JPS62145131A - Acoustic leakage detector - Google Patents
Acoustic leakage detectorInfo
- Publication number
- JPS62145131A JPS62145131A JP28559785A JP28559785A JPS62145131A JP S62145131 A JPS62145131 A JP S62145131A JP 28559785 A JP28559785 A JP 28559785A JP 28559785 A JP28559785 A JP 28559785A JP S62145131 A JPS62145131 A JP S62145131A
- Authority
- JP
- Japan
- Prior art keywords
- leakage
- acoustic
- effective value
- detection system
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M3/00—Investigating fluid-tightness of structures
- G01M3/02—Investigating fluid-tightness of structures by using fluid or vacuum
- G01M3/04—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
- G01M3/24—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations
- G01M3/243—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations for pipes
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Examining Or Testing Airtightness (AREA)
Abstract
Description
【発明の詳細な説明】 〔発明の利用分野〕 本発明は、水、蒸気等の噸送配管からの漏洩を。[Detailed description of the invention] [Field of application of the invention] The present invention prevents leakage from pipes transporting water, steam, etc.
漏洩にともなって発生する音響をとらえて検知する音響
式漏洩検出器に係り、特に計測系自体に自己診断機能を
有する音響式漏洩検出器に関する。The present invention relates to an acoustic leak detector that captures and detects sound generated due to leakage, and particularly relates to an acoustic leak detector that has a self-diagnosis function in the measurement system itself.
従来の漏洩音響を用いた水漏洩検出器においては、その
健全性確認のため、各音響検出系毎にバイパスして動作
チェックを定期的に実施し、定検時詳細な機能確認を実
施していた。しかしながら、漏洩検出器の一部のチャン
ネルをバイパスする場合、漏洩検出システムとしては、
バイパスUj K 動作する検出チャンネルを別に設け
る必要がある。In order to confirm the soundness of conventional water leakage detectors that use leakage acoustics, each acoustic detection system is bypassed and its operation is checked periodically, and detailed function checks are performed during periodic inspections. Ta. However, if some channels of the leak detector are bypassed, the leak detection system
Bypass Uj K It is necessary to provide a separate operating detection channel.
そのため、計測チャンネル数が増えて、漏洩検出/ステ
ムが高価になるという欠点があった。Therefore, there was a drawback that the number of measurement channels increased and the leakage detection/stem became expensive.
本発明の目的は、音響式漏洩検出器作動中に試験チャン
ネルをバイパスせず動作チェックできる音響式漏洩検出
器を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide an acoustic leak detector that can check the operation of the acoustic leak detector without bypassing the test channel during operation.
上記目的を達成するため、本発明においては。 In order to achieve the above object, in the present invention.
検出信号の振幅と周波数分布が、検出系の動作不良状態
と正常動作状態で違うことを利用している。It takes advantage of the fact that the amplitude and frequency distribution of the detection signal are different depending on whether the detection system is in a malfunctioning state or in a normal operating state.
漏洩が発生してない正常状態において検出系の出力信号
は環境騒音が有する振幅と同波数成分から成る。また、
漏洩発生時の検出系の出力信号の態幅と同波数分布は、
漏洩にともなって発生する音響のそれとほぼ同一である
。検出系の断線の場合の検出系出力信号には、商用同波
数とその高調波成分が多く含まれる。また、検出系の短
絡の場合。In a normal state where no leakage occurs, the output signal of the detection system consists of wavenumber components having the same amplitude as the environmental noise. Also,
The amplitude and wavenumber distribution of the output signal of the detection system when a leak occurs are:
This is almost the same as the sound generated by leakage. In the case of a disconnection in the detection system, the detection system output signal contains many components of the commercial same wave number and its harmonics. Also, in the case of a short circuit in the detection system.
検出系出力信号の撮1隔ハ極めて小さくなる。検出系に
感度変化があった場合、検出系出力信号は正常の撫幅変
動範囲を越えて変化し1周波数分布の変化は小さい。こ
れらの振幅および周波数分布による検出系の動作チェッ
クは、検出系をバイパスせずに実施できる。The interval between the detection system output signals per image becomes extremely small. When there is a sensitivity change in the detection system, the detection system output signal changes beyond the normal stroke width variation range, and the change in one frequency distribution is small. The operation check of the detection system based on these amplitude and frequency distributions can be performed without bypassing the detection system.
以下1本発明の一実施例を第1図〜第3図を用いて説明
する。An embodiment of the present invention will be described below with reference to FIGS. 1 to 3.
第1図は5本発明を原子炉格納容器内冷却系配管の音響
大水漏洩検出器に適用した例である。マイクロホン2f
′i、冷却系配管100の漏洩点101から漏洩にとも
なって発生する漏洩音を検出するためのものである。漏
洩音や環境騒音は、マイクロホン1で電気信号に変換し
、格納容器壁102f貫通して増幅52VC入力される
。増幅器2の出力は、音響パラメータ演算器3に入力さ
れる。FIG. 1 shows an example in which the present invention is applied to an acoustic large water leak detector for cooling system piping in a reactor containment vessel. microphone 2f
'i, This is for detecting the leakage sound generated due to leakage from the leakage point 101 of the cooling system piping 100. Leakage sounds and environmental noises are converted into electrical signals by the microphone 1, and amplified by 52 VC are input through the containment vessel wall 102f. The output of the amplifier 2 is input to the acoustic parameter calculator 3.
音響パラメータ演算器31’j、音響信号の実効値と平
均周波数を算出する。漏洩判定器、4は、音響信号振幅
の代表値である実効値と、周波数分布の代表値である平
均川波数の2つのパラメータから、漏洩の有無および検
出系の異常を判定し、餐報を発するとともに異常内容を
表示する。ここで用いる音響パラメータである実効値R
MS、平均周波数νは、以下の演算で得られる。The acoustic parameter calculator 31'j calculates the effective value and average frequency of the acoustic signal. The leakage detector 4 determines the presence or absence of leakage and the abnormality of the detection system based on two parameters: the effective value, which is a representative value of the acoustic signal amplitude, and the average river wave number, which is a representative value of the frequency distribution, and reports the leakage. At the same time, the error details are displayed. Effective value R, which is the acoustic parameter used here
MS and average frequency ν can be obtained by the following calculation.
上記の演算式において、fは周波数、 I)(r)は
周波数fにおける音響パワー、fH,fLは監視対象の
上、下限周波数である。式(2)Vcおいて、分母は実
効値に等しく1分子は音響信号の微分の実効値に等しい
。よって1式(1)、 (2)の演算は、第2図の回路
構成で実現できる。バンドパスフィルタ31で監視対象
域以外の成分が除かれた音響信号は、実効値演算器32
.微分器33に入力ざねる。微分器33の出力げ実効値
演算器34に入力される。In the above equation, f is the frequency, I)(r) is the acoustic power at the frequency f, and fH and fL are the upper and lower limit frequencies of the monitoring target. In equation (2) Vc, the denominator is equal to the effective value, and one numerator is equal to the effective value of the differential of the acoustic signal. Therefore, the calculations of equations (1) and (2) can be realized with the circuit configuration shown in FIG. The acoustic signal from which components outside the monitoring target area have been removed by the bandpass filter 31 is processed by the effective value calculator 32.
.. Input to the differentiator 33. The output of the differentiator 33 is input to the effective value calculator 34.
実効値演算器32からは、求める実効ff&が出力さね
6゜また、割算器35の出力は、実効値演算器32.3
4の出力信号の比、すなわち平均周波数である。The effective value calculator 32 outputs the desired effective value ff&.The output of the divider 35 is output from the effective value calculator 32.3.
4, or the average frequency.
平均周波数は、信号の周波数分布の中心の周波数に近い
値をとる。例えば、線スペクトルのときは、そのスペク
トルの周波数に一致し7.2つのほぼ同−振幅のピーク
を有するような同波数分布のときは、そのピーク間の中
央の同波数に近い値をとる。The average frequency takes a value close to the center frequency of the frequency distribution of the signal. For example, in the case of a line spectrum, if the frequency of the spectrum corresponds to the same wave number distribution having two peaks of approximately the same amplitude, the value will be close to the same wave number in the center between the peaks.
以上、本発明の一実施例の音響大水漏洩検出器の全体構
成について説明した。次に漏洩判定器4の異常判定法に
ついて説明する。第3図は、検出系の状態により、音響
信号の振幅を示す実効値と1d波数分布の代表値である
平均周波数がどのようになるかを示したものである。横
軸に実効値を。The overall configuration of the acoustic large water leak detector according to one embodiment of the present invention has been described above. Next, the abnormality determination method of the leakage determination device 4 will be explained. FIG. 3 shows how the effective value indicating the amplitude of the acoustic signal and the average frequency, which is the representative value of the 1d wave number distribution, change depending on the state of the detection system. The horizontal axis shows the effective value.
縦軸に平均周波数をとっである。範囲401け漏洩が発
生せず環境騒音のみをマイクロホン1がとらえてる場合
である。環境騒音の周波数分布に、低周波から2〜3K
Hz まで平坦で、それ以上高周波になると振幅が小
さくなる。範囲402は、漏洩が発生した場合であり、
正常時の範囲401の場合に比べて実効値も平均周波数
も高くなる。The average frequency is plotted on the vertical axis. This is a case where no leakage occurs in the range 401 and the microphone 1 captures only the environmental noise. The frequency distribution of environmental noise ranges from low frequency to 2 to 3K.
It is flat up to Hz, and the amplitude decreases at higher frequencies. Range 402 is a case where a leak occurs;
Both the effective value and the average frequency are higher than in the normal range 401.
漏洩音は、平坦な周波数分布を有しており、 IKH
z〜40 K Hz以上までの帯域を持つことが多い。Leakage sound has a flat frequency distribution, and IKH
z to 40 KHz or more.
[囲406は、マイクロホン1から増幅器3の間で短絡
を生じた場合であり、実効値が極めて小さくなる。信号
が小さくなり、音響パラメータ演算器3のダイナミック
レンジを越えるため、平均周波数の値は音響パラメータ
演算器3の調整の仕方で種々の値をとりうる。範囲40
5け、マイクロホン1から増幅器2の間で断線が生じた
場合である。断線が生じると商用電源からの雑音を訪導
することが多く、増幅器2の出力には商用周波数とその
倍調波成分が表われ、平均周波数としては、数十Hz〜
数百Hzになる。範囲403゜404は、感度が減少し
た場合と増加した場合を示している。周波数分布に大き
な変化は々く、実効値が変化する。第3図に示し、たよ
りに、音響パラメータの実効値と平均周波数は、検出系
の状態を示す良い指標である。第3図中のR+〜R5+
ν1〜シロば、検出系がとりうる各状態の実効値と平均
+!!a数の境界の値を示している。検出系の状態と、
これらの境界の値との関係は、実効値と平均周波数の測
定値をそれぞtl、R,MSとνで示すと、以下のよう
になる。[Box 406 is a case where a short circuit occurs between microphone 1 and amplifier 3, and the effective value becomes extremely small. Since the signal becomes small and exceeds the dynamic range of the acoustic parameter calculator 3, the value of the average frequency can take various values depending on how the acoustic parameter calculator 3 is adjusted. range 40
Number 5 is a case where a disconnection occurs between the microphone 1 and the amplifier 2. When a disconnection occurs, noise from the commercial power supply often appears in the output of the amplifier 2, and the commercial frequency and its harmonic components appear, and the average frequency ranges from several tens of Hz to
It becomes several hundred Hz. The range 403° to 404 shows cases where the sensitivity decreases and cases where the sensitivity increases. There are many large changes in the frequency distribution, and the effective value changes. As shown in FIG. 3, the effective value and average frequency of the acoustic parameters are good indicators of the state of the detection system. R+ to R5+ in Figure 3
ν1 ~ whiteba, effective value and average of each possible state of the detection system +! ! It shows the boundary value of the a number. The state of the detection system,
The relationship between these boundary values is as follows, where the effective value and the measured value of the average frequency are denoted by tl, R, MS, and ν, respectively.
(1)短、終状態: RMS < R2(2)感度劣化
障’ a+ < RMS < R2、ν3くνくν4(
3)正常状態: R3< RMS (R,s 、ν3く
νくν4(4)惑C切眼態: R,MS >as
、ν3くν〈ν4(5)断線状態:RMS>R2、ν1
〈νくν2(6)漏洩発生時: RMS >R4、νs
くν〈シロ漏洩判定器4でに、上記6つの状態の判別を
、コノパレータを含む一般的な論理回路で実施し、正常
、検出系異常、漏洩等の判定結果を表示し、検出系の異
常や漏洩発生時警報を発生する。(1) Short, final state: RMS < R2 (2) Sensitivity deterioration failure'a+ < RMS < R2, ν3×ν×ν4(
3) Normal state: R3<RMS (R,s, ν3×ν×ν4(4) C-cut state: R,MS>as
, ν3kuν<ν4(5) Disconnected state: RMS>R2, ν1
〈νkuν2(6) When leakage occurs: RMS >R4, νs
ν〈In the white leakage determiner 4, the above six states are discriminated by a general logic circuit including a conoparator, and the judgment results such as normal, detection system abnormality, leakage, etc. are displayed, and the detection system abnormality is detected. or generates an alarm when a leak occurs.
以上説明した実施例においては、音響信号の振幅と周波
数に関する情報を得るため、高速フーリエ変換等の手法
を用いた周波数分析手段を用いることも可能である。音
響パラメータ演算器z3は。In the embodiments described above, it is also possible to use frequency analysis means using techniques such as fast Fourier transform in order to obtain information regarding the amplitude and frequency of the acoustic signal. The acoustic parameter calculator z3 is.
実施例で示し、たアナログ回路をディジタル回路でおき
かえても特に問題はない。漏洩が発生し、でない正常時
の環境騒音の変動幅を小さくできjば、より感度変化等
の異常を鋭敏にとらえられる。この目的のためKは、複
数のマイクロホン出力の実効値や平均周波数の平均を基
準として、動的に正常範囲401のグラフ上の位置や領
域の大きさを決めわば良い。この平均のと9方として、
環境騒音の主たる発生源とマイクロホン位置を考、*、
L、、て通商な重み係数を用いることも可能である。There is no problem in replacing the analog circuit shown in the embodiment with a digital circuit. If we can reduce the range of fluctuations in environmental noise during normal times when leaks occur or not, abnormalities such as changes in sensitivity can be detected more sensitively. For this purpose, the position and size of the area of the normal range 401 on the graph may be dynamically determined for K based on the effective value of the plurality of microphone outputs and the average of the average frequencies. As this average and nine directions,
Considering the main sources of environmental noise and the microphone position, *,
It is also possible to use standard weighting factors.
本発明の特徴は、音響信号の振幅情報と周波数情報を用
いて、検出系の動作状態をチェックするところにある。A feature of the present invention is that the operating state of the detection system is checked using amplitude information and frequency information of the acoustic signal.
以上説明した第1の実施例においては、下記の効果かあ
る。The first embodiment described above has the following effects.
(1) 連続して検出系の機能確認するため、検出系
の信頼性向上の効果がある。(1) Since the function of the detection system is continuously checked, the reliability of the detection system is improved.
(2)異常の要因を知ることができるため、修復期間が
短くで済み、故lRKよるプラントの1部もしくに全部
の機能の喪失等の期り川が短かくなり。(2) Since the cause of the abnormality can be known, the repair period can be shortened, and the risk of loss of part or all of the plant's functions due to the late IRK is shortened.
稼動率向上の効果がある。It has the effect of improving the operating rate.
(3)修復期間が短いため、修復作業時の放射線被ばく
低減の効果がある。(3) Since the repair period is short, it has the effect of reducing radiation exposure during repair work.
(4)漏洩の判定を検出信号の振幅と周波数分布の2つ
のパラメータで実施するtめ、漏洩検出感度の向上が図
わ、音響穴漏洩検出器の性能向上の効果がある。(4) Since the leakage determination is performed using two parameters, the amplitude and frequency distribution of the detection signal, the leakage detection sensitivity is improved, which has the effect of improving the performance of the acoustic hole leakage detector.
以上説明したごとく、本発明によりは、検出糸?バイパ
スせず漏洩検出系の健全性が確認できるタメ、従来用い
ていた健全性確認のためのバイパス用検出系が不要とな
り、漏洩検出系のコスト低減の効果かある。As explained above, according to the present invention, the detection thread? Since the health of the leak detection system can be confirmed without bypassing, the bypass detection system used in the past for checking the health is no longer necessary, which has the effect of reducing the cost of the leak detection system.
第1図は本発明の一実施例の漏洩検出器のブロック図、
第2図は音響パラメータ演算器のブロック図、第3図は
、音響パラメータと検出系の状態および漏洩状態の関係
の説明図である。
1・・・マイクロホン、2・・・増幅器、3・・・音響
パラメータ演算器24・・・漏洩判定器、31・・・バ
ンドパスフィルタ、32.34・・・実効値演算器、:
う3・・・微分器、:(5・・・割算器。
(、。FIG. 1 is a block diagram of a leak detector according to an embodiment of the present invention;
FIG. 2 is a block diagram of the acoustic parameter calculator, and FIG. 3 is an explanatory diagram of the relationship between acoustic parameters, the state of the detection system, and the leakage state. DESCRIPTION OF SYMBOLS 1...Microphone, 2...Amplifier, 3...Acoustic parameter calculator 24...Leakage determiner, 31...Band pass filter, 32.34...Effective value calculator:
U3...differentiator, :(5...divider.
(,.
Claims (1)
検知する音響検出器において、検出音響信号の振幅と周
波数分布を演算し、検出音響信号の振幅と周波数分布が
正常時、漏洩発生時、断線時、短絡時、感度変化時で違
うことを利用して漏洩および検出系異常を判定すること
を特徴とする音響式漏洩検出器。1. In an acoustic detector that detects leakage by capturing the leakage sound that occurs with leakage, the amplitude and frequency distribution of the detected acoustic signal are calculated, and the amplitude and frequency distribution of the detected acoustic signal are determined when the amplitude and frequency distribution are normal and when a leak occurs. , an acoustic leak detector characterized in that it determines leakage and detection system abnormality by utilizing differences depending on when a wire is disconnected, when a short circuit occurs, and when sensitivity changes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28559785A JPS62145131A (en) | 1985-12-20 | 1985-12-20 | Acoustic leakage detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28559785A JPS62145131A (en) | 1985-12-20 | 1985-12-20 | Acoustic leakage detector |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62145131A true JPS62145131A (en) | 1987-06-29 |
Family
ID=17693602
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28559785A Pending JPS62145131A (en) | 1985-12-20 | 1985-12-20 | Acoustic leakage detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62145131A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030026031A (en) * | 2001-09-24 | 2003-03-31 | 한국과학기술원 | Detector of pin-holes on vessel using acoustic waveguide and microphone |
-
1985
- 1985-12-20 JP JP28559785A patent/JPS62145131A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030026031A (en) * | 2001-09-24 | 2003-03-31 | 한국과학기술원 | Detector of pin-holes on vessel using acoustic waveguide and microphone |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0214650B2 (en) | ||
US4090179A (en) | System for monitoring flow rate difference in water cooling conduit | |
US5363693A (en) | Recovery boiler leak detection system and method | |
CN108362966A (en) | A kind of oil-immersed type transformer high-precision noise on-line monitoring method and system | |
JPH04238225A (en) | Plant diagnostic device, method thereof, plant and circulation facilities | |
JPS6235072B2 (en) | ||
US4570489A (en) | Apparatus for detecting the evolution of an acoustic signal | |
JPS62145131A (en) | Acoustic leakage detector | |
JPH01311242A (en) | Valve leak monitoring device | |
RU2754620C1 (en) | Method for controlling sealing capacity and detecting leak point in pipeline with shut-off element | |
JPS6255540A (en) | Leakage detecting device | |
JPS58184542A (en) | System for detecting acoustic abnormality | |
JP3549167B2 (en) | Gas pipe leak detection device | |
JPH0337541A (en) | Method and apparatus for judging cause of leak from valve and pipe | |
JPS6141940A (en) | Detection of fluid leak position | |
JPH0783787A (en) | Acoustic monitoring method and device | |
KR102584912B1 (en) | Apparatus and Method for Detecting Wall-thining of Pipe | |
KR102568086B1 (en) | Apparatus and Method for Detecting Leak of Pipe | |
JPS6230915A (en) | Abnormal response diagnosing apparatus | |
CN110082480B (en) | Laboratory safety management system and method | |
JPH01302132A (en) | Apparatus for detecting valve seat leak | |
JPH01232230A (en) | Abnormality diagnosing device for bearing | |
RU101146U1 (en) | COMBINED HYDROACOUSTIC SYSTEM FOR DETECTION OF OIL PRODUCT PIPELINES | |
Fry et al. | On-site noise diagnostics at Palisades nuclear power station | |
JPH08233975A (en) | Device and method for detecting impact |