JPS62144856A - Continuous casting method - Google Patents

Continuous casting method

Info

Publication number
JPS62144856A
JPS62144856A JP28429685A JP28429685A JPS62144856A JP S62144856 A JPS62144856 A JP S62144856A JP 28429685 A JP28429685 A JP 28429685A JP 28429685 A JP28429685 A JP 28429685A JP S62144856 A JPS62144856 A JP S62144856A
Authority
JP
Japan
Prior art keywords
mold
slab
heating zone
zone
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28429685A
Other languages
Japanese (ja)
Inventor
Akio Uehara
彰夫 上原
Isao Kobayashi
功 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP28429685A priority Critical patent/JPS62144856A/en
Publication of JPS62144856A publication Critical patent/JPS62144856A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To obtain a casting slab having excellent surface characteristics and internal quality with high speed and stability by arranging a heating zone and a cooling zone successively toward advancing direction of the casting slab at an inner side of a mold and drawing the casting slab as controlling a solidified starting point by heating and cooling rate. CONSTITUTION:The heating zone 5 and the cooling zone 6 are arranged successively under the upper vessel 4 and at an inner surface of the heating zone 5, steel is controlled to supply quantity of heat to the heating zone 5, so as to keep it therein to molten state. Further, in an inner surface of the cooling zone 6, coolant is controlled to begin to solidify surely for molten steel and it is controlled to come to near a boundary between the heating zone 5 and the cooling zone 6 for a starting point of the solidification without using of a brake ring. In this way, the starting point of the solidification is controlled at almost a fixed position, and the casting slab having excellent surface characteristics and internal quality is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、介在物が少なく、かつ表面性状が良好な無欠
陥の清浄gA鋳片を製造するための連続鋳造方法(こ関
するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a continuous casting method for producing defect-free clean gA slabs with few inclusions and good surface properties. .

(従来の技術) 一般に実施されている鋼の連続鋳造法は、献炉等にて溶
製された溶鋼をタンディツシュに受け、l;!:漬ノズ
ルを通じて鋳型に注入し、注入された溶鋼は鋳型壁側よ
り凝固シェルを形成し、このS縦置シェルは鋳型直下よ
りスプレーにより冷却されながら引抜かれるように構成
されている。この場合、鋳片と鋳型との間の焼付防上お
よび)7擦抵抗の減少を目的に、第2図に矢印で示すよ
うに鋳型はオフシレーシタン動作を行ない、またメニス
カスヘパウダーを投入し、潤滑を行なっていることは周
知である。
(Prior art) In the commonly practiced continuous steel casting method, molten steel produced in a furnace or the like is received in a tundish. : The molten steel is injected into a mold through a submerged nozzle, and the injected molten steel forms a solidified shell from the mold wall side, and this vertical S shell is drawn out from directly below the mold while being cooled by spray. In this case, in order to prevent seizing between the slab and the mold and to reduce friction resistance, the mold performs an off-shielding operation as shown by the arrow in Figure 2, and powder is introduced into the meniscus. It is well known that lubrication is performed.

ところが、鋳型の振動手段は電動機や流体シリング−を
駆動源とし、リンク機構やカムfi 61などにより機
械的シこ撮動させる方式であり、振動の周波数は通常数
Hz程度であって、振I福は数Ifim前後である。二
のような従来の鋳型振動力式では振動の周波数が低いた
め、鋳型内壁と鋳片凝固シェルとの間の溶融パウダーの
流れは均一にならず、本来の目的を完全に達し得ない上
に、鋳型振動にともなう゛ζ鋳片表面にオツシレーシッ
ンマークと称する深さ0.1〜0.511II11程度
の縞模様が生じ、このオフシレーシタンマークが表面疵
の一因となる。また、潤滑剤として投入されたパウダー
はメニスカスで溶融し、鋳造速度が大きい場合には鋳型
内メニスカス近傍の溶鋼流により溶融パウダーが溶鋼中
に巻き込まれ、鋳片の内部品質の劣化を招いている。
However, the vibration means for the mold uses an electric motor or a fluid cylinder as a driving source, and uses a link mechanism or a cam fi 61 to mechanically move the mold, and the vibration frequency is usually about several Hz, and the vibration I The fortune is around a few Ifim. In the conventional mold vibration force type, the vibration frequency is low, so the flow of molten powder between the mold inner wall and the solidified slab shell is not uniform, and the original purpose cannot be completely achieved. A striped pattern with a depth of about 0.1 to 0.511II11 called an oscillation mark is formed on the surface of the slab due to mold vibration, and this oscillation mark is a cause of surface flaws. In addition, the powder added as a lubricant melts at the meniscus, and when the casting speed is high, the molten powder is drawn into the molten steel by the molten steel flow near the meniscus in the mold, causing deterioration of the internal quality of the slab. .

これらの問題点を解決する目的で特開昭57−4184
9号公報や特開昭58−65547号公報に開示されて
いる水平鋳造11式が小規模設備に用いられている。こ
の方式1こおいては、オツシレーション無しおよびパウ
ダー無しという条件は満足され−ζいるものの、特開昭
59−107977号公報に示されるようなブレークリ
ングと称する耐火物をタンディツシュと鋳型との間に設
け、かつ鋳片を間歇的(即ち、鋳片引抜・鋳片引抜休止
の繰返し)に引き出すため、鋳片表面状態は前記鋳型振
動方式と同様の欠陥を有している。
In order to solve these problems, Japanese Patent Application Laid-Open No. 57-4184
11 types of horizontal casting systems disclosed in Japanese Patent Laid-open No. 9 and Japanese Patent Application Laid-Open No. 58-65547 are used in small-scale facilities. In this method 1, although the conditions of no oscillation and no powder are satisfied, a refractory material called a break ring as shown in JP-A-59-107977 is inserted between the tundish and the mold. Since the slab is drawn out intermittently (i.e., the slab is pulled out and the slab is stopped repeatedly), the surface condition of the slab has the same defects as in the mold vibration method described above.

水子連続鋳造と同様なケえ力を堅型の連続鋳造設備へ応
用した例は、特開昭59−225861号公報、特開昭
59−127953号公報などに示されているが、これ
らはどれも鋳型自体に振動を印加したり、鋳片の引抜き
が間歇的であるため、鋳片の表面性状が十分に健全で均
一なものがまだ得られていないのが現状である6 (発明が解決しようとする問題点) 本発明は、オツシレーシ5ンマークを解消すると共に、
パウダー無使用によりバッグ−巻き込みを完全に回避で
き、表面性状および内部品質の優れた鋳片を^速′!I
)造でかつ安定して製造できる連続鋳造方法を提供する
ことを目的とする。
Examples of applying the same retaining force as that of Mizuko continuous casting to rigid continuous casting equipment are shown in Japanese Patent Application Laid-Open No. 59-225861 and Japanese Patent Application Laid-Open No. 59-127953, etc. In all of these methods, vibrations are applied to the mold itself and the slab is pulled out intermittently, so it is currently not possible to obtain a sufficiently sound and uniform surface texture of the slab. Problems to be Solved) The present invention eliminates the 5-mark mark on the driver, and
By not using powder, bag entrainment can be completely avoided and slabs with excellent surface and internal quality can be produced quickly! I
) The purpose of the present invention is to provide a continuous casting method that allows stable production.

(問題点を解決するための手段) 本発明は、上部容器の底部に鋳型を一体に固設した装置
を通して溶鋼を連続鋳造するに際して、該鵞型の内側で
鋳片進行方向に加熱帯と冷却量を連設し、加熱量および
冷却量の制御により鋳片凝固スタート点をコントロール
しながら連続的に鋳片を引抜くことを特徴とする連続g
J造方法である。
(Means for Solving the Problems) The present invention provides a heating zone and a cooling zone inside the mold in the direction of progress of the slab when continuously casting molten steel through a device in which a mold is integrally fixed at the bottom of an upper container. Continuous g is characterized by continuously pulling out the slab while controlling the starting point of solidification of the slab by controlling the amount of heating and cooling.
This is the J construction method.

(作用) 以下に本発明の実施例および従来例を用い、詳細に説明
する。
(Operation) A detailed explanation will be given below using examples of the present invention and conventional examples.

第1図は本発明を実施するための装置例を示す説明図、
第2図、第3図、第4図は従来例を示す説明図である。
FIG. 1 is an explanatory diagram showing an example of an apparatus for carrying out the present invention;
FIG. 2, FIG. 3, and FIG. 4 are explanatory diagrams showing conventional examples.

1は取鍋、2は注入ノズル、3は溶鋼、4は上部容器、
5は加熱帯、6は冷却量、7は凝固シェル、8はタンデ
ィツシュ、9は浸漬ノズル、10はパウダー、11はブ
レークリング、12はストッパーである。
1 is a ladle, 2 is an injection nozzle, 3 is molten steel, 4 is an upper container,
5 is a heating zone, 6 is a cooling amount, 7 is a solidified shell, 8 is a tundish, 9 is an immersion nozzle, 10 is a powder, 11 is a break ring, and 12 is a stopper.

従来の連続鋳造工程は、第2図に示すように、溶鋼3が
タンディツシュ8から浸漬ノズル9を介して、冷却量6
内へ導かれるが、かかる際に冷却量6の内壁と凝固シェ
ルフとの焼き付きを防止する目的でパウダー10を溶鋼
湯面上に投入するとともに、冷却量6を上下に振動させ
ながら鋳片をド方へ引抜いているのが一般である。しか
し、この鋳型振動に伴って、鋳片表面にオツシレーシa
ンマークと称する表面欠陥が形成され、鋳片の無手入化
および圧延工程への直送化を阻害しているとともに、溶
鋼湯面上に投入されたパウダー10が浸漬ノズル9の吐
出口より噴出された溶鋼流によって巻き込まれ、このよ
うにして溶鋼中へ巻き込* h r:パウダーが介在物
系欠陥となるため、鋳片の内部品質を劣化させる要因と
なっている。
In the conventional continuous casting process, as shown in FIG.
At this time, powder 10 is poured onto the surface of the molten steel in order to prevent the inner wall of the cooling unit 6 from seizing on the solidification shelf, and the slab is driven while the cooling unit 6 is vibrated up and down. Generally, it is pulled out in the opposite direction. However, due to this mold vibration, the surface of the slab is exposed to a
Surface defects called "marks" are formed, which impedes the use of no-maintenance slabs and direct conveyance to the rolling process, and the powder 10 thrown onto the surface of the molten steel is ejected from the discharge port of the immersion nozzle 9. In this way, the powder becomes involved in the molten steel flow and becomes an inclusion-based defect, which causes deterioration of the internal quality of the slab.

η#、、−r、、h、  か 7、4++  [4r 
 JL:  lイ 瓢    々11  已・ ハ J
う FIFi  f’l  ψ)および内部品質ともに
優れたものを安定して製造するためには、バラグーレス
および鋳型のオツシレーシタンレスを可能ならしめる手
段が必須であると考えられろ。
η#,,-r,,h, or 7,4++ [4r
JL: lii gourd 11 已・ha J
In order to stably produce products that are excellent in both FIFi f'l ψ) and internal quality, it is considered essential to have a means to make it possible to eliminate balagure and the mold.

このような観点に立ち、パッダーレスおよびオフシレー
シaンレスを指向した製造方法として、第3図の水平連
続鋳造方法およびそれを垂直型に応用した第4図に示す
ような連続鋳造方法が公知である。これらのプロセスで
は、凝固起点を一定に制御する目的で上部容器4と冷却
量6の開にブレークリング11を設置するとともに鋳片
を間歇的1こ引抜いているため、凝固形態が一様でなく
、コールドシャフトマークと称する欠陥を有しているの
が実情である。
From this point of view, the horizontal continuous casting method shown in FIG. 3 and the continuous casting method shown in FIG. 4, which is an application of the horizontal continuous casting method to a vertical mold, are known as manufacturing methods aimed at padderless and off-sill a-less manufacturing methods. In these processes, a break ring 11 is installed between the upper vessel 4 and the cooling amount 6 in order to control the solidification point at a constant level, and the slab is pulled out intermittently, so the solidification form is not uniform. The reality is that they have a defect called a cold shaft mark.

以上より、高品質の鋳片を安定して製造するための重斐
なポイントとして、1可述のバラグーレス、オツシレー
ションレスに加えて連続引抜きが必要である。
From the above, in addition to the above-mentioned barrier-free and oscillation-less methods, continuous drawing is necessary to stably produce high-quality slabs.

これに対し、本発明はfjSll、¥Jに示すように上
部容器4の下に加熱帯5と冷却量6を順次連設し、加熱
帯5内壁においては鋼が常時溶融状態になるように加熱
帯5へ供給する熱量を制御し、かつ冷却量6の内壁では
溶鋼が必ず凝固しはじめるように冷ノJ呈を制御動るこ
とによって、ブレークリングを使用せずに凝固開始点を
加熱帯5と冷却量6の境界の近傍に存在するように制御
することが可能となる。
In contrast, in the present invention, as shown in fjSll, ¥J, a heating zone 5 and a cooling amount 6 are successively installed under the upper container 4, and the steel is heated on the inner wall of the heating zone 5 so that it is always in a molten state. By controlling the amount of heat supplied to the tropical zone 5 and controlling the cooling flow so that the molten steel always begins to solidify on the inner wall of the cooling zone 6, the solidification start point can be set to the heating zone 5 without using a break ring. It becomes possible to perform control so that the cooling amount exists near the boundary between the cooling amount and the cooling amount 6.

また、第3図および第4図に示すブレークリングを使用
する場合には、鋳片を連続的に引抜くと凝固起点がブレ
ークリングから離脱し、引抜きとともに引抜き方向へ次
第に移動し、最終的に凝固起点が鋳型後端に達した時点
でブレークアウトを生じて鋳造を中断せざるを得なくな
る。従って、従来のブレークリング使用に際しては間歇
的引抜きをせざるを得ないのが一般であることは周知で
ある (文献鉄と鋼(1981)、1377)。
In addition, when using the break ring shown in Figures 3 and 4, when the slab is continuously pulled out, the solidification origin separates from the break ring, gradually moves in the pulling direction as the slab is pulled out, and finally When the solidification starting point reaches the rear end of the mold, a breakout occurs and casting has to be interrupted. Therefore, it is well known that when using conventional break rings, it is common to have to pull them out intermittently (Reference Tetsu to Hagane (1981), 1377).

それに対し、本発明の場合は、加熱帯における加熱量お
よび冷却量の冷却量を各々適宜の値に制御rることによ
って凝固起点がある特定の位置に一定に存在するように
制御することが可能なため、鋳片の引抜きを連続にする
ことが可能となる9なお、加熱帯への熱量の供給方法は
、基本的にはある特定の熱量が供給て゛きれば特に限定
はせず、直接通電および誘導加熱などの電気加熱でも、
〃ス加熱でも所定の効果は得られるが、高精度の制御を
可能ならしめ、本発明の効果をより多大に享受するため
には電気加熱がより適している。
In contrast, in the case of the present invention, by controlling the heating amount and cooling amount in the heating zone to appropriate values, it is possible to control the solidification origin so that it is constantly located at a specific position. Therefore, it is possible to draw the slab continuously.9 The method of supplying heat to the heating zone is basically not limited as long as a certain amount of heat can be supplied, and direct energization and induction can be used. Even with electric heating such as heating,
Although a certain effect can be obtained using space heating, electric heating is more suitable in order to enable highly accurate control and to enjoy the effects of the present invention to a greater extent.

鋳型内の7I■滑に対しては、従来のバッグ−系統の潤
滑剤は使用しないが、鋳型と鋳片凝固シェルとの間の摩
擦抵抗力を減少させるために、鋳型内壁へ各種固体潤滑
剤を塗布したり、鋳型の一部または全部を黒鉛で形成す
ることが、本発明の効果をより優れたものにするために
必要に応じて適宜実施可能である。また、さらに摩擦抵
抗力を減少させるために、鋳型へ超a波等の高サイクル
m微振動を印加することも必要により適用可能である。
Conventional bag-based lubricants are not used to prevent 7I ■ slippage inside the mold, but various solid lubricants are applied to the inner walls of the mold to reduce the frictional resistance between the mold and the solidified slab shell. In order to further improve the effects of the present invention, applying graphite or forming part or all of the mold from graphite can be carried out as necessary. Furthermore, in order to further reduce the frictional resistance force, it is also possible to apply high-cycle m-vibration such as ultra-A waves to the mold, if necessary.

(実施例) 鋳片幅1600mm、鋳片厚245m+nの薄板用低炭
素アルミキルド鋼鋳片を#逍速度1.85+n/ vl
inで鋳造する連続鋳造機の冷却量の上に長さ200+
nmの加熱イiシ、およびその上部に容量2tの上部容
器を設置した。鋳型の内面へ固体潤滑剤として二硫化モ
リブデンを塗布し、加熱帯へ0.5MWの電気エネルギ
ーが供給できる発熱コイルを埋設し、凝固開始点が加熱
帯と冷ノJ帯の接合部近傍に必ず(f在するよつ+こ、
加熱帯への供給量と冷却、it)への給水量を制御しつ
つ、パウダーレスかつオフシレーシタンレスで連続的に
鋳片を引抜きながら、約5時間の鋳造を実施した。その
結果、外観上オツシレーションマークは観察されず、か
つ内部品質も良好な鋳片がブレークアウトや焼f・Yさ
などの操業上の問題らなく、安定してWJI造できrこ
(Example) Low carbon aluminum killed steel slab for thin plate with slab width 1600mm and slab thickness 245m+n # speed 1.85+n/vl
The length is 200+ on top of the cooling amount of the continuous casting machine that casts in.
A 2-t capacity upper container was placed above the heating cylinder. Molybdenum disulfide is applied as a solid lubricant to the inner surface of the mold, and a heating coil capable of supplying 0.5 MW of electrical energy to the heating zone is buried, ensuring that the solidification start point is near the joint between the heating zone and the cold J zone. (f exists here + here,
Casting was carried out for about 5 hours while controlling the amount of water supplied to the heating zone and the amount of water supplied to the cooling zone (IT) and continuously drawing out the slab without powder and without off-sillage. As a result, slabs with no oscillation marks observed on the outside and good internal quality can be produced stably using WJI without any operational problems such as breakouts or burnout.

(発明の効果) 以上詳細に述べたよう1こ、本発明を適用することによ
ってげに固開始点をほぼ所定の位ifiに制御でき、か
つその際の凝固シェル先端もシャープな形状を維持でき
る。このようにして製造された切片は無手入て゛次工程
の圧延工程へ流忙ことが可能となる。rなわち、本発明
により、表面性状および内部品質の優れた鋳片を+l’
fi速て゛がつ安定して鋳造することが可能となる6
(Effects of the Invention) As described in detail above, by applying the present invention, the fixation starting point can be controlled to approximately a predetermined position ifi, and the tip of the solidified shell can also maintain a sharp shape. The sections produced in this way can be transferred to the next rolling process without any manual work. In other words, according to the present invention, slabs with excellent surface texture and internal quality can be produced +l'
It becomes possible to cast fi-speed and stably6

【図面の簡単な説明】[Brief explanation of drawings]

tjS1図は本発明を実施するための装置例を示す説明
図、第2図、f:tS3図、第4図は従来例を示す説明
図である。 1・・・取鍋、2・・・注入ノズル、3・・・溶鋼、4
・・・上部容器、5・・・加熱帯、6・・・冷却量、7
・・・凝固シェル、8・・・タンディツシュ、9・・・
浸漬ノズル、10・・・パウダー、11・・・ブレーク
リング、12・・・ストッパー。
tjS1 is an explanatory diagram showing an example of an apparatus for implementing the present invention, and FIGS. 2, f:tS3, and 4 are explanatory diagrams showing a conventional example. 1... Ladle, 2... Injection nozzle, 3... Molten steel, 4
... Upper container, 5 ... Heating zone, 6 ... Cooling amount, 7
... solidified shell, 8... tandish, 9...
Immersion nozzle, 10...powder, 11...break ring, 12...stopper.

Claims (1)

【特許請求の範囲】[Claims] (1)上部容器の底部に鋳型を一体に固設した装置を通
して溶鋼を連続鋳造するに際して、該鋳型の内側で鋳片
進行方向に加熱帯と冷却量を連設し、加熱量および冷却
量の制御により鋳片凝固スタート点をコントロールしな
がら連続的に鋳片を引抜くことを特徴とする連続鋳造方
法。
(1) When continuously casting molten steel through a device in which a mold is integrally fixed at the bottom of an upper container, a heating zone and a cooling amount are connected in the direction of progress of the slab inside the mold, and the amount of heating and cooling is controlled. A continuous casting method characterized by continuously drawing out slabs while controlling the solidification start point of slabs.
JP28429685A 1985-12-19 1985-12-19 Continuous casting method Pending JPS62144856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28429685A JPS62144856A (en) 1985-12-19 1985-12-19 Continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28429685A JPS62144856A (en) 1985-12-19 1985-12-19 Continuous casting method

Publications (1)

Publication Number Publication Date
JPS62144856A true JPS62144856A (en) 1987-06-29

Family

ID=17676689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28429685A Pending JPS62144856A (en) 1985-12-19 1985-12-19 Continuous casting method

Country Status (1)

Country Link
JP (1) JPS62144856A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2618704A3 (en) * 1987-07-30 1989-02-03 Clecim Sa Method and device for supplying an ingot mould for the continuous casting of thin products
JPH01313160A (en) * 1988-06-10 1989-12-18 Nippon Steel Corp Method for continuously casting molten metal

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60191642A (en) * 1984-03-14 1985-09-30 Nippon Mining Co Ltd Horizontal and continuous casting method of metal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60191642A (en) * 1984-03-14 1985-09-30 Nippon Mining Co Ltd Horizontal and continuous casting method of metal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2618704A3 (en) * 1987-07-30 1989-02-03 Clecim Sa Method and device for supplying an ingot mould for the continuous casting of thin products
JPH01313160A (en) * 1988-06-10 1989-12-18 Nippon Steel Corp Method for continuously casting molten metal

Similar Documents

Publication Publication Date Title
US6336496B1 (en) Apparatus for continuous casting of metal
JPH03243247A (en) Horizontal type continuous casting method for hoop cast metal and apparatus thereof
JP3085978B2 (en) Method for manufacturing thin slab and continuous casting apparatus
JPS62144856A (en) Continuous casting method
RU1819188C (en) Method and apparatus for cooling steel ingots at continuous casting
JPH0255642A (en) Method and device for continuously casting strip steel
US4220191A (en) Method of continuously casting steel
US3397733A (en) Method for removal of gas from molten metal during continuous casting
JP3805708B2 (en) Horizontal continuous casting method
JPH0475110B2 (en)
US3552481A (en) Apparatus for removing gas from molten metal during continuous casting
JP2626795B2 (en) Continuous casting of molten steel
US12023727B2 (en) Starting head for a continuous casting mold and associated method
JPH0675756B2 (en) Opening method of sliding nozzle
JPS6333160A (en) Continuous casting method
US20220362838A1 (en) Starting head for a continuous casting mold and associated method
JPS6340650A (en) Apparatus for reducing center segregation in continuously casting slab
JPS60240355A (en) Continuous casting method of slab
JPS5853354A (en) Continuous casting method for steel
JPS6410305B2 (en)
JPH01202349A (en) Continuous casting method
JPS61150751A (en) Heated mold and method for horizontal and continuous casting of metal
JPH0890172A (en) Production of small lot of cast slab in continuous casting
JPS63268553A (en) Apparatus for casting metal or alloy having fine crystalline grain
WO2022240953A1 (en) Starting head for a continuous casting mold and associated continuous casting mold