JPS62145374A - Restructuring device for interest cross section image - Google Patents

Restructuring device for interest cross section image

Info

Publication number
JPS62145374A
JPS62145374A JP60285612A JP28561285A JPS62145374A JP S62145374 A JPS62145374 A JP S62145374A JP 60285612 A JP60285612 A JP 60285612A JP 28561285 A JP28561285 A JP 28561285A JP S62145374 A JPS62145374 A JP S62145374A
Authority
JP
Japan
Prior art keywords
section
cross
interest
image
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60285612A
Other languages
Japanese (ja)
Inventor
Tokunori Kimura
徳典 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60285612A priority Critical patent/JPS62145374A/en
Publication of JPS62145374A publication Critical patent/JPS62145374A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)
  • Processing Or Creating Images (AREA)

Abstract

PURPOSE:To obtain an image with high spatial resolution by finding the image of interest cross section with the aid of interpolation from plural pairs of parallel tomographic image groups. CONSTITUTION:At an image collection part, the first (the second) parallel tomographic image groups A1, A2,...An, An+1,..., AN, (B1, B2,...Bm, Bm+1,..., BM) parallel with a plane inclining with an angle of theta2 (theta1) in the body axis (x) direction of a body to be inspected are collected with a slice pitch (t), then being stored at a storage part 3. An interest cross section designation part 4 designates the interest cross section of the body to be inspected with a coordinate input, etc., and an interpolation processing part 5 interpolates and finds a picture element value on the interest cross section from the first and the second parallel cross section image groups. Therefore, when a picture element value P on an optional picture element position P(p, q, r) at the interest cross section C is found, four images An, An+1, Bm, and Bm+1 enclosing the picture element P(p, q, r) are used, and an interpolation process is performed based on coordinate values Sn, Sn+1, Sm, and Sm+1 at an intersection between perpendiculars from each of images and the picture element P(p, q, r). A display device 6 displays the image of the interest cross section C based on the picture element value on the interest cross section C found at the interpolation processing part 5.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、所定スライスピンチで収集された複数の断層
像より、スライスピッチ方向と交差する方向の関心断面
像(オブリーク像)を得る関心断面像の再構成装置に関
する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a cross-sectional image of interest (oblique image) for obtaining a cross-sectional image of interest (oblique image) in a direction intersecting the slice pitch direction from a plurality of tomographic images collected with a predetermined slice pinch. The present invention relates to a reconstruction device.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

X線CT装置例えば医用X線CT装置では、患者の患部
の解剖学的な位置関係を知る必要性が高く、3次元物体
を3次元的に認識することは医師にとって特に外科手術
と対応させる上では非常に有用であり、近年種々の技術
が開発されてきている。
In X-ray CT devices, such as medical X-ray CT devices, there is a strong need to know the anatomical positional relationship of affected areas of patients, and recognizing three-dimensional objects three-dimensionally is especially important for doctors when dealing with surgical procedures. It is very useful, and various techniques have been developed in recent years.

ところで、X線CT装置でのスキャンは患者の任意平面
例えば体軸と直交する平面で行なわれるが、通常、スキ
ャン前は目的とする断面が不明であり、かつ、物理的に
スキャンできない断面(例えば体軸に平行な断面)であ
る場合もあるので、予め適当な複数スライスの断面をス
キャンし、この収集画像から目的とする断面を画像処理
によって得ている。
Incidentally, scanning with an X-ray CT device is performed on an arbitrary plane of the patient, such as a plane perpendicular to the body axis, but the target cross section is usually unknown before the scan, and the cross section that cannot be physically scanned (e.g. In some cases, the cross-section is parallel to the body axis), so a plurality of appropriate cross-sections are scanned in advance, and the desired cross-section is obtained from the collected images through image processing.

このとき、従来は第6図に示すように所定スライスピッ
チで平行断面についてスキャンを行い、第7図に示すよ
うにZ方向にスライスされた複数のX−Y平面像を再構
成していた。そして、この複数のX−Y平面像より任意
断面像を画像処理によって作成していた。
At this time, conventionally, parallel sections were scanned at a predetermined slice pitch as shown in FIG. 6, and a plurality of XY plane images sliced in the Z direction were reconstructed as shown in FIG. Then, an arbitrary cross-sectional image is created from the plurality of X-Y plane images by image processing.

しかし、上記の方法によればX−Y平面についての空間
分解能は高いがZ方向については低いため、Z方向に近
いオブリーク像の分解能が低く第8図に示すように等方
性の悪い像しか得られなかった。
However, according to the above method, the spatial resolution is high in the X-Y plane but low in the Z direction, so the resolution of oblique images near the Z direction is low and only images with poor isotropy are produced as shown in Figure 8. I couldn't get it.

尚、近年、1111程度の薄いスライスで連続して多数
のスライスについてスキャンを行えるようになってきた
が、それでもスキャン面内の0.5 mm程度の分解能
を得ることが困難であるばかりか、スキャン数が増大し
てしまう。
In addition, in recent years, it has become possible to scan a large number of consecutive slices with slices as thin as 1111, but it is still difficult to obtain a resolution of about 0.5 mm within the scan plane, and the scanning The number will increase.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みて成されたものであり、空間的
に等方的な分解能を有する関心断面像を再構成すること
ができる関心断面像の再構成装置を提供することを目的
とするものである。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a reconstruction device for a cross-section image of interest that can reconstruct a cross-section image of interest having a spatially isotropic resolution. It is something.

〔発明の概要〕 上記目的を達成するための本発明の概要は、被検体の互
いに交差する複数の平面にそれぞれ平行な断層像を所定
スライスピッチで収集し、複数組の平行断層像群を収集
する画像収集部と、各平行断層像群を記憶する記憶部と
、被検体中の任意関心断面を指定する関心断面指定部と
、互いに交差する複数の断層像間に存在する前記関心断
面上の画素の画素値を、その複数の断層像上の画素値よ
り補間して求める補間処理部と、補間によって求められ
た画素値に基づき前記関心断面の画像を表示する表示装
置とを有することを特徴とするものである。
[Summary of the Invention] The outline of the present invention for achieving the above object is to collect tomographic images parallel to a plurality of mutually intersecting planes of a subject at a predetermined slice pitch, and collect multiple sets of parallel tomographic images. an image acquisition unit that stores parallel tomographic images, a storage unit that stores parallel tomographic images, a cross-section designation unit that specifies an arbitrary cross-section of interest in the subject, and an image acquisition unit that stores parallel tomographic images; It is characterized by having an interpolation processing unit that interpolates the pixel value of a pixel from the pixel values on the plurality of tomographic images, and a display device that displays an image of the cross section of interest based on the pixel value determined by the interpolation. That is.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を図面を参照して説明する。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図は本発明に係る関心断面像の再構成装置のブロッ
ク図である。同図において、1はこの装置の制御を司さ
どるCPUであり、そのパスラインには下記の各部が接
続されている。
FIG. 1 is a block diagram of an apparatus for reconstructing a cross-sectional image of interest according to the present invention. In the figure, numeral 1 is a CPU that controls the device, and the following sections are connected to its path line.

2は例えばX線CT装置等の画像収集部であり、被検体
の互いに交差する複数の平面にそれぞれ平行な断層像を
所定スライスピッチで収集し、複数組の平行断層像群を
収集するものである。本実施例では、第2図に示すよう
に例えば被検体の体軸方向(X方向)に角度θ2で傾斜
する平面に平行な第1の平行断層像群A 11 A 2
 、・・・A、、A、。、・・・。
Reference numeral 2 denotes an image collecting unit of, for example, an X-ray CT device, which collects tomographic images parallel to a plurality of mutually intersecting planes of the subject at a predetermined slice pitch, and collects multiple sets of parallel tomographic images. be. In this embodiment, as shown in FIG. 2, for example, a first parallel tomographic image group A 11 A 2 is parallel to a plane that is inclined at an angle θ2 in the body axis direction (X direction) of the subject.
,...A,,A,. ,...

ANと、角度θ1で傾斜する平面に平行な第2の平行断
層像群B I+ B Z+・・・Bm+Bn+1+・・
・、Boとをそれぞれスライスピッチtで収集するもの
とする。
AN and a second parallel tomographic image group B I+ B Z+...Bm+Bn+1+... parallel to the plane inclined at an angle θ1
, Bo are collected at a slice pitch of t.

3は、前記第1.第2の平行断層像群を記憶する記憶部
である。
3 is the first. This is a storage unit that stores a second group of parallel tomographic images.

4は関心断面指定部であり、被検体の任意の関心断面を
座標入力等によって指定する。本実施例ではx−y平面
に平行な関心断面が指定されるものとする。
Reference numeral 4 denotes a section of interest specifying section, which specifies an arbitrary section of interest of the subject by inputting coordinates or the like. In this embodiment, it is assumed that a cross section of interest parallel to the xy plane is specified.

5は補間処理部であり、前記関心断面上の画素値を第1
.第2の平行断面像群より補間して求めるものである。
5 is an interpolation processing unit, which first calculates the pixel values on the cross section of interest.
.. This is determined by interpolation from the second group of parallel cross-sectional images.

このために、第3図に示す関心断面C上の任意の画素位
置P(p、q、r)上の画素値Pを求めるにあたり、こ
の画素P(p、q、r)を囲む4枚の画像A n + 
An+++ Bm +  B111+11を用い、この
各画像と画素P(p、q、r)よりおろした垂線との交
点における座標値S、、、S、、。t+s+a+s□1
から補間処理するようになっている。また、座標値S 
、、+  Sn+++Sm +  Sfi、I は必ず
しも各画像AI’llA n+I+Aa+ + A□1
の画素上の値と一致しないことがあるため、第5図に示
すように例えば座標値S、は、これを囲む断層像Bイ上
の4点の画素値Uz、i+ +01+1.に*Ut+*
*+ 、Ut。I+ l+、1より補間して求めるよう
になっている。尚、上述した補間処理の詳細については
後述する。
For this reason, when determining the pixel value P at an arbitrary pixel position P (p, q, r) on the cross section of interest C shown in FIG. Image A n +
Using An+++ Bm + B111+11, the coordinate values S, , S, at the intersection of each image and the perpendicular drawn from the pixel P (p, q, r). t+s+a+s□1
Interpolation processing is performed from Also, the coordinate value S
,,+Sn+++Sm+Sfi,I is not necessarily equal to each image AI'llA n+I+Aa+ + A□1
As shown in FIG. 5, for example, the coordinate value S may not match the pixel values Uz, i+ +01+1. to *Ut+*
*+, Ut. It is determined by interpolation from I+ l+, 1. Note that details of the above-mentioned interpolation processing will be described later.

6は表示装置であり、前記補間処理部5で求められた関
心断面C上の画素値に基づき、関心断面Cの画像を表示
するものである。
Reference numeral 6 denotes a display device, which displays an image of the cross-section of interest C based on the pixel values on the cross-section of interest C obtained by the interpolation processing section 5.

以上のように構成された装置の作用について説明する。The operation of the device configured as above will be explained.

本実施例では、従来装置と相違して互いに交差する平面
についてそれぞれ平行な2組の平行断層像群A+、・・
・AN+BI+ ・・・B、を画像収集部2で収集して
いる。
In this embodiment, unlike the conventional apparatus, two sets of parallel tomographic images A+, .
・AN+BI+...B is collected by the image collecting section 2.

このような2組の平行断層像群より関心断面C上の画素
P(p、q、r)の画素値Pを補間によって求める一例
を説明する。
An example will be described in which the pixel value P of the pixel P (p, q, r) on the cross section C of interest is obtained by interpolation from two sets of parallel tomographic images.

画素P(p + q + r)を囲む4枚の断層像A 
71 HA h* HHB□、B、、。1について着目
する。断層像B1平面のZ座標は、 Z=tanθ、  −x −m 0tanθ、−1であ
る。断層像B。、I平面のZ座標も同様にして求められ
る。また、断層像A1平面のZ座標は、Z = −ta
n θ2−x+n9 tanθ2 °tである。
Four tomographic images A surrounding pixel P (p + q + r)
71 HA h* HHB□, B,,. Let's focus on 1. The Z coordinate of the tomographic image B1 plane is: Z=tanθ, −x −m 0tanθ, −1. Tomographic image B. , the Z coordinate of the I plane can be found in the same way. Also, the Z coordinate of the tomographic image A1 plane is Z = -ta
n θ2−x+n9 tan θ2 °t.

次に、画素P(p、q、r)と断層像Affi上の座標
Sm (x+y+z) との距離PS□を求めると、ま
た、座標S#l (x、y、z)におけるX座標x、。
Next, when we calculate the distance PS□ between the pixel P (p, q, r) and the coordinate Sm (x+y+z) on the tomographic image Affi, we also find that the X coordinate x at the coordinate S#l (x, y, z), .

yII、zイはそれぞれ、 1m3tan2θ、−t+rtanθ5+p 1ylI
=q となる。従って、この座標位置からその座標濃度Soが
後述するようにして求まる。
yII and zI are respectively 1m3tan2θ, -t+rtanθ5+p 1ylI
= q. Therefore, the coordinate density So can be determined from this coordinate position as will be described later.

同様にして、 yn=  q が求まる。そして、PS−+ とSm++(Ly+2)
+PS、、、、 とS nil (x+y+z)を上記
と同様にして算出する。
Similarly, yn=q can be found. And PS-+ and Sm++(Ly+2)
+PS,... and S nil (x+y+z) are calculated in the same manner as above.

ここで、座標濃度s、、s、1...s、、s、。1を
既知とすれば、関心断面C上の画素濃度Pは、より求ま
る。即ち、座標P(p、q、r)からの距離に比例して
重み付けをし、これを加算平均する補間法によって求め
られる。このようにして、関心断面C上の全ての画素に
ついて上述した補間法により画素値を求め、これに基づ
き表示装置6上に関心断面Cの画像を再構成して表示す
ることができる。
Here, the coordinate concentrations s,,s,1. .. .. s,,s,. 1 is known, the pixel density P on the cross section C of interest can be more easily determined. That is, it is determined by an interpolation method that weights in proportion to the distance from the coordinates P (p, q, r) and averages them. In this way, pixel values are obtained for all pixels on the cross-section of interest C by the interpolation method described above, and based on this, the image of the cross-section of interest C can be reconstructed and displayed on the display device 6.

ここで、上述した座標濃度S。lsl’l。l +  
Sll lS ff1(−1は、必ずしも断層像A、、
Aア。I r  B@ +B、。1の画素上の濃度は限
らない。第4図に示す面で見ると、多くの場合は隣接す
る画素の間の位置の濃度となっている。このような場合
には、第5図に示すように座標値S1についてはこれを
囲む断層像B、上の4点の画素値U l 、 w 、 
U t。1.、。
Here, the coordinate density S mentioned above. lsl'l. l +
Sll lS ff1(-1 does not necessarily mean tomographic image A,...
A. I r B@+B,. The density on one pixel is not limited. When viewed from the plane shown in FIG. 4, in most cases the density is at a position between adjacent pixels. In such a case, as shown in FIG. 5, for the coordinate value S1, the tomographic image B surrounding it, the pixel values of the four points above U l , w ,
Ut. 1. ,.

U 1.に−+ 、 U 1゜1□1を用い、先に求め
た座標Ss (L3’+2)から求められる距離に応じ
て重み付けして座標値S6を補間によって求めることが
できる。座標値S n +  S+H11S1+1+1
についても同様にして求まる。
U1. −+ and U 1°1□1, the coordinate value S6 can be determined by interpolation by weighting according to the distance determined from the previously determined coordinate Ss (L3'+2). Coordinate value S n + S + H11 S1 + 1 + 1
can be found in the same way.

このように、本実施例では第1.第2の平行断面像群よ
り関心断面C上の画素値を補間して求めているため、従
来のように1組の平行断層像より補間して求めるものに
くらべつスライスピッチ方向にも空間分解能の高い画像
が得られ、任意関心断面について等方性の良好な画像を
再構成することができる。
In this way, in this embodiment, the first. Since the pixel values on the section of interest C are determined by interpolation from the second group of parallel tomographic images, the spatial resolution is also improved in the slice pitch direction compared to the conventional method, which is determined by interpolation from a set of parallel tomographic images. It is possible to obtain a high-quality image, and to reconstruct an image with good isotropy for any cross section of interest.

尚、本発明は上記実施例に限定されるものではなく、本
発明の要旨の範囲内で種々の変形実施が可能である。互
いに交差する平行断層像の交差角としては、90’とす
るものが計算の便宜上好ましいが、これに限られるもの
ではない。交差角が0°又は1806に近づ(程効果の
達成度合は低くなる。また、平行断層像群は2組に限ら
ず傾斜角の異なる複数組の平行断層像群より補間するよ
うにすれば、空間分解能をより高めることができる。尚
、前述した実施例ではx−y平面に平行な関心断面とし
たが、これに限定されるものではなく、また近接する画
素濃度からの補間法も前記実施例は一例に過ぎず、公知
の種々の補間法を採用し得る。
Note that the present invention is not limited to the above embodiments, and various modifications can be made within the scope of the gist of the present invention. The intersection angle of parallel tomographic images that intersect with each other is preferably 90' for convenience of calculation, but is not limited to this. The degree of achievement of the effect decreases as the intersection angle approaches 0° or 1806 degrees.In addition, if the parallel tomographic image group is interpolated not only from two sets but from multiple parallel tomographic image groups with different inclination angles. , the spatial resolution can be further improved. In the above-mentioned embodiment, the cross-section of interest is parallel to the The embodiment is merely an example, and various known interpolation methods may be employed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、複数組の平行断層
像群より関心断面の画像を補間によって求めているため
、従来のように1組の平行断層像群より補間処理した場
合に比べて空間分解能の高い画像を得ることができ、し
かも、スライス厚を薄くすることなく上記効果を奏する
ことができる。
As explained above, according to the present invention, since the image of the cross section of interest is obtained by interpolation from multiple sets of parallel tomographic images, compared to the conventional case where interpolation processing is performed from one set of parallel tomographic images, An image with high spatial resolution can be obtained, and the above effects can be achieved without reducing the slice thickness.

従って、特にX線CT像より体軸に平行な断面のオブリ
ーク像を再構成する場合には有用である。
Therefore, it is particularly useful when reconstructing an oblique image of a cross section parallel to the body axis rather than an X-ray CT image.

また、工業用CT装置ではX線被曝の問題がないので空
間分解能の向上に寄与する効果は多大である。
Furthermore, since industrial CT apparatuses do not have the problem of exposure to X-rays, they have a great effect in improving spatial resolution.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例装置のブロック図、第2図は
本実施例によるX線CTスキャンの一例を示す概略説明
図、第3図は関心断面と平行断面像との位置関係を示す
概略斜視図、第4図は関心断面上のP点を通るZ軸に垂
直な平面の図で、P点と断層上の各点との関係を示す説
明図、第5図は断層像上の画素値より任意座標の濃度値
を補間により求める方法を説明するための説明図、第6
図は従来装置による平行断層像群の収集を説明する概略
説明図、第7図は上記平行断層像群を示す概略説明図、
第8図は等方性の悪いオブリーク像の概略説明図である
。 2・・・画素収集部、3・・・記憶部、4・・・関心断
面指定部、5・・・補間処理部、6・・・表示装置。 代理人 弁理士 則 近 憲 佑 同     大  胡  典  失 策  1 図 k   k++ 第5図
FIG. 1 is a block diagram of an apparatus according to an embodiment of the present invention, FIG. 2 is a schematic explanatory diagram showing an example of an X-ray CT scan according to this embodiment, and FIG. 3 is a diagram showing the positional relationship between a cross section of interest and a parallel cross-sectional image. FIG. 4 is a diagram of a plane perpendicular to the Z axis passing through point P on the cross section of interest, an explanatory diagram showing the relationship between point P and each point on the cross section, and FIG. 5 is a diagram showing the relationship between point P and each point on the cross section. 6th explanatory diagram for explaining the method of determining the density value of arbitrary coordinates by interpolation from the pixel value of
The figure is a schematic explanatory diagram illustrating the collection of a group of parallel tomographic images by a conventional device, and FIG. 7 is a schematic explanatory diagram showing the group of parallel tomographic images,
FIG. 8 is a schematic illustration of an oblique image with poor isotropy. 2... Pixel collection unit, 3... Storage unit, 4... Cross section of interest designation unit, 5... Interpolation processing unit, 6... Display device. Agent Patent attorney Rule Ken Chika Yudo Dai Ko Noritake Mistake 1 Figure k k++ Figure 5

Claims (1)

【特許請求の範囲】[Claims]  被検体の互いに交差する複数の平面にそれぞれ平行な
断層像を所定スライスピッチで収集し、複数組の平行断
層像群を収集する画像収集部と、各平行断層像群を記憶
する記憶部と、被検体中の任意関心断面を指定する関心
断面指定部と、互いに交差する複数の断層像間に存在す
る前記関心断面上の画素の画素値を、その複数の断層像
上の画素値より補間して求める補間処理部と、補間によ
って求められた画素値に基づき前記関心断面の画像を表
示する表示装置とを有することを特徴とする関心断面像
の再構成装置。
an image collecting unit that collects tomographic images parallel to a plurality of mutually intersecting planes of the subject at a predetermined slice pitch, and collects a plurality of parallel tomographic image groups; a storage unit that stores each parallel tomographic image group; a cross-section of interest designation unit that specifies an arbitrary cross-section of interest in the subject; and a cross-section of interest designation unit that specifies an arbitrary cross-section of interest in the subject, and interpolates the pixel value of a pixel on the cross-section of interest that exists between a plurality of mutually intersecting tomograms from the pixel values on the plurality of tomograms. What is claimed is: 1. An apparatus for reconstructing an image of a cross-section of interest, comprising: an interpolation processing unit that calculates pixel values obtained by interpolation; and a display device that displays an image of the cross-section of interest based on the pixel values obtained by interpolation.
JP60285612A 1985-12-20 1985-12-20 Restructuring device for interest cross section image Pending JPS62145374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60285612A JPS62145374A (en) 1985-12-20 1985-12-20 Restructuring device for interest cross section image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60285612A JPS62145374A (en) 1985-12-20 1985-12-20 Restructuring device for interest cross section image

Publications (1)

Publication Number Publication Date
JPS62145374A true JPS62145374A (en) 1987-06-29

Family

ID=17693779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60285612A Pending JPS62145374A (en) 1985-12-20 1985-12-20 Restructuring device for interest cross section image

Country Status (1)

Country Link
JP (1) JPS62145374A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008154680A (en) * 2006-12-21 2008-07-10 Ge Medical Systems Global Technology Co Llc X-ray ct apparatus
JP2021000195A (en) * 2019-06-20 2021-01-07 Psp株式会社 Image processing method, image processing system and image processing program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008154680A (en) * 2006-12-21 2008-07-10 Ge Medical Systems Global Technology Co Llc X-ray ct apparatus
JP2021000195A (en) * 2019-06-20 2021-01-07 Psp株式会社 Image processing method, image processing system and image processing program

Similar Documents

Publication Publication Date Title
US4674046A (en) Method and apparatus for obtaining three dimensional tomographic images by interpolation of a plurality of projection slice data bind for obtaining projection data for a chosen slice
US6411298B1 (en) Method and apparatus for determining visual point and direction of line of sight in three-dimensional image construction method
JP4611168B2 (en) Image reconstruction method and X-ray CT apparatus
US6141398A (en) Protocol driven image reconstruction, display, and processing in a multislice imaging system
JP4147195B2 (en) Three-dimensional backprojection method and X-ray CT apparatus
US6944263B2 (en) Apparatus and methods for multiple view angle stereoscopic radiography
KR20070011188A (en) Image processing apparatus and x-ray ct apparatus
KR20060135569A (en) X-ray ct method and x-ray ct apparatus
WO2003027954A9 (en) Versatile cone-beam imaging apparatus and method
JPH09182747A (en) Image formation by iatro chemical image formation device
US6873679B2 (en) Multi-row detector X-ray CT apparatus
US6381297B1 (en) High pitch reconstruction of multislice CT scans
JP4106251B2 (en) Three-dimensional backprojection method and X-ray CT apparatus
EP0989521B1 (en) Fluoroscopy image reconstruction
JP6955909B2 (en) Image processing device
JP2007198866A (en) General saddle cone beam ct system, and three-dimensional reconstitution method
JP2003159244A (en) Image reconstruction method and x-ray ct apparatus
JPS62145374A (en) Restructuring device for interest cross section image
JPH03231643A (en) Image display device
EP1987772A1 (en) Tomographic device and processing program
KR100648758B1 (en) Three-dimensional backprojection method and apparatus, and x-ray ct apparatus
JP4542256B2 (en) X-ray CT system
EP1295560B1 (en) Helical scanning CT-apparatus with multi-row detector array
JP3802650B2 (en) X-ray CT system
JPH03240169A (en) Center positioning method for reformed image of medical image diagnosis device