JPS62145787A - Gas laser generator - Google Patents

Gas laser generator

Info

Publication number
JPS62145787A
JPS62145787A JP28558885A JP28558885A JPS62145787A JP S62145787 A JPS62145787 A JP S62145787A JP 28558885 A JP28558885 A JP 28558885A JP 28558885 A JP28558885 A JP 28558885A JP S62145787 A JPS62145787 A JP S62145787A
Authority
JP
Japan
Prior art keywords
metal member
discharge
cathode
melting point
conductive metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28558885A
Other languages
Japanese (ja)
Inventor
Masao Kodera
小寺 正雄
Fumio Shibata
柴田 文夫
Akiyasu Okazaki
岡崎 明泰
Shigeo Shiono
塩野 繁男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP28558885A priority Critical patent/JPS62145787A/en
Publication of JPS62145787A publication Critical patent/JPS62145787A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To improve a laser light output by containing special amount of high melting point metal member in a conductive metal member on a discharge surface partly covered with an insulating member at the downstream side of mixture gas to prevent fine metal particles from adhering to a mirror. CONSTITUTION:A disclike cathode 12 is composed of a central hole 14, and a plurality of auxiliary holes 15 disposed around the central hole. A discharge surface 16 is formed on the inner peripheral surface of the hole 14. The entire cathode except the surface 16 is covered with an insulating film 17 such as boron. The cathode contains as a conductive metal member such as 40% of main component such as copper and 60% of high melting point metal member such as W. The surface 16 is melted due to high temperature at glow discharging time and burning time, but 60% of W is contained in the main content Cu to be hardly melted, the surface 16 is always cleaned by melting the main content, and hardly transferred to a partial glow discharge. Thus, a laser light output can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電極を改良したガスレーザ発生装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a gas laser generator with improved electrodes.

〔従来の技術〕[Conventional technology]

一般に軸流型ガスレーザ発生装置は、たとえばUSP4
.331,939号公報或いは特開昭60−4289号
公報に示されているように、CO2、N2 、He等の
混合ガスを放電管内に充填し、放電管は両端にミラーを
設け、放電管両端から中央に行くにしたがい混合ガスを
循環する冷却路および電極を配置している。電極は、円
筒形の陽極とリング形状の陰極とから構成されている。
In general, axial flow type gas laser generators are, for example, USP4
.. As shown in Publication No. 331,939 or Japanese Unexamined Patent Publication No. 60-4289, a discharge tube is filled with a mixed gas of CO2, N2, He, etc., mirrors are provided at both ends of the discharge tube, and mirrors are provided at both ends of the discharge tube. Cooling channels and electrodes are arranged to circulate the mixed gas from the center to the center. The electrode consists of a cylindrical anode and a ring-shaped cathode.

陰極部材として通常無酸素銅、アルミ等の導電性金属部
材或いは高融点導電性金属部材を使用している。
As the cathode member, a conductive metal member such as oxygen-free copper or aluminum or a high melting point conductive metal member is usually used.

両電極間に直流電圧を印加して、両電極間にグロー放電
を形成する。陰極は放電面以外の部分に絶縁被膜たとえ
ばボロンあるいはセラミック材を被膜し、放電面全面に
グロー放電を拡げるようにして1局部過熱によりアーク
放電に移行するのを防止している。
A direct current voltage is applied between the two electrodes to form a glow discharge between the two electrodes. The cathode is coated with an insulating film, such as boron or a ceramic material, on a portion other than the discharge surface to spread glow discharge over the entire surface of the discharge surface to prevent transition to arc discharge due to local overheating.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、グロー放電時の温度によって、絶縁被膜
の一部が燃焼して炭素Cとなり、炭素Cは流速の早い混
合ガスの渦流により、絶縁被膜および放電面に附着する
。そうすると、放電面の放電面積が少なくなり、全面グ
ロー放電が部分グロー放電に移行し、ついにアーク放電
になる。部分グローおよびアーク放電時、絶縁被膜燃焼
時の温度により、放電面の導電性金属部材により溶融し
た金属微粒子がミラーに附着し、レーザ光出力を低下さ
せる恐れがあった。
However, due to the temperature during the glow discharge, a part of the insulating coating burns and becomes carbon C, which adheres to the insulating coating and the discharge surface due to the vortex flow of the mixed gas having a high flow rate. Then, the discharge area of the discharge surface decreases, and the entire glow discharge shifts to a partial glow discharge, and finally becomes an arc discharge. During partial glow and arc discharge, due to the temperature during combustion of the insulating coating, fine metal particles melted by the conductive metal member on the discharge surface may adhere to the mirror, reducing the laser light output.

本発明の目的は、金属微粒子がミラーに附着するのを防
止して、レーザ光出力を向上したガスレーザ発生装置を
提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a gas laser generator that improves laser light output by preventing fine metal particles from adhering to a mirror.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の電極は、一部を絶縁部材で被覆した少なくとも
混合ガス下流側の放電面を導電性金属部材に40〜60
(%)の高融点金属部材を含有させて構成することによ
り、上記問題点を解決した。
In the electrode of the present invention, at least the discharge surface on the downstream side of the mixed gas, which is partially covered with an insulating member, is made of a conductive metal member with a diameter of 40 to 60 mm.
(%) of high melting point metal members, the above problems were solved.

〔作用〕[Effect]

グロー放電状態になっている電極は、導電性金属部材に
高融点金属部材を40〜60(%)含有して構成したの
で、導電性金属部材の溶融量が少なくなり、ミラーに溶
融金属微粒子が附着しにくくなり、レーザ光出力が向上
した。
Since the electrode in the glow discharge state is composed of a conductive metal member containing 40 to 60 (%) of a high melting point metal member, the amount of melting of the conductive metal member is reduced, and molten metal fine particles are deposited on the mirror. It is less likely to stick and the laser light output is improved.

〔実施例〕〔Example〕

以下、本発明の実施例を第1図ないし第3図により説明
する。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 3.

軸流型ガスレーザ発生装置1は放電管本体2と冷却路3
とから構成している。放電管本体2は絶縁管4と連絡管
5とから構成している。連絡管5の両端は反射ミラー6
および出力ミラー7を取付けている。連絡管5の下端は
冷却路3に連通している。冷却路3の内部は熱交換器8
および送風機9を配置している。送風機9を回転すれば
、混合ガス10は矢印方向に流通して、放電管本体2と
冷却路3との間を循環して、放電管本体2で温度上昇し
た混合ガス10を熱交換器8で冷却し、再び連絡管5に
送り込む。連絡管5は絶縁管4の両端を包囲して放電管
本体2を構成している。放電管本体内は、陽極11およ
び陰極12を対応配置している。陽極11は円筒形状に
形成され、円筒形状内面に放電面を形成している。反射
ミラー側の連絡管内に形成した傾斜面13に陰極12を
支持している。
The axial flow gas laser generator 1 includes a discharge tube body 2 and a cooling path 3.
It consists of. The discharge tube body 2 is composed of an insulating tube 4 and a communication tube 5. Reflection mirrors 6 are provided at both ends of the communication tube 5.
and an output mirror 7 is attached. The lower end of the communication pipe 5 communicates with the cooling path 3. Inside the cooling path 3 is a heat exchanger 8
and a blower 9 are arranged. When the blower 9 is rotated, the mixed gas 10 flows in the direction of the arrow, circulates between the discharge tube body 2 and the cooling path 3, and the mixed gas 10 whose temperature has increased in the discharge tube body 2 is transferred to the heat exchanger 8. to cool it down and feed it into the connecting pipe 5 again. The communication tube 5 surrounds both ends of the insulating tube 4 to constitute the discharge tube body 2. Inside the discharge tube body, an anode 11 and a cathode 12 are arranged correspondingly. The anode 11 is formed into a cylindrical shape, and has a discharge surface formed on the inner surface of the cylindrical shape. A cathode 12 is supported on an inclined surface 13 formed in the communication tube on the reflecting mirror side.

円形状の陰極12は第1図(A)、(B)に示す如く中
心穴14と中心穴の周囲に沿って配置された複数個の補
助穴15とから構成されている。
As shown in FIGS. 1A and 1B, the circular cathode 12 is composed of a center hole 14 and a plurality of auxiliary holes 15 arranged around the center hole.

放電面16は中心穴14の内周面に形成している。The discharge surface 16 is formed on the inner peripheral surface of the center hole 14.

絶縁被膜17たとえばボロンは、放電面16以外の陰極
全体に被膜されている。陰極には導電性金属部材として
Cuたとえば40(%)を主成分とし、Cuに高融点金
属部材のWを60 (%)含有して構成している。
An insulating coating 17, such as boron, is coated over the entire cathode except for the discharge surface 16. The cathode is composed of a conductive metal member containing Cu as a main component, for example, 40 (%), and Cu containing 60 (%) of W, which is a high melting point metal member.

この構成で、陽極11と陰極12との間に直流電圧を印
加し、両電極にグロー放電Gを生ずる。
With this configuration, a DC voltage is applied between the anode 11 and the cathode 12 to generate glow discharge G at both electrodes.

長時間に亘るグロー放電を行うと、第1図(B)の鎖線
で示す如く混合ガス10の流れで生じた渦流20より、
下流側の放電面近傍の絶縁被膜17の一部18が燃焼し
、炭素Cが放電面16に附着する。グロー放電時および
燃焼時の高温により放電面16は、溶融するが、Cu主
成分に60(%)のタングステンWを含有しており、溶
融しにくいと共に放電面16は主成分の溶融により、放
電面16は常にクリニングされており、部分グロー放電
に移行しにくい。このため、レーザ光19はミラー6.
7で反射率および透過率が悪くなることがなくなり、レ
ーザ光出力を向上させることができると共に、グロー放
電Gは全面にわたって行なわれており、部分グロー放電
に移行しにくく、更にレーザ光出力を向上させることが
できる。 また、タングステンWの重量が60(%)以
上になると、主成分が少なくなり、放電面16にグロー
放電Gが点孤しにくくなると共に、主成分の溶融量が少
なく、放電面16に附着している炭素Cを除去しにくく
、放電面積が少なくなり1局部過熱を生じ、アーク放電
に移行してしまう。また、タングステンWの重量を40
(%)以下にすると、主成分からの溶融金属微粒子が多
く、両ミラー6.7に附着し、レーザ光19の出力効率
が悪くなり、使用できない。
When a glow discharge is performed for a long time, a vortex 20 generated by the flow of the mixed gas 10, as shown by the chain line in FIG.
A portion 18 of the insulating coating 17 near the discharge surface on the downstream side is burned, and carbon C is attached to the discharge surface 16. The discharge surface 16 melts due to the high temperature during glow discharge and combustion, but since it contains 60 (%) tungsten W as a main component of Cu, it is difficult to melt and the discharge surface 16 melts due to the melting of the main components. The surface 16 is constantly cleaned and is less prone to partial glow discharge. Therefore, the laser beam 19 is transmitted to the mirror 6.
7, the reflectance and transmittance do not deteriorate, making it possible to improve the laser light output, and the glow discharge G is performed over the entire surface, making it difficult to shift to a partial glow discharge, further improving the laser light output. can be done. Moreover, when the weight of tungsten W becomes 60 (%) or more, the main component becomes less, and the glow discharge G becomes difficult to ignite on the discharge surface 16, and the amount of the main component melted is small, causing it to adhere to the discharge surface 16. It is difficult to remove the carbon C present in the discharge, and the discharge area decreases, causing local overheating and transitioning to arc discharge. Also, the weight of tungsten W is 40
(%) or less, a large amount of molten metal fine particles from the main component will adhere to both mirrors 6.7, and the output efficiency of the laser beam 19 will deteriorate, making it unusable.

すなわち、第4図のように、レーザ光出力WRは、導電
性金属部材(例えばCu)と高融点金属部材(例えばW
)との混合重量比との組合せでCu=60−40(%)
、W=40−60 (%)との紹合せにおいて、クリー
ニング作用によりレーザ光出力を向」−できた。
That is, as shown in FIG.
) Cu = 60-40 (%) in combination with the mixing weight ratio
, W=40-60 (%), the laser light output could be improved by the cleaning action.

」二連の実施例では、陰極全体をCu −W合金で形成
した場合につき説明したが、放電面16は電極全体はも
とより混合ガス下流側部分】8と対応する一部のみCu
−W合金とし、残りの部分をCI3やAQ等の金属で構
成することもできる。また、」二連の陰極および陽極に
、Ag−W合金。
In the two series of embodiments, the entire cathode was made of a Cu-W alloy, but the discharge surface 16 was made of Cu, not only the entire electrode but also only a part corresponding to the downstream part of the mixed gas [8].
-W alloy, and the remaining portion may be made of metal such as CI3 or AQ. In addition, Ag-W alloy is used for the double cathode and anode.

Cu −F e合金、Cu −Cr合金等を使用し、こ
れらの合金は主成分(Cu、A、g)に40〜60(%
)の高融点金属部材(W、Fe、Cr)を含有して、構
成している。また、電極は棒形状、帯形状等にも使用で
きる。
Cu-Fe alloy, Cu-Cr alloy, etc. are used, and these alloys have a content of 40 to 60 (%) in the main components (Cu, A, g).
) containing high melting point metal members (W, Fe, Cr). Further, the electrode can be used in a rod shape, a band shape, etc.

〔発明の効果〕〔Effect of the invention〕

以」二のように、本発明のガスレーザ発生装置によれば
、レーザ光出力を向上させることができる。
As described above, according to the gas laser generator of the present invention, the laser light output can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)は第2図に使用した陰極の平面図、第1図
(B)は第1図(A、)のn−n線断面図、第2図は本
発明の実施例として示したガスレーザ発生装置の概略側
断面図、第3図は第1図の放電領域を示す概略側断面図
、第4図は第1図に使用した陰極材料の組成比を示す特
性図である。 2・・・放電管本体、6,7・・・ミラー、1o・・・
混合ガス、11・・・陽極、12・・・陰極、17・・
・絶縁被膜。
Figure 1 (A) is a plan view of the cathode used in Figure 2, Figure 1 (B) is a sectional view taken along the line nn of Figure 1 (A, ), and Figure 2 is an example of the present invention. 3 is a schematic side sectional view showing the discharge region of FIG. 1, and FIG. 4 is a characteristic diagram showing the composition ratio of the cathode material used in FIG. 1. 2...Discharge tube body, 6,7...Mirror, 1o...
Mixed gas, 11... Anode, 12... Cathode, 17...
・Insulating coating.

Claims (1)

【特許請求の範囲】 1、両端にミラーを有する放電管内に混合ガスを流通し
、放電管内に配置した少なくとも一方側を絶縁部材で被
覆した高融点導電性金属部材の電極間でグロー放電を行
ない混合ガスをレーザ光に変換する装置において、絶縁
部材で被覆した電極は、導電性金属部材に40〜60(
%)の高融点金属部材を含有させて構成することを特徴
とするガスレーザ発生装置。 2、上記電極はCu又はAgの導電性金属部材に40〜
60(%)のW、Cr、Feから選ばれた1つの高融点
金属部材を含有した合金を構成することを特徴とする特
許請求の範囲第1項記載ガスレーザ発生装置。
[Claims] 1. A mixed gas is passed through a discharge tube having mirrors at both ends, and glow discharge is caused between electrodes of a high-melting point conductive metal member arranged in the discharge tube and coated on at least one side with an insulating material. In a device that converts mixed gas into laser light, an electrode coated with an insulating member is coated with a conductive metal member having a 40 to 60
%) of a high melting point metal member. 2. The above electrode is a conductive metal member of Cu or Ag with 40~
2. The gas laser generator according to claim 1, wherein the gas laser generator comprises an alloy containing 60% of one high-melting point metal member selected from W, Cr, and Fe.
JP28558885A 1985-12-20 1985-12-20 Gas laser generator Pending JPS62145787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28558885A JPS62145787A (en) 1985-12-20 1985-12-20 Gas laser generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28558885A JPS62145787A (en) 1985-12-20 1985-12-20 Gas laser generator

Publications (1)

Publication Number Publication Date
JPS62145787A true JPS62145787A (en) 1987-06-29

Family

ID=17693492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28558885A Pending JPS62145787A (en) 1985-12-20 1985-12-20 Gas laser generator

Country Status (1)

Country Link
JP (1) JPS62145787A (en)

Similar Documents

Publication Publication Date Title
US6066827A (en) Electrode with emissive element having conductive portions
JP4010544B2 (en) Electrode and manufacturing method thereof
WO1995012965A1 (en) Plasma torch
US4133987A (en) Electrode assembly for plasma arc torches
US5004888A (en) Plasma torch with extended life electrodes
JPH033557B2 (en)
CA1140994A (en) Non-consumable composite welding electrode
US4739439A (en) Overvoltage arrester
US20060209919A1 (en) Pumping light source for laser-active media
US5039905A (en) Welding connection for an electric lamp
JP2001262253A (en) Metallic alloy and spark plug having electrode composed thereof
JPS62145787A (en) Gas laser generator
US4204183A (en) Tapered strap element for an electrical fuse
JPS63154272A (en) Plasma torch
RU204342U1 (en) ELECTRODE FOR PLASMA ARC BURNER
JPH06297189A (en) Tungsten electrode material
US2520112A (en) Arc welding electrode
JPS63154273A (en) Plasma torch
RU204320U1 (en) ELECTRODE FOR PLASMA ARC BURNER
US2695945A (en) Refractory metal electrode for inert gas-shielded arc welding
JPS5852478B2 (en) stainless steel coated arc welding rod
Kosovich et al. Effect of design and material of non-consumable electrodes for arc welding on their durability
Tanaka et al. Properties of LaB6-W electrode
SU988501A1 (en) Current conductive nozzle material
JPH07135091A (en) Nozzle for plasma torch