepping motor 12 according to the target rear wheel steering angle,
and a pulse sending means 32 for sending a control pulse signal based on this to the drive circuit 12a of the stepping motor 12;
Fourth, when the vehicle speed information is greater than the steering ratio reversal vehicle speed ■1 at which the phase of the steering ratio is reversed, and the acceleration α detected by the acceleration sensor 17 is positive;
When the vehicle speed information is smaller than the steering ratio reversal vehicle speed ■1 and the acceleration α is negative, the rear wheel steering angle limit value that determines the rear wheel steering angle limit value θ ``− according to the vehicle speed V and acceleration α The fifth determining means 33 compares the limit value θr determined by the rear wheel steering angle limit value determining means 33 and the target rear wheel steering angle θr determined by the target rear wheel steering angle determining means 31. A sixth one is a comparison means 34 for comparing the target rear wheel steering angle θr with the rear wheel steering angle limit value θr.
The target rear wheel steering angle correction means 35 sets the above-mentioned limit values θ, Q as the target rear wheel steering angle θr when the value exceeds the target rear wheel steering angle θr. The steering ratio determining means 30 includes a data table 36 representing the relationship between the vehicle speed V and the steering ratio, as shown in FIG. The meaning of this data table 36 is as already described. Note that the intersection with the horizontal axis of the graph is the steering ratio reverse vehicle speed v1. The rear wheel steering angle limit determining means 33 also has a rear wheel steering angle limit θ corresponding to the vehicle speed V and acceleration α, as shown in FIG.
A data table 37 indicating rmu is included. In this figure, the rear wheel steering angle limit θrLl, vV1 is
It is expressed as a left and right turning angle of o. Acceleration α
The larger the absolute value of is, the more limited the rear wheel steering angle limit value is. In this figure, three stages of acceleration αl, α2 .
α3 is taken as an example to show the tendency of the corresponding rear wheel steering angle limit value, but this is merely an illustration to show the idea of the present invention, and the rear wheel steering angle limit value corresponding to each acceleration is shown steplessly. The value θr1- may be determined. The operation of the four-wheel steering vehicle equipped with the fail-safe function as described above will be further explained with reference to the schematic flowchart shown in FIG. First, the vehicle speed ■, acceleration α, and front wheel steering angle θf are read (SIOl, 102, 5103). Next, it is determined whether the absolute value of acceleration α exceeds a predetermined limit (3104), and if it exceeds (S10
4), force the rear wheels back to neutral51)2)
, and the rear wheel steering control is canceled (S1)3). this is,
More specifically, the output of the target rear wheel steering angle determining means 31 is set to 0.
Alternatively, the rack rod 25 may be forcibly returned to the neutral position by a separate actuator at the same time as the power to the stepping motor 12 is turned off. The purpose of the above steps is to detect damage to the vehicle speed sensor 16 when the acceleration value is maximized by differentiating its output information, and to stop rear wheel steering for safety. That is, unless accurate vehicle speed information is input to the microcomputer 1), the rear wheels cannot be steered to the optimum steering angle according to the data table 36. Next, the steering ratio k is determined from the vehicle speed information (2) from the vehicle speed sensor 16 and the data table 36 (S105). Next, depending on whether the vehicle speed V is larger or smaller than the steering ratio reversal vehicle speed Vl, the target rear wheel steering angle θ' is finally determined as follows.
is determined. That is, if the vehicle speed ■ is greater than the steering ratio reversal vehicle speed ■1 (YES in S106), that is, the vehicle is in a high speed state, and the acceleration α is positive (YES in S107), the vehicle speed is determined from the data table 37. And the rear wheel steering angle limit value θd- corresponding to the acceleration is read (3108). on the other hand,
In the target rear wheel steering angle determining means 35, the target rear wheel steering angle θr is determined from the above steering ratio and the front wheel steering angle θf (S
iO2), next, the rear wheel steering angle limit value θrL and the target rear wheel steering angle θr are compared 1S1)0). Here, if the target rear wheel steering angle θ' exceeds the above limit value θrm, then (
S1) '0 = YES), the above-mentioned limit value θ'- is set as the target rear wheel steering angle θr (Sill), and based on this, the amount and direction in which the stepping motor 12 should be rotated are determined, and control is performed accordingly. Pulse is stepping motor 1
(31) 7). Also,
If the acceleration α is negative in 5107 (NO in S107)
), the rear wheels are directly controlled based on the target rear wheel steering angle θr (S1) 6, 51) 7). When decelerating from a state where the vehicle speed ■ is greater than the steering ratio reversal vehicle speed Vl, as is clear from the data table 36 in FIG. This is because there is no particular problem with the above. On the other hand, if the vehicle speed V is smaller than the steering ratio reversal vehicle speed ■1 and the vehicle is decelerating (No in S I O6, 51), Y in 4.
ES), the rear wheel steering angle is determined or corrected in the same way as when accelerating at high speed (S1) 5,5
109, 5ilo, 5l1)), 51) If the acceleration α is positive in 4 (NO in S1), the rear wheels are directly controlled based on the target rear wheel steering angle θr ( 51
)6,51)7). When accelerating from a state where the vehicle speed ■ is smaller than the steering ratio reversal vehicle speed ■1, as is clear from the data table 36 in FIG. 3, the steering ratio k tends to O and the rear wheels return to neutral, so that This is because there is no problem in terms of safety. As described above, according to the present invention, in a four-wheel steering vehicle in which the rear wheels are steered in opposite phases at low speeds and in the same phase at high speeds, when sudden acceleration is performed from a vehicle speed with a reverse steering ratio, and When the steering ratio is reversed and the vehicle speed is decelerated, the danger of the rear wheels being steered significantly regardless of the driver's will is avoided, greatly increasing driving safety. Of course, the scope of the invention is not limited to the embodiments described above. For example, in the embodiment, the data table 36 is used to determine the steering ratio k corresponding to the vehicle speed ■, but this is determined by calculation by expressing the steering ratio k as a function of the vehicle speed. You may also do so. Also,
The rear wheel steering angle limit values θ and Q can also be determined by calculation. In addition, in implementation (9 (1), the acceleration detection means differentiates the acceleration α from the vehicle speed sensor with respect to time, but the signal from a single acceleration sensor can also be used as a direct control input. In the embodiment, the rear wheel steering device is configured by combining a stepping motor controlled by a control device and a power steering mechanism to which the output of this stepping motor is input. includes any mechanism controlled by a microcomputer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明が通用される四輪操舵車両の全体構成図
、第2図は本発明の制御プロ、り図、第3図は車速■と
転舵比にの関係の一例を示すグラフ(データテーブル3
6)、第4図は加速度αと、これに応じた後輪舵角限界
θ「ムとの関係の一例を示すグラフ(データテーブル3
7)、第5図は制御装置による制御の流れの一例を示す
フローチャートである。 1・・・前輪転舵機構、2・・・ステアリング、10・
・・後輪転舵装置、15・・・前輪舵角センサ、16・
・・車速センサ、17・・・加速度センサ、30・・・
転舵比決定手段、31・・・目標後輪舵角決定手段、3
3・・・後輪舵角限界値決定手段、34・・・比較手段
、35・・・目標後輪舵角補正手段。
Fig. 1 is an overall configuration diagram of a four-wheel steering vehicle to which the present invention is applied, Fig. 2 is a diagram showing the control system of the present invention, and Fig. 3 is a graph showing an example of the relationship between vehicle speed and steering ratio. (Data table 3
6), Figure 4 is a graph (data table 3) showing an example of the relationship between the acceleration α and the corresponding rear wheel steering angle limit θ.
7), FIG. 5 is a flowchart showing an example of the flow of control by the control device. 1... Front wheel steering mechanism, 2... Steering, 10.
... Rear wheel steering device, 15... Front wheel steering angle sensor, 16.
...Vehicle speed sensor, 17...Acceleration sensor, 30...
Steering ratio determining means, 31...Target rear wheel steering angle determining means, 3
3... Rear wheel steering angle limit value determination means, 34... Comparison means, 35... Target rear wheel steering angle correction means.

Claims (1)

【特許請求の範囲】[Claims] (1)ステアリング操作によって作動される前輪転舵機
構と、前輪舵角センサと、車速センサと、加速度検出手
段と、上記車速センサからの車速情報に応じた転舵比を
決定する転舵比決定手段と、上記転舵比決定手段によっ
て決定された転舵比と、前輪舵角センサからの前輪舵角
情報とにより、目標後輪舵角を決定する目標後輪舵角決
定手段と、上記目標後輪舵角に応じた制御信号により作
動される後輪転舵装置とを備え、低速時は後輪を前輪と
逆位相に、高速時は後輪を前輪と同位相に制御するよう
に構成された四輪操舵車両において、上記車速情報が、
転舵比の位相が逆転する 転舵比逆転車速より大きく、かつ加速度が正であるとき
、および、上記車速情報が上記転舵比逆転車速より小さ
くかつ加速度が負であるとき、その車速および加速度に
応じた後輪舵角限界値を決定する後輪舵角限界値決定手
段と、上記後輪舵角限界値決定手段で決定された限界値
と上記目標後輪舵角決定手段によって決定された目標後
輪舵角とを比較する比較手段と、上記比較手段において
上記目標後輪舵角が上記後輪舵角限界値を超えるとき上
記限界値を目標後輪舵角とする目標後輪舵角補正手段と
をさらに備えていることを特徴とする、四輪操舵車両に
おけるフェイルセーフ装置。
(1) A front wheel steering mechanism operated by steering operation, a front wheel steering angle sensor, a vehicle speed sensor, an acceleration detection means, and a steering ratio determination that determines a steering ratio according to vehicle speed information from the vehicle speed sensor. means, target rear wheel steering angle determining means for determining a target rear wheel steering angle based on the steering ratio determined by the steering ratio determining means and front wheel steering angle information from the front wheel steering angle sensor; It is equipped with a rear wheel steering device that is activated by a control signal according to the rear wheel steering angle, and is configured to control the rear wheels to be in the opposite phase to the front wheels at low speeds and to be in the same phase as the front wheels at high speeds. In a four-wheel steering vehicle, the above vehicle speed information is
When the phase of the steering ratio is larger than the steering ratio reversal vehicle speed and the acceleration is positive, and when the vehicle speed information is smaller than the steering ratio reversal vehicle speed and the acceleration is negative, the vehicle speed and acceleration. rear wheel steering angle limit value determining means for determining a rear wheel steering angle limit value according to the rear wheel steering angle limit value determining means, and a limit value determined by the rear wheel steering angle limit value determining means and the target rear wheel steering angle determining means. a comparison means for comparing the target rear wheel steering angle with a target rear wheel steering angle; and a target rear wheel steering angle in which the target rear wheel steering angle is set as the target rear wheel steering angle when the target rear wheel steering angle exceeds the rear wheel steering angle limit value in the comparing means. A fail-safe device for a four-wheel steering vehicle, further comprising a correction means.
JP28834885A 1985-12-20 1985-12-20 Fail safe device for four-wheel steered vehicle Pending JPS62146782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28834885A JPS62146782A (en) 1985-12-20 1985-12-20 Fail safe device for four-wheel steered vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28834885A JPS62146782A (en) 1985-12-20 1985-12-20 Fail safe device for four-wheel steered vehicle

Publications (1)

Publication Number Publication Date
JPS62146782A true JPS62146782A (en) 1987-06-30

Family

ID=17729039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28834885A Pending JPS62146782A (en) 1985-12-20 1985-12-20 Fail safe device for four-wheel steered vehicle

Country Status (1)

Country Link
JP (1) JPS62146782A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01115775A (en) * 1987-10-30 1989-05-09 Isuzu Motors Ltd Steering angle ratio control device
EP0331203A2 (en) * 1988-03-04 1989-09-06 Bayerische Motoren Werke Aktiengesellschaft, Patentabteilung AJ-3 Method of steering the rear wheels of a motor vehicle in the same direction depending upon the steering of the front wheels
JPH01269674A (en) * 1988-04-21 1989-10-27 Mazda Motor Corp Rear wheel steering device for vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01115775A (en) * 1987-10-30 1989-05-09 Isuzu Motors Ltd Steering angle ratio control device
EP0331203A2 (en) * 1988-03-04 1989-09-06 Bayerische Motoren Werke Aktiengesellschaft, Patentabteilung AJ-3 Method of steering the rear wheels of a motor vehicle in the same direction depending upon the steering of the front wheels
JPH01269674A (en) * 1988-04-21 1989-10-27 Mazda Motor Corp Rear wheel steering device for vehicle

Similar Documents

Publication Publication Date Title
US4992944A (en) Power steering control system
JPH01204867A (en) Rear-wheel steering system for automobile
JPH0780407B2 (en) Electric power-steering interlocking vehicle height control device
JPS628869A (en) Four wheel steering device for vehicle
JPS626869A (en) Vehicle rear wheel steering device
JP3344463B2 (en) Vehicle steering control device
JPH0438623B2 (en)
JPS63125476A (en) Motor driven rear wheel steering device
JP2779510B2 (en) Rear steering device
JP2742687B2 (en) Rear wheel steering control method for automobiles
JPS62146782A (en) Fail safe device for four-wheel steered vehicle
JP2001260926A (en) Power steering device
JPS63227472A (en) Steering device for automobile
JPS62146780A (en) Fail safe device for four-wheel steered vehicle
JPH057225B2 (en)
JPS62160965A (en) Four wheel steering device
JPH0214971A (en) Steering gear for vehicle
JPS61241276A (en) Four wheel steering device for automobile
JPS6042160A (en) Four-wheel steering gear for vehicle
JP2913851B2 (en) Motor control device for four-wheel steering vehicle
JPS62160966A (en) Failsafe device for four wheel steering vehicle
JP3212182B2 (en) Control method of rear wheel steering device
JPS6294471A (en) Steering control device
JPS62137279A (en) 4-wheel steering device
JP2933697B2 (en) Vehicle rear wheel steering system